Skip to main content

Advertisement

Log in

Lipid composition of two types of chondrocytes in primary culture

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Chondrocytes from articular and growth plate cartilage were grown in primary culture. The lipid content, distribution into different types, as well as the fatty acid patterns of these lipids were compared when the cells had reached stationary phase and were synthesizing maximal amounts of proteoglycans. Numerous significant differences were observed, depending on the origin of the chondrocytes. In particular, growth plate chondrocytes showed increased dry weight, increased lipid content (phosphatides and triglycerides), and decreased cholesterol to phosphatide ratio when compared to articular chondrocytes; they also incorporated more of C18:1 and less C16:0 into their major lipid types. Whether these differences arise from specific metabolic regulation or are a consequence of chondrocyte organization in primary culture remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Irwing, H. J., Wuthier, R. E.: Histochemistry and biochemistry of calcification with special reference to the role of lipids, Clin. Orthop.56:237–260, 1968

    Google Scholar 

  2. Dirksen, T. R.: The role of lipids in calcification. In F. Snyder (ed.): Lipid Metabolism in Mammals, Vol. 2, pp. 279–292. Plenum Press, New York, 1977

    Google Scholar 

  3. Boskey, A. L.: The role of calcium-phospholipid-phosphate complexes in tissue mineralization, Metab. Bone Dis. Rel. Res.1:137–142, 1978

    Article  CAS  Google Scholar 

  4. Hohling, H. J., Barkhaus, R. H., Krefting, E. R., Quint, P., Althoff, J.: Quantitative electron microscopy of the early stages of cartilage mineralization, Metab. Bone Dis. Rel. Res.1:109–114, 1978

    Article  Google Scholar 

  5. Boskey, A. L.: Models of matrix vesicle calcification, Inorgan. Persp. Biol. Med.2:51–92, 1979

    Google Scholar 

  6. Wuthier, R. E.: Lipids of mineralizing epiphyseal tissues in bovine fetus, J. Lipid Res.94:68–78, 1968

    Google Scholar 

  7. Corvol, M. T., Dumoniter, M. F., Maroteaux, P., Rappaport, R., Posner, B., Guyda, H.: Culture de cartilage de croissance humain normal et pathologique. Action de dérivés de la vitamine D3 et de la somatomédine, Arch. Fr. Pédiatr. [Suppl.]35:57–64, 1979

    Google Scholar 

  8. Corvol, M. T., Stanescu, V., Maroteaux, P.: Comparative study of proteoglycans synthesized by chondrocytes of articular cartilage and growth cartilage in vivo and in cell culture, Front. Matrix Biol.3:168–175, 1976

    CAS  Google Scholar 

  9. Corvol, M. T., Dumontier, M. F., Rappaport, R.: Culture of chondrocytes from the proliferative zone of epiphyseal growth plate cartilage from prepubertal rabbits, Biomedicine23:103–107, 1975

    CAS  PubMed  Google Scholar 

  10. Corvol, M. T., Dumontier, M. F., Rappaport, R., Guyda, H., Posner, B. I.: The effect of a somatomedin peptide (ILAS) on the sulfatation of proteoglycans from articular and growth plate chondrocytes in culture, Acta Endocrinol. (Copenh.)89:263–275, 1978

    CAS  Google Scholar 

  11. Burton, K.: A study of the conditions and mechanism of the diphenylalanine reaction for the colorimetric estimation of DNA, Biochem. J.62:315–323, 1956

    CAS  PubMed  Google Scholar 

  12. Folch, J., Lees, M., Sloane Stanley, G. H.: A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem.226:497–509, 1957

    CAS  PubMed  Google Scholar 

  13. Kates, M.: Acetone precipitation of phosphatides. In: Technique of Lipidology, pp. 393–394. North Holland-American Elsevier Pub., Amsterdam, 1972

    Google Scholar 

  14. Eggstein, M.: Eine neue Bestimmung der Neutralfette im Blutserum und Gewebe, Klin. Wochenschr.44:267–273, 1966

    Article  CAS  PubMed  Google Scholar 

  15. Searcy, K. L., Berquist, J. L.: A new color reaction for the quantitation of serum cholesterol, Clin. Chim. Acta5:192–199, 1960

