Skip to main content
Log in

Temperature-dependent lateral and transverse distribution of the epidermal growth factor receptor in A431 plasma membranes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

To elucidate further the structure and molecular dynamics of the epidermal growth factor receptor, temperature-dependent aggregation and extracellular protrusion of the epidermal growth factor receptor in isolated plasma membranes from A431 cells were examined by fluorescence energy-transfer techniques. Epidermal growth factor was labeled at the amino terminus with either fluorescein isothiocyanate or tetramethylrhodamine isothiocyanate. A radionuclide receptor displacement assay demonstrated the bioactivity of these derivatives. Aggregation of the epidermal growth factor receptor was measured by determining the increase in fluorescence energy transfer between receptorbound fluorescein and tetramethylrhodamine-labeled epidermal growth factor. Energy transfer between receptor-bound fluorescent derivatives was reversibly greater at 37 than 4°C, indicating temperature-dependent aggregation of the receptor. The extracellular protrusion of the epidermal growth factor receptor was calculated from the magnitude of energy transfer between receptorbound fluorescein labeled epidermal growth factor and 5-(N-dodecanoylamino)-eosin partitioned into the lipid membrane at 4 and 37°C. No significant change in the distance of closest approach between the N-terminus of epidermal growth factor and the plasma membrane was observed at 4°C (69±2 Å) and 37°C (67±2 Å). Thus, the extracellular protrusion of the occupied epidermal growth factor receptor did not change detectably upon receptor aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu, M., Sen-Majumdar, A., Basu, A., Murthy, U., Das, M. 1986. Regulation of kinase and intermolecular bonding in intact and truncated epidermal growth factor receptor.J. Biol. Chem. 261:12879–12882

    PubMed  Google Scholar 

  • Berman, H.A., Yguerabide, J., Taylor, P. 1980. Fluorescence energy transfer on acetylcholinesterase: Spatial relationship between peripheral site and active center.Biochemistry 19:2226–2235

    PubMed  Google Scholar 

  • Biswas, R., Basu, M., Sen-Majumdar, A., Das, M. 1985. Intrapeptide autophosphorylation of the epidermal growth factor receptor: Regulation of kinase catalytic function by receptor dimerization.Biochemistry 24:3795–3802

    PubMed  Google Scholar 

  • Boni-Schnetzler, M., Pilch, P.F. 1987. Mechanism of epidermal growth factor receptor autophosphorylation and high-affinity binding.Proc. Natl. Acad. Sci. USA 84:7832–7836

    PubMed  Google Scholar 

  • Carpenter, G., Cohen, S. 1976.125I-labeled human epidermal growth factor binding, internalization, and degradation in human fibroblasts.J. Cell Biol. 71:159–171

    PubMed  Google Scholar 

  • Carpenter, G., Cohen, S. 1979. Epidermal growth factor.Annu. Rev. Biochem. 48:193–216

    PubMed  Google Scholar 

  • Carpenter, G., King, L., Jr., Cohen, S. 1979. Rapid enhancement of protein phosphorylation in A431 cell membrane preparations by epidermal growth factor.J. Biol. Chem. 254:4884–4891

    PubMed  Google Scholar 

  • Carpenter, G., Zendegui, J.G. 1986. Epidermal growth factor, its receptor, and related proteins.Exp. Cell Res. 164:1–10

    PubMed  Google Scholar 

  • Carraway, K.L., Koland, J.G., Cerione, R.A. 1989. Visualization of epidermal growth factor (EGF) receptor aggregation in plasma membranes by fluorescence resonance energy transfer.J. Biol. Chem. 264:8699–8707

    PubMed  Google Scholar 

  • Cassel, D., Glaser, L. 1982. Proteolytic cleving of epidermal growth factor receptor: A Ca2+-dependent, sulfhydryl-sensitive proteolytic system in A431 cells.J. Biol. Chem. 257:9845–9848

    PubMed  Google Scholar 

  • Chen, R.F. 1965. Fluorescence quantum yield measurements: Vitamin B6 compounds.Science 150:1593–1595

