Skip to main content
Log in

Ion selectivity of the apical membrane Na channel in the toad urinary bladder

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The ion selectivity of the apical membrane Na channel in the toad urinary bladder was investigated. The electrical potential difference and resistance across the basal-lateral membrane were reduced using high concentrations of KCl in the serosal bathing medium, and gradients for various ions were imposed across the apical membrane by altering the composition of the mucosal bathing medium. Ion fluxes through the channel were measured as the transepithelial current inhibited by amiloride, a specific blocker of the channel's Na conductance. The selectivity sequence for alkali metal cations was H>Li>Na≫K. K, permeability was barely detectable; the selectivity for Na over K was about 1000:1. Ammonium, hydroxyl ammonium and hydrazinium ions were, like K, virtually impermeant. The results suggest that the size of the unhydrated ion is an important factor in determining permeability in this channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Awqati, Q., Norby, L.H., Mueller, A., Steinmetz, P.R. 1976. Characteristics of stimulation of H+ transport by aldosterone in turtle urinary bladder.J. Clin. Invest. 58:351–358

    PubMed  Google Scholar 

  • Balaban, R.S., Mandel, L.J., Benos, D.J. 1979. On the cross-reactivity of amiloride and 2,4,6-triaminopyrimidine (TAP) for cellular entry and tight junctional cation permeation pathways in epithelia.J. Membrane Biol. 49:363–390

    Google Scholar 

  • Benos, D.J., Mandel, L.J., Simon, S.A. 1980. Cation selectivity and competition at the sodium entry site in frog skin.J. Gen. Physiol. 76:223–247

    Google Scholar 

  • Bentley, P.J. 1968. Amiloride: A potent inhibitor of sodium transport across the toad bladder.J. Physiol. (London) 195:317–330

    Google Scholar 

  • Biber, T.U.L., Mullen, T.L. 1980. Effect of external cation and anion substitutions of sodium transport in isolated frog skin.J. Membrane Biol. 52:121–132

    Google Scholar 

  • DeLong, J., Civan, M.M. 1978. Dissociation of cellular K+ accumulation from net Na+ transport by toad urinary bladder.J. Membrane Biol. 42:19–43

    Google Scholar 

  • DiBona, D.R., Civan, M.M. 1973. Pathways for movement of ions and water across toad urinary bladder. I. Anatomic site of transepithelial shunt pathways.J. Membrane Biol. 12:101–128

    Google Scholar 

  • Ehrlich, E.N., Crabbé, J. 1968. The mechanism of action of amipramizide.Pfluegers Arch. 302:79–96

    Google Scholar 

  • Eisenman, G. 1962. Cation selective glass electrodes and their mode of operation.Biophys. J. 2 (2, pt. 2):259–323

    PubMed  Google Scholar 

  • Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Herrera, F.C., Egea, R., Herrera, A.M., 1971. Movement of lithium across the toad urinary bladder.Am. J. Physiol. 220:1501–1508

    PubMed  Google Scholar 

  • Higgins, J.T., Jr., Gebler, B., Frömter, E. 1977. Electrical properties of amphibian urinary bladder epithelia. II. The cell potential profile inNecturus maculosus.Pfluegers Arch. 371:87–97

    Google Scholar 

  • Hille, B. 1971. The permeability of the sodium channel to organic cations in myelinated nerve.J. Gen. Physiol. 58:599–619

    PubMed  Google Scholar 

  • Hille, B. 1972. The permeability of the sodium channel to metal cations in myelinated nerve.J. Gen. Physiol. 59:637–658

    PubMed  Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298–308

    PubMed  Google Scholar 

  • Leaf, A., Keller, A., Dempsey, E.F. 1964. Stimulation of sodium transport in toad bladder by acidification of the mucosal medium.Am. J. Physiol. 207:547–552

    PubMed  Google Scholar 

  • Lewis, S.A., Wills, N.K. 1980. Interaction between apical and basolateral membranes during Na transport across tight epithelia.J. Gen. Physiol. F6:3a

    Google Scholar 

  • Li, J.H.-Y., Palmer, L.G., Edelman I.S., Lindemann, B. 1979. Effect of ADH on Na-channel parameters in toad urinary bladder.Pfluegers Arch. 382:R13

    Google Scholar 

  • Lindemann, B., Van Driessche, W. 1977. Sodium specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover.Science 195:292–294

    PubMed  Google Scholar 

  • Lindley, B.D., Hoshiko, T. 1964. The effects of alkali metal cations and common anions on the frog skin potential.J. Gen. Physiol. 47:749–771

    PubMed  Google Scholar 

  • Macknight, A.D.C., Hughes, P.M. 1981. Transepithelial lithium transport and cellular lithium in toad bladder epithelial cells.In: Epithelial Ion and Water Transport. A.D.C. Macknight and J.P. Leader, editors. pp. 147–153. Raven Press, New York

    Google Scholar 

  • Narvarte, J., Finn, A.L. 1980. Anion-sensitive sodium conductance in the apical membrane of toad urinary bladder.J. Gen. Physiol. 76:69–81

    PubMed  Google Scholar 

  • Palmer, L.G., Edelman, I.S., Lindemann, B. 1980. Current-voltage analysis of apical Na transport in the toad urinary bladder: Effects of inhibitors of transport and metabolism.J. Membrane Biol. 57:59–71

    Google Scholar 

  • Rick, R., Dörge, A., Macknight, A.D.C., Leaf, A., Thurau, K. 1978. Electron microprobe analysis of the different epithelial cells of toad urinary bladder.J. Membrane Biol. 39:257–271

    Google Scholar 

  • Rossier, B.C., Wilce, P.A., Edelman, I.S. 1974. Kinetics of RNA labeling in toad bladder epithelium: Effects of aldosterone and other steroids.Proc. Natl. Acad. Sci. USA 71:3101–3105

    PubMed  Google Scholar 

  • Sarracino, S.M., Dawson, D.C. 1979. Cation selectivity in active transport: Properties of the turtle colon in the presence of mucosal lithium.J. Membrane Biol. 46:295–313

    Google Scholar 

  • Steinmetz, P.R. 1974. Cellular mechanisms of urinary acidification.Physiol. Rev. 54:890–956

    PubMed  Google Scholar 

  • Ussing, H.H., Windhager, E.E. 1964. Nature of shunt path and active sodium transport through frog skin epithelium.Acta Physiol. Scand. 61:484–504

    PubMed  Google Scholar 

  • Warncke, J., Lindemann, B. 1981. Effect of ADH on the capacitance of apical epithelial membranes.Adv. Physiol. Sci. 3:129–133

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, L.G. Ion selectivity of the apical membrane Na channel in the toad urinary bladder. J. Membrain Biol. 67, 91–98 (1982). https://doi.org/10.1007/BF01868651

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868651

Key words

Navigation