Skip to main content
Log in

The membrane surfaces of the toad bladder: Scanning and transmission electron-microscopy

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The SEM permits analysis of large areas of the surface of epithelia and facilitates the study of cell-to-cell relationships, as pointed out by Fenguson and Heap (Z. Zellforsch.109:297, 1970). The short method of preparation described here yields good results when the critical point method is used for drying (freeze-drying was less satisfactory). Cell counts reveal that theBufo marinus toad bladder epithelium contains 3 or 4 granular (GR) cells to 1 mitochondria-rich (MR) cell. Whether these cell membrane contacts are permeable to the diffusion of high energy compounds and whether the MR cells serve as a source of energy for the GR cells are hypotheses that require further study. In view of the wide variations in the cell number per unit area even in single hemibladders, experimental measurements should probably be expressed either in terms of cell counts of DNA content, rather than per unit surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, T. 1956. Electron microscopy of microorganism.In: Physical Techniques in Biological Research. G. Oster and A. W. Pollister, editors. Vol. III. p. 177. Academic Press Inc., New York

    Google Scholar 

  • Bogoroch, R. 1969. Studies on the intracellular localization of tritiated steroids.In: Autoradiography of Diffusible Substances. L. J. Roth and W. E. Stumpf, editors. p. 99. Academic Press Inc., New York

    Google Scholar 

  • Choi, J. K. 1963. The fine structure of the urinary bladder of the toadBufo marinus.J. Cell Biol. 16:53

    Google Scholar 

  • Crabbé, J. 1961. Stimulation of active sodium transport across the isolated toad bladder after injection of aldosterone to the animal.Endocrinology 69:673

    Google Scholar 

  • DiBona, D. R., Civan, M. M., Leaf, A. 1969. The cellular specificity of the effect of vasopressin on toad urinary bladder.J. Membrane Biol. 1:79

    Google Scholar 

  • Ferguson, D. R., Heap, P. F. 1970. The morphology of the toad urinary bladder: A stereoscopic and transmission microscopical study.Z. Zellforsch. 109:297

    Google Scholar 

  • Friend, D. S., Gilula, N. B. 1972. Variations in tight and gap junctions in mammalian tissues.J. Cell Biol. 53:758

    Google Scholar 

  • Gfeller, E., Walser, M. 1971. Stretch-induced changes in geometry and ultrastructure of transporting surfaces of toad bladder.J. Membrane Biol. 4:16

    Google Scholar 

  • Gilula, N. B., Reeves, O. R., Steinbach, A. 1972. Metabolic coupling, ionic coupling, and cell contacts.Nature 235:262

    Google Scholar 

  • Jard, S., Bourguet, J., Favard, P., Carasso, N. 1971. The role of intercellular channels in the transepithelial transfer of water and sodium in the frog urinary bladder.J. Membrane Biol. 4:124

    Google Scholar 

  • Keller, A. R. 1963. A histochemical study of the toad urinary bladder.Anat. Rec. 147:367

    Google Scholar 

  • Leaf, A. 1965. Transepithelial transport and its hormonal control in toad bladder.Ergebn. Physiol. 56:216

    Google Scholar 

  • Leaf, A., Anderson, J., Page, L. B. 1958. Active sodium transport by the isolated toad bladder.J. Gen. Physiol. 41:657

    Google Scholar 

  • List, J. M. 1887. Über eizellige Drüsen (Becherzellen) im Blasenepithel der Amphibien.Arch. Mikr. Anat. 29:147

    Google Scholar 

  • Loewenstein, W. R., Socolar, S. J., Higashino, S., Kanno, Y., Davidson, N. 1965. Intercellular communication: Renal, urinary bladder, sensory, and salivary gland cells.Science 149:295

    Google Scholar 

  • Loewenstein, W. R. 1966. Permeability of membrane junctions. Conference on biological membranes: Recent progress.Ann. N. Y. Acad. Sci. 137:441

    Google Scholar 

  • Loewenstein, W. R. 1973. Membrane junctions in growth and differentiation.Fed. Proc. 32:60

    Google Scholar 

  • Mamelak, M., Wissig, S. L., Bogoroch, R., Edelman, I. S. 1969. Physiological and morphological effects of poly-l-lysine on the toad bladder.J. Membrane Biol. 1:144

    Google Scholar 

  • Pak Poy, R. F. K., Bentley, P. J. 1960. Fine structure of the epithelial cells of the toad urinary bladder.Exp. Cell Res. 20:235

    Google Scholar 

  • Peachey, L. D., Rasmussen, H. 1961. Structure of the toad's urinary bladder as related to its physiology.J. Biophys. Biochem. Cytol. 10:529

    Google Scholar 

  • Schiefferdecker, P. 1884. Zur Kenntnis des Baues der Schleimdrüsen.Arch. Mikr. Anat. 23:382

    Google Scholar 

  • Venable, J. H., Coggeshall, R. A. 1965. A simplified lead citrate stain for use in electron microscopy.J. Cell Biol. 25:407

    Google Scholar 

  • Watson, M. L. 1958. Staining of tissue sections for electron microscopy with heavy metals.J. Biophys. Biochem. Cytol. 4:474

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The Patrick E. Gorman Professor of Biological Ultrastructure at the Weizmann Institute of Science, Rehovot, Israel, during the tenure of an American Heart Association Visiting Scientist Award on sabbatical leave of absence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danon, D., Strum, J.M. & Edelman, I.S. The membrane surfaces of the toad bladder: Scanning and transmission electron-microscopy. J. Membrain Biol. 16, 279–295 (1974). https://doi.org/10.1007/BF01872419

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872419

Keywords

Navigation