    PubMed  Google Scholar 

  • Chen, W.S., Lazar, C.S., Poenie, M., Tsien, R.Y., Gill, G.N., Rosenfeld, M.G. 1987. Requirement for intrinsic protein tyrosine kinase in the immediate and late actions of the EGF receptor.Nature (London) 328:820–823

    Google Scholar 

  • Cochet, C., Kashles, O., Chanbaz, E.M., Borrello, I., King, C.R., Schlessinger, J. 1988. Demonstration of epidermal growth factor-induced receptor dimerization in living cells using a chemical covalent cross-linking agent.J. Biol. Chem. 263:3290–3295

    PubMed  Google Scholar 

  • Cohen, S., Ushiro, H., Stoscheck, C., Chinkers, M. 1982. A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles.J. Biol. Chem. 257:1523–1531

    PubMed  Google Scholar 

  • Dale, R.E., Eisinger, J., Blumberg, W.E. 1979. The orientation factor in intramolecular energy transfer.Biophys. J. 26:161–194

    PubMed  Google Scholar 

  • Fanger, B.O., Austin, K.S., Earp, H.S., Cidlowski, J.A. 1986. Cross-linking of epidermal growth factor receptors in intact cells: Detection of initial stages of receptor clustering and determination of molecular weight of high-affinity receptors.Biochemistry 25:6414–6420

    PubMed  Google Scholar 

  • Fung, B.K.-K., Stryer, L. 1978. Surface density determination in membranes by fluorescence energy transfer.Biochemistry 17:5241–5248

    PubMed  Google Scholar 

  • Hillman, G.M., Schlessinger, J. 1982. Lateral diffusion of epidermal growth factor complexed to its surface receptors does not account for the thermal sensitivity of patch formation and endocytosis.Biochemistry 21:1667–1672

    PubMed  Google Scholar 

  • Holowka, D., Baird, B. 1983a. Structural studies on the membrane-bound immunoglobulin E-receptor complex: I. Characterization of large plasma membrane vesicles from rat basophilic leukemia cells and insertion of amphipathic fluorescent probes.Biochemistry 22:3466–3474

    PubMed  Google Scholar 

  • Holowka, D., Baird, B. 1983b. Structural studies on the membrane-bound immunoglobulin E-receptor complex: II. Mapping of distances between sites on IgE and the membrane surface.Biochemistry 22:3475–3484

    Google Scholar 

  • Honegger, A.M., Dull, T.J., Felder, S., Van Obberghen, E., Bellot, F., Szapary, D., Schmidt, A., Ullrich, A., Schlessinger J. 1987. Point mutation at the ATP binding site of EGF receptor abolishes protein-tyrosine kinase activity and alters cellular routing.Cell 51:199–209

    PubMed  Google Scholar 

  • Koland, J.G., Cerione, R.A. 1988. Growth factor control of epidermal growth factor receptor kinase activity via an intramolecular mechanism.J. Biol. Chem. 263:2230–2237

    PubMed  Google Scholar 

  • Laemmeli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:680–685

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  • Moolenaar, W.H., Bierman, A.J., Tilly, B.C., Verlaan, I., Defize, L.H.K., Honegger, A.M., Ullrich, A., Schlessinger, J. 1988. A point mutation at the ATP-binding site of the EGF-receptor abolishes transduction.EMBO J 7:707–710

    PubMed  Google Scholar 

  • Parker, C.A., Rees, W.T. 1960. Correction of fluorescence spectra and measurement of fluorescence quantum efficiency.Analyst 85:587–600

    Google Scholar 

  • Santon, J.B., Cronin, M.T., Macleod, C.L., Mendelsohn, J., Masui H., Gill, G.N. 1986. Effects of epidermal growth factor receptor concentration on tumorigenicity of A431 cells in nude mice.Cancer Res. 46:4701–4705

    PubMed  Google Scholar 

  • Savage, C.R., Cohen, S. 1972. Epidermal growth factor and a new derivative.J. Biol. Chem. 247:7609–7611