    Article  CAS  PubMed  Google Scholar 

  16. Skipski, V. P., Barclay, M.: Thin-layer chromatography of lipids. Methods Enzymol.14:550–566, 1969

    Google Scholar 

  17. Ackman, R. G.: Influence of column temperature in the gas-liquid chromatographic separation of methyl esters of fatty acids on polyester substrates, J. Gas Chromatogr.1:11–16, 1973

    Google Scholar 

  18. Chen, P. S., Toribara, T. Y., Warner, H.: Microdetermination of phosphorus, Anal. Chem.28:1756–1758, 1956

    Article  CAS  Google Scholar 

  19. Skipski, V. P., Barclay, M.: Thin-layer chromatography of phospholipids, Methods Enzymol.14:580–582, 1969

    Google Scholar 

  20. Schwartz, D.: In: Méthodes Statistiques à l'Usage des Médecins et des Biologistes. Flammarion Pub., Paris, France, 1963

    Google Scholar 

  21. Bailey, J. M.: Cultured cells. In F. Snyder (ed.): Lipid Metabolism in Mammals, Vol. 2, pp. 323–352. Plenum Press, New York, 1977

    Google Scholar 

  22. Baldassare, J., Saito, Y., Silbert, D.: Effect of sterol depletion on LM cell sterol mutant, J. Biol. Chem.254:1108–1113, 1979

    CAS  PubMed  Google Scholar 

  23. Silbert, D. F.: Membrane function in relation to modification of membrane lipid structure. XXI. Conference on the Biochemistry of Lipids, Cologne, Germany, 29.8 to 1.9, 1979, A41

  24. Wuthier, R. E.: Lipid composition of isolated epiphyseal cartilage cells, membrane and matrix vesicles, Biochim. Biophys. Acta409:128–143, 1975

    CAS  PubMed  Google Scholar 

  25. Wuthier, R. E.: Lipids at sites of calcification, Fed. Proc.35:117–121, 1976

    CAS  PubMed  Google Scholar 

  26. Spector, A. A.: Fatty acid, glyceride and phospholipid metabolism. In G. H. Rothblat, U. J. Cristafalo, (eds.): Growth, Nutrition and Metabolism of Cells in Culture, Vol. 1, pp. 257–296. Academic Press, New York, 1972

    Google Scholar 

  27. Bernfeld, P., Donahue, V., Berkowitz, M.: Interaction of human serum beta-lipoglobulins with polyanions, J. Biol. Chem.226:51–64, 1957

    CAS  PubMed  Google Scholar 

  28. Srinivasan, S. R., Dolan, P., Radhakrishmamurthy, B., Pargaonka, P. S.: Lipoprotein-acid mucopolysaccharide complexes of human atherosclerotic lesions, Biochim. Biophys. Acta388:58–70, 1975

    CAS  PubMed  Google Scholar 

  29. Mackenzie, C. G., Mackenzie, J. B., Reiss, O. K.: Regulation of cell lipid metabolism and accumlation. III. The lipid content of mammalian cells and the response to the lipogenic activity of the rabbit serum, Exp. Cell. Res.36:533–547, 1964

    Article  CAS  PubMed  Google Scholar 

  30. Mackenzie, C. G., Mackenzie, J. B., Reiss, O. K., Philpott, D. E.: Regulation of cell lipid metabolism and accumulation. IV. The isolation and composition of cytoplasmic lipid-rich particles, Biochemistry5:1454–1461, 1966

    Article  CAS  PubMed  Google Scholar 

  31. Wuthier, R. E., Cumming, J. W.: In vitro incorporation of3H-serine into phospholipids of proliferating and calcifying epiphyseal cartilage and liver, Biochim. Biophys. Acta337:50–59, 1974

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Lous, M., Corvol, MT. & Maroteaux, P. Lipid composition of two types of chondrocytes in primary culture. Calcif Tissue Int 33, 403–407 (1981). https://doi.org/10.1007/BF02409463

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02409463

Key words

Navigation