Skip to main content
Log in

Similarity in effects of Na+ gradients and membrane potentials ond-glucose transport by, and phlorizin binding to, vesicles derived from brush borders of rabbit intestinal mucosal cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Both the presence of sodium and of an electrical potential difference across the membrane have been found to be necessary in order to achieve optimald-glucose-protectable phlorizin binding to brush border membranes from rabbit small intestine. The effect of\(\Delta \tilde \mu _{Na} \) on phlorizin binding shows a close similarity to that ond-glucose transport, confirming that phlorizin is indeed bound to thed-glucose transporting protein. Possible modulations of binding by a transmembrane potential are discussed on the basis of some models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarado, F. 1967. Hypothesis for the interaction of phlorizin and phloretin with membrane carriers for sugars.Biochim. Biophys. Acta 135:483

    PubMed  Google Scholar 

  2. Bihler, I., Crane, R.K. 1962. Studies on the mechanism of intestinal absorption of sugars. V. The influence of several cations and anions on the active transport of sugars,in vitro, by various preparations of hamster small intestine.Biochim. Biophys. Acta 59:78

    PubMed  Google Scholar 

  3. Bihler, I., Hawkins, K.A., Crane, R.K. 1962. Studies on the mechanism of intestinal absorption of sugars. VI. The specificity and other properties of Na+-dependent entrance of sugars into intestinal tissue under anaerobic conditions,in vitro.Biochim. Biophys. Acta 59:94

    PubMed  Google Scholar 

  4. Bode, F., Baumann, K., Frasch, W., Kinne, R. 1970. Die Bindung von Phlorrhizin an die Bürstensaumfraktion der Rattenniere.Pfluegers Arch. 315:53

    Google Scholar 

  5. Catterall, W.A., Ray, R. 1977. Membrane potential dependent binding of scorpion toxin to action potential Na+ channels in electrically excitable neuroblastoma cells.J. Supramolec. Struc. 6 (suppl. 1):128

    Google Scholar 

  6. Chesney, R., Sacktor, B., Kleinzeller, A. 1974. The binding of phlorizin to the isolated luminal membrane of the renal proximal tubule.Biochim. Biophys. Acta 332:263

    Google Scholar 

  7. Chesney, R.W., Sacktor, B., Rowen, R. 1973. The binding ofd-glucose to the isolated luminal membrane of the renal proximal tubule.J. Biol. Chem. 248:2182

    PubMed  Google Scholar 

  8. Crane, R.K. 1962. Hypothesis for mechanism of intestinal active transport of sugars.Federation Proc. 21:891

    Google Scholar 

  9. Diedrich, D.F. 1966. Competitive inhibition of intestinal glucose transport by phlorizin analogs.Arch. Biochem. Biophys. 117:248

    PubMed  Google Scholar 

  10. Diedrich, D.F. 1968. Is phloretin the sugar transport inhibitor in intestine?Arch. Biochem. Biophys. 127:803

    PubMed  Google Scholar 

  11. Diedrich, D.F. 1972. On the absence of phlorizin hydrolase in renal brush border membranes.Arch. Biochem. Biophys. 153:155

    PubMed  Google Scholar 

  12. Flagg, J.L., Wilson, T.H. 1977. A protonmotive force as the source of energy for galactoside transport in energy depletedEscherichia coli.J. Membrane Biol. 31:233

    Google Scholar 

  13. Geck, P., Heinz, E. 1976. Coupling in secondary transport. Effect of electrical potentials on the kinetics of ion linked cotransport.Biochim. Biophys. Acta 443:49

    PubMed  Google Scholar 

  14. Glossmann, H., Neville, D.M., Jr. 1972. Phlorizin receptors in isolated kidney brush border membranes.J. Biol. Chem. 247:7779

    PubMed  Google Scholar 

  15. Goldman, D.E. 1943. Potential, impedance, and rectification in membranes.J. Gen. Physiol. 27:37

    Google Scholar 

  16. Honegger, P., Semenza, G. 1973. Multiplicity of carrier for free glucalogues in hamster small intestine.Biochim. Biophys. Acta 318:390

    Google Scholar 

  17. Hopfer, U., Nelson, K., Perrotto, J., Isselbacher, K.J. 1973. Glucose transport in isolated brush border membrane from rat intestine.J. Biol. Chem. 248:25

    PubMed  Google Scholar 

  18. Jennings, M.L., Solomon, A.K. 1976. Interaction between phloretin and the red blood cell membrane.J. Gen. Physiol. 67:381

    PubMed  Google Scholar 

  19. Kessler, M., Acuto, O., Storelli, C., Murer, H., Müller, M., Semenza, G. 1978. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use to investigate some properties ofd-glucose and choline transport systems.Biochim. Biophys. Acta 506:136