    PubMed  Google Scholar 

  • Shecter, Y., Schlessinger, J., Jacobs, S., Chang, K.J., Cuatrecasas, P. 1978. Fluorescent labeling of hormone receptors in viable cells: Preparation and properties of highly fluorescent derivatives of epidermal growth factor and insulin.Proc. Natl. Acad. Sci. USA 75:2135–2139

    PubMed  Google Scholar 

  • Schlessinger, J. 1986. Allosteric regulation of the epidermal growth factor receptor kinase.J. Cell. Biol. 103:2067–2072

    PubMed  Google Scholar 

  • Shaklai, N., Yguerabide, J., Ranney, H.M. 1977. Interaction of hemoglobin with red blood cell membranes as shown by a fluorescent chromophore.Biochemistry 16:5585–5592

    PubMed  Google Scholar 

  • Stryer, L., Thomas, D.D., Carlsen, W.F. 1982. Fluorescence energy transfer measurements of distances in rhodopsin and the purple membrane protein.Methods Enzymol. 81:668–678

    PubMed  Google Scholar 

  • Taylor, J.M., Mitchel, W.M., Cohen, S. 1972. Epidermal growth factor.J. Biol. Chem. 247:5928–5934

    PubMed  Google Scholar 

  • Ullrich, A., Coussens, L., Hayflick, J.S., Dull, T.J., Gray, A., Tam, A.W., Lee, J., Yarden, Y., Libermann, T.A., Schlessinger, J., Downward, J., Mayes, E.L.V., Whittle, N., Waterfield, M.D., Seeburg, P.H. 1984. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells.Nature (London) 309:418–425

    Google Scholar 

  • Umberger, J.Q., LaMer, V.K. 1945. The kinetics of diffusion controlled molecular and ionic reactions in solution as determined by measurements of the quenching of fluorescence.J. Am. Chem. Soc. 67:1099–1109

    Google Scholar 

  • Weber, K., Pringle, J.R., Osborn, M. 1972. Measurement of molecular weights by electrophoresis on SDS-acrylamide gel.Methods Enzymol. 26:3–27

    PubMed  Google Scholar 

  • Weber, W., Bertics, P.J., Gill, G.N. 1984. Immunoaffinity purification of the epidermal growth factor receptor: Stoichiometry of binding and kinetics of self-phosphorylation.J. Biol. Chem. 259:14631–14636

    PubMed  Google Scholar 

  • Wolber, P.K., Hudson, B.S. 1979. An analytic solution to the forster energy transfer problem in two dimensions.Biophys. J. 28:197–210

    PubMed  Google Scholar 

  • Yarden, Y., Schlessinger, J. 1987a. Self-phosphorylation of epidermal growth factor receptor: Evidence for a model of intermolecular allosteric activation.Biochemistry 26:1434–1442

    PubMed  Google Scholar 

  • Yarden, Y., Schlessinger, J. 1987b. Epidermal growth factor induces rapid, reversible aggregation of the purified epidermal growth factor receptor.Biochemistry 26:1443–1451

    PubMed  Google Scholar 

  • Zidovetzki, R., Yarden, Y., Schlessinger, J., Jovin, T.M. 1981. Rotational diffusion of epidermal growth factor complexed to cell surface receptors reflects rapid microaggregation and endocytosis of occupied receptors.Proc. Natl. Acad. Sci. USA 78:6981–6985

    PubMed  Google Scholar 

  • Zidovetzki, R., Yarden, Y., Schlessinger, J., Jovin, T.M. 1986. Microaggregation of hormone-occupied epidermal growth factor receptors on plasma membrane preparations.EMBO J. 5:247–250

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azevedo, J.R., Johnson, D.A. Temperature-dependent lateral and transverse distribution of the epidermal growth factor receptor in A431 plasma membranes. J. Membrain Biol. 118, 215–224 (1990). https://doi.org/10.1007/BF01868605

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868605

Key Words

Navigation