Skip to main content
Log in

Reconstitution of pure acetylcholine receptor in phospholipid vesicles and comparison with receptor-rich membranes by the use of a potentiometric dye

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Acetylcholine receptor, isolated in Triton X-100 on a cobra α-neurotoxin affinity column was incorporated into unilamellar phospholipid vesicles by a detergent depletion method using Amberlite XAD-2. Vesicles of an average diameter of 25 nm were formed, as verified by freeze-fracture electron microscopy and gel filtration. 85 to 95% of the α-bungarotoxin binding sites of the reconstituted acetylcholine receptor were oriented towards the outside of the vesicles. In the reconstituted receptor one molecule of residual Triton X-100 per 2.5 α-bungarotoxin binding sites on the receptor molecule could be assessed. The reconstituted protein was not accessible to papain digestion, whereas the pure acetylcholine receptor, solubilized by Triton X-100 was split into smaller polypeptides under the same condition. Reconstituted acetylcholine receptor and receptor-rich membranes did not exhibit the same behavior as measured by use of a potentiometric dye. This is interpreted as an irreversible alteration of at least 95% of the receptors purified in the presence of Triton X-100. Furthermore, it could be shown that the fluorescence intensity changes induced by carbamylcholine in receptor-rich membranes did not reflect ion fluxes, but conformational changes of the protein or a displacement of the dye from the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aebi, H. 1974. Katalase.In: Methoden der enzymatischen Analyse. H.U. Bergmeyer, editor. Third edition, Vol. 1, pp. 713–724, Verlag Chemie, Weinheim

    Google Scholar 

  2. Arnon, R. 1970. Papain.Methods Enzymol. 19:226–244

    Google Scholar 

  3. Barrantes, F.J. 1979. Endogenous chemical receptors: Some physical aspects.Annu. Rev. Biophys. Bioeng. 8:287–321

    Google Scholar 

  4. Boheim, G., Hanke, W., Barrantes, F.J., Eibl, H., Sakmann, B., Fels, G. Maelicke, A. 1981. Agonist-activated ionic channels in acetylcholine receptor reconstituted into planar lipid bilayers.Proc Natl. Acad. Sci. USA 77:842–846

    Google Scholar 

  5. Changeux, J.-P., Heidmann, T., Popot, J.-L., Sobel, A. 1979. Reconstitution of a functional acetylcholine regulator under defined conditions.FEBS Lett. 105:181–187

    Google Scholar 

  6. Downer, N.W., Robinson, N.C., Capaldi, R.A. 1976. Characterization of a seventh different subunit of beef heart cytochromec oxidase. Similarities between the beef heart enzyme and that from other species.Biochemistry 15:2930–2936

    Google Scholar 

  7. Epstein, M., Racker, E. 1978. Reconstitution of carbamylcholine-dependent sodium ion flux and desensitization of the acetylcholine receptor fromTorpedo californica.J. Biol. Chem. 253:6660–6662

    Google Scholar 

  8. Gerritsen, W.J., Verkley, A.J., Zwaal, R.F.A., Deenen, L.L.M. van 1978. Freeze-fracture appearance and disposition of band 3 protein from the human erythrocyte membrane in lipid vesicles.Eur. J. Biochem. 85:255–261

    Google Scholar 

  9. Holloway, P.W. 1973. A simple procedure for removal of Triton X-100 from protein samples.Anal. Biochem. 53:304–308

    Google Scholar 

  10. Huganier, R.L., Schell, M.A., Racker, E. 1979. Reconstitution of the purified acetylcholine receptor fromTorpedo californica.FEBS Lett. 108:155–160

    Google Scholar 

  11. Katz, B., Miledi, R. 1972. The statistical nature of the acetylcholine potential and its molecular components.J. Physiol. (London) 224:665–669

    Google Scholar 

  12. Klett, R.P., Fulpius, B.W., Cooper, D., Smith, M., Reich, E., Possani, L.D. 1973. The acetylcholine receptor. I. Purification and characterization of a macromolecule isolated fromelectrophorus electricus..J. Biol. Chem. 248:6841–6853

    Google Scholar 

  13. Laemmli, U.K. 1973. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227:680–685

    Google Scholar 

  14. Lindstrom, J., Anholt, R., Einarson, B., Engel, A., Osame, M., Montal, M. 1980. Purification of acetylcholine receptor, reconstitution into lipid vesicles, and study of agonist-induced cation channel regulation.J. Biol. Chem. 255:8340–8350