    PubMed  Google Scholar 

  20. Kessler, M., Tannenbaum, V., Tannenbaum, C. 1978. A simple apparatus for performing short-time (1–2 seconds) uptake measurements in small volumes: Its application tod-glucose transport studies in brush border vesicles from rabbit jejunum and ileum.Biochim. Biophys. Acta (in press)

  21. Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M., Sachs, G. 1975. Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-border microvilli and basal-lateral plasma membranes.J. Membrane Biol. 21:375

    Google Scholar 

  22. LeFevre, P.G., Marshall, J.K. 1959. The attachment of phloretin and analogues to human erythrocytes in connection with inhibition of sugar transport.J. Biol. Chem. 234:3022

    PubMed  Google Scholar 

  23. Liedtke, C.M., Hopfer, U. 1977. Anion transport in brush border membranes isolated from rat small intestine.Biochem. Biophys. Res. Commun. 76:579

    Google Scholar 

  24. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265

    PubMed  Google Scholar 

  25. Lyon, I. 1967. Studies on transmural potentialsin vitro in relation to intestinal absorption. IV. Phlorizin-sugar interactions in rat gut.Biochim. Biophys. Acta 135:496

    PubMed  Google Scholar 

  26. Malathi, P., Crane, R.K. 1969. Phlorizin hydrolase, a β-glucosidase of hamster intestinal brush border membrane.Biochim. Biophys. Acta 173:245

    PubMed  Google Scholar 

  27. Meeuwisse, G. 1970. Glucose-galactose malabsorption. An inborn error of carrier-mediated transport. Ph.D. Thesis, University of Lund, Sweden

    Google Scholar 

  28. Murer, H., Hopfer, U. 1974. Demonstration of electrogenic Na+-dependentd-glucose transport in intestinal brush border membranes.Proc. Nat. Acad. Sci. USA 71:484

    PubMed  Google Scholar 

  29. Ramos, S., Kaback, H.R. 1977. The relationship between the electrochemical proton gradient and active transport inEscherichia coli membrane vesicles.Biochemistry 16:854

    PubMed  Google Scholar 

  30. Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B.K., Cerda, J.J., Crane, R.K. 1973. Purification of the human intestinal brush border membrane.Biochim. Biophys. Acta 323:98

    PubMed  Google Scholar 

  31. Schuldiner, S., Weil, R., Kaback, H.R. 1976. Energy-dependent binding of dansylgalactoside to thelac carrier protein: Direct binding measurements.Proc. Nat. Acad. Sci. USA 73:109

    PubMed  Google Scholar 

  32. Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637

    Google Scholar 

  33. Semenza, G., Tannenbaum, C., Kessler, M., Toggenburger, G., Wahlgren, L. 1977. A possible common activation site in Na+-driven transport systems. Partial purification of the Na-dependentd-glucose transport system from small intestinal brush borders.In: Biochemistry of Membrane Transport. G. Semenza, E. Carafoli, editors. 1976 FEBS Symposium No. 42, p. 269. Springer-Verlag, Heidelberg

    Google Scholar 

  34. Silverman, M., Black, J. 1975. High affinity phlorizin receptor sites and their relation to the glucose transport mechanism in the proximal tubule of dog kidney.Biochim. Biophys. Acta 394:10

    PubMed  Google Scholar 

  35. Tannenbaum, C., Kessler, M., Toggenburger, G., Rothstein, A., Semenza, G. 1977. Identification of the high affinity binding site of phlorizin with (a part of) the Na+-dependent glucose transport system in vesicles from intestinal brush border membranes.11th FEBS Meet. (Abstr. B1-1)300:1

    Google Scholar 

  36. Tannenbaum, C., Toggenburger, G., Kessler, M., Rothstein, A., Semenza, G. 1977. High-affinity phlorizin binding to brush border membranes from small intestine: Identity with (a part of) the glucose transport system, dependence of the Na+ gradient, partial purification.J. Supramolec. Struc. 6:519

    Google Scholar 

  37. Vick, H., Diedrich, D.F., Baumann, K., 1973. Reevaluation of renal tubular glucose transport inhibition by phlorizin analogues.Am. J. Physiol. 224:552

    PubMed  Google Scholar 

  38. West, I.C., Mitchell, P. 1972. Proton coupled β-galactoside translocation in nonmetabolizingEscherichia coli.J. Bioenerg. 3:445

    PubMed  Google Scholar 

  39. West, I.C., Mitchell, P. 1973. Stoichiometry of lactose-H+ symport across the plasma membrane ofEscherichia coli.Biochem. J. 132:587

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toggenburger, G., Kessler, M., Rothstein, A. et al. Similarity in effects of Na+ gradients and membrane potentials ond-glucose transport by, and phlorizin binding to, vesicles derived from brush borders of rabbit intestinal mucosal cells. J. Membrain Biol. 40, 269–290 (1978). https://doi.org/10.1007/BF02002972

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02002972

Keywords

Navigation