Skip to main content
Log in

A kinetic analysis of the electrogenic pump ofChara corallina: I. Inhibition of the pump by DCCD

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The current-voltage curve of theChara membrane was obtained by applying a slow ramp depo- and hyperpolarization by use of voltage clamp. With the progress of poisoning by DCCD (dicyclohexylcarbodiimide) theI–V curve moved by about 50 mV (depolarization) along the voltage axis, reducing its slope, and finally converged to thei d -V curve of the passive diffusion channel. Changes ofi p -V curve of the electrogenic pump channel could be obtained by subtracting the latter from the former.

The sigmoidali p -V curve could be simulated satisfactorily by adopting a simple reaction kinetic model. Kinetic parameters of the successive changes of state of the H+ ATPase could be evaluated. Changes of these kinetic parameters during inhibition gave useful information about the molecular mechanism of the electrogenic pump.

Depolarization of the membrane potential, decrease of membrane conductance, and decrease of pump current during inhibition of the pump with DCCD are caused mainly by the decrease of conductance of the pump channel. The decrease of this pump conductance is caused principally by a marked decrease of the rate constant for releasing H+ to the outside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beiby, M.J., Walker, N.A. 1981. Chloride transport inChara: I. Kinetics and current-voltage curves for a probable proton symport.J. Exp. Bot. 32:43–54

    Google Scholar 

  • Chapman, J.B., Johnson, E.A., Kootsey, J.M. 1983. Electrical and biochemical properties of an enzyme model of the sodium pump.J. Membrane Biol. 74:139–153

    Google Scholar 

  • Finkelstein, A. 1964. Carrier model for active transport of ions across a mosaic membrane.Biophys. J. 4:421–440

    Google Scholar 

  • Frumento, A.S. 1965. The electrical effects of an ionic pump.J. Theor. Biol. 95:253–262

    Google Scholar 

  • Goldman, D.E. 1981. Calculation of the electrogenicity of the sodium pump system of the squid giant axon. In: The Biophysical Approach To Excitable Systems. W.J. Adelman, Jr., and D.E. Goldman, editors. pp. 135–139. Plenum, New York

    Google Scholar 

  • Gradmann, D. 1975. Analog circuit of theAcetabularia membrane.J. Membrane Biol. 25:183–208

    Google Scholar 

  • Gradmann, D. 1976. “Metabolic” action potentials inAcetabularia.J. Membrane Biol. 29:23–45

    Google Scholar 

  • Gradmann, D., Hansen, U.-P., Slayman, C.L. 1982. Reaction-kinetic analysis of current-voltage relationships for electrogenic pumps inNeurospora andAcetabularia.Curr. Topics Membr. Transp. 16:257–281

    Google Scholar 

  • Graves, J.S., Gutknecht, J. 1977. Current-voltage relationships and voltage sensitivity of the Cl pump inHalicystis parvula.J. Membrane Biol. 36:83–95

    Google Scholar 

  • Hansen, U.-P., Gradmann, D., Sanders, D., Slayman, C.L. 1981. Interpretation of current-voltage relationships for “active” ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms.J. Membrane Biol. 63:165–190

    Google Scholar 

  • Harold, F.M. 1982. Pumps and Currents: A Biological Perspective in Current Topics in Membranes and Transport. C.L. Slayman, editor. Vol. 16, pp. 485–516. Academic, New York

    Google Scholar 

  • Hope, A.B., Walker, N.A. 1975. The Physiology of Giant Algal Cells. Cambridge University Press, London

    Google Scholar 

  • Keifer, D.W., Spanswick, R.W. 1978. Activity of the electrogenic pump inChara corallina as inferred from measurements of the membrane potential, conductance, and potassium permeability.Plant Physiol. 62:653–661

    Google Scholar 

  • Keifer, D.W., Spanswick, R.W. 1979. Correlation of adenosine triphosphate levels inChara corallina with the activity of the electrogenic pump.Plant Physiol. 64:165–168

    Google Scholar 

  • Kishimoto, U., Kami-ike, N., Takeuchi, Y. 1980. The role of electrogenic pump inChara corallina.J. Membrane Biol. 55:149–156

    Google Scholar 

  • Kishimoto, U., Kami-ike, N., Takeuchi, Y., 1981a. A quantitative expression of the electrogenic pump and its possible role in the excitation ofChara internodes.In: The Biophysical Approach to Excitable Systems. W.J. Adelman, Jr., and D.E. Goldman, editors. pp. 165–181. Plenum, New York

    Google Scholar 

  • Kishimoto, U., Kami-ike, N., Takeuchi, Y., Ohkawa, T. 1981b. Analysis with a kinetic model of the electrogenic pump of theChara membrane. Abstracts of Annual Meeting of the Biophysical Society of Japan. Vol. 19, p. 39. (in Japanese)

    Google Scholar 

  • Kishimoto, U., Kami-ike, N., Takeuchi, Y., Ohkawa, T. 1982. An improved method for determining the ionic conductance and capacitance of the membrane ofChara corallina.Plant Cell Physiol. 23:1041–1054