    Google Scholar 

  15. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    Google Scholar 

  16. Lüdi, H., Oetliker, H., Brodbeck, U. 1981. Use of a potentiometric cyanine dye in the study of reconstituted membrane proteins.In: Membrane Proteins. A. Azzi, U. Brodbeck and P. Zahler, editors. pp. 209–219. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  17. Monnier, V.M., Fulpius, B.W. 1977. A radioimmunoassay for the quantitative evaluation of anti-human acetylcholine receptor antibodies in myasthenia gravis.Clin. Exp. Immunol. 29:16–22

    Google Scholar 

  18. Moor, H., Kistler, J., Müller, M. 1976. Freezing in a propane jet.Experientia. 32:805

    Google Scholar 

  19. Neubig, R.R., Cohen, J.B. 1980. Permeability control by cholinergic receptors inTorpedo postsynaptic membranes: Agonist dose-response relations measured at second and millisecond times.Biochemistry 19:2770–2779

    Google Scholar 

  20. Rouser, G., Fleischer, S., Yamamoto, A. 1970. Two-dimensional thin-layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots.Lipids 5:494–496

    Google Scholar 

  21. Rüchel, R., Watters, D., Maelicke., A. 1981. Molecular forms and hydrodynamic properties of acetylcholine receptor from electric tissue.Eur. J. Biochem. 119:215–223

    Google Scholar 

  22. Schiebler, W., Hucho, F. 1978. Membranes rich in acetylcholine receptor: Characterization and reconstitution to excitable membranes from exogenous lipids.Eur. J. Biochem. 85:55–63

    Google Scholar 

  23. Schindler, H. 1982. Reconstitution of AChR in planar bilayers.Neurosci. Res. Program Bull. 20:295–301

    Google Scholar 

  24. Schindler, H., Quast, U. 1980. Functional acetylcholine receptor fromTorpedo marmorata in planar membranes.Proc. Natl. Acad. Sci. USA 77:3052–3056

    Google Scholar 

  25. Siegel, L.M., Monty, K.S. 1966. Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation application to crude preparations of sulfide and hydroxylamine reductase.Biochim. Biophys. Acta 112:346–362

    Google Scholar 

  26. Sims, P.J., Waggoner, A.S., Wang, C.-H., Hoffmann, J.F. 1974. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles.Biochemistry 13:3315–3330

    Google Scholar 

  27. Sobel, A., Changeux, J.-P. 1977. Purification and characterization of the cholinergic receptor protein in its membranebound and detergent-soluble forms from the electric organ ofTorpedo marmorata.Biochem. Soc. Trans. 5:511–514

    Google Scholar 

  28. Vogel, Z., Sytkowski, A.J., Ninenberg, M.W., 1972. Acetylcholine receptor of muscle grownin vitro.Proc. Natl Acad. Sci. USA 69:3180–3184

    Google Scholar 

  29. Wacker, H., Müller, F., Semenza, G. 1976. Incorporation of hydrophobic aminopeptidase from hog kidney into egg lecithin liposomes: Number and orientation of aminopeptidase molecules in the lecithin vesicles.FEBS Lett. 68:145–152

    Google Scholar 

  30. Waggoner, A.S. 1979. Dye indicators of membrane potential.Annu. Rev. Biophys. Bioeng. 8:47–68

    Google Scholar 

  31. Wu, W. C.-S., Raftery., M.A. 1979. Carbamylcholine-induced rapid cation efflux from reconstituted membrane vesicles containing purified acetylcholine receptor.Biochem. Biophys. Res. Commun. 89:26–35

    Google Scholar 

  32. Wu, W.C.-S., Moore, H.-P.H., Raftery, M.A. 1981. Quantitation of cation transport by reconstituted membrane vesicles containing purified acetylcholine receptor.,Proc. Natl. Acad. Sci. USA 78:775–779

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüdi, H., Oetliker, H., Brodbeck, U. et al. Reconstitution of pure acetylcholine receptor in phospholipid vesicles and comparison with receptor-rich membranes by the use of a potentiometric dye. J. Membrain Biol. 74, 75–84 (1983). https://doi.org/10.1007/BF01870496

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870496

Key Words

Navigation