    Google Scholar 

  • Kitasato, H. 1968. The influence of H+ on the membrane potential and ion fluxes ofNitella.J. Gen. Physiol. 52:60–87

    PubMed  Google Scholar 

  • Kotani, T. 1979. A modification of Powell's method for minimization of nonlinear functions.Computer Center News (Osaka University).32:27–47

    Google Scholar 

  • Läuger, P. 1979. A channel mechanism for electrogenic ion pumps.Biochim. Biophys. Acta 552:143–161

    PubMed  Google Scholar 

  • Lucas, W.J., Keifer, D.W., Sanders, D. 1983. Bicarbonate transport inChara corallina: Evidence for cotransport of HCO 3 with H+.J. Membrane Biol. 73:263–274

    Google Scholar 

  • Lucas, W.J., Shimmen, T. 1981. Intracellular perfusion and cell centrifugation studies on plasmalemma transport processes inChara corallina.J. Membrane Biol. 58:227–237

    Google Scholar 

  • Lucas, W.J., Smith, F.A. 1973. The formation of alkaline and acid regions at the surface ofChara corallina cells.J. Exp. Bot. 24:1–14

    Google Scholar 

  • Mimura, T., Shimmen, T., Tazawa, M. 1983. Dependence of the membrane potential on intracellular ATP concentration in tonoplast-free cells ofNitellopsis obtusa.Planta 157:97–104

    Google Scholar 

  • Mummert, H., Hansen, U.-P., Gradmann, D. 1981. Current-voltage curve of electrogenic Cl pump predicts voltage-dependent Cl efflux inAcetabularia.J. Membrane Biol. 62:139–148

    Google Scholar 

  • Ohkawa, T., Kishimoto, U. 1974. The electromotive force of theChara membrane during the hyperpolarizing response.Plant Cell Physiol. 15:1039–1054

    Google Scholar 

  • Ohkawa, T., Kishimoto, U. 1977. Breakdown phenomena in theChara membrane.Plant Cell Physiol. 18:67–80

    Google Scholar 

  • Poole, R.J. 1978. Energy coupling for membrane transport.Annu. Rev. Plant Physiol. 29:437–460

    Google Scholar 

  • Powell, M.J.D. 1965. A method of minimizing a sum of squares of nonlinear functions without calculating derivatives.Computer J. 7:303–307

    Google Scholar 

  • Rapoport, S.I. 1970. The sodium-potassium exchange pump: Relation of metabolism to electrical properties of the cell. I. Theory.Biophys. J. 10:246–259

    PubMed  Google Scholar 

  • Saito, K., Senda, M. 1973. The light-dependent effect of the external pH on the membrane potential ofNitella.Plant Cell Physiol. 14:147–156

    Google Scholar 

  • Saito, K., Senda, M. 1974. The electrogenic ion pump revealed by the external pH effect on the membrane potential ofNitella. Influences of external ions and electrical current on the pH effect.Plant Cell Physiol. 15:1007–1016

    Google Scholar 

  • Sanders, D. 1980. The mechanism of Cl transport at the plasma membrane ofChara corallina: I. Cotransport with H+.J. Membrane Biol. 53:129–141

    Google Scholar 

  • Sanders, D., Hansen, U.-P. 1981. Mechanism of Cl transport at the plasma membrane ofChara corallina: II. Transinhibition and the determination of H+/Cl binding order from a reaction kinetic model.J. Membrane Biol. 58:139–153

    Google Scholar 

  • Shimmen, T., Tazawa, M. 1977. Control of membrane potential and excitability ofChara cells with ATP and Mg2+ J. Membrane Biol. 37:167–192

    Google Scholar 

  • Shimmen, T., Tazawa, M. 1980. Dependency of H+ efflux on ATP in cells ofChara australis Plant Cell Physiol. 21:1007–1013

    Google Scholar 

  • Slayman, C.L. 1965a. Electrical properties ofNeurospora crassa: Effects of external cations on the intracellular potential.J. Gen. Physiol. 49:69–92

    PubMed  Google Scholar 

  • Slayman, C.L. 1965b. Electrical properties ofNeurospora crassa: Respiration and the intracellular potential.J. Gen. Physiol. 49:93–116

    PubMed  Google Scholar 

  • Smith, P.T., Walker, N.A. 1976. Chloride transport inChara corallina and the electrochemical potential difference for hydrogen ions.J. Exp. Bot. 27:451–459

    Google Scholar 

  • Smith, P.T., Walker, N.A. 1981. Studies on the perfused plasmalemma ofChara corallina: I. Current-voltage curves: ATP and potassium dependence.J. Membrane Biol. 60:223–236

    Google Scholar 

  • Spanswick, R.M. 1972. Evidence for an electrogenic ion pump inNitella translucens. I. The effects of pH, K+, Na+, light and temperature on the membrane potential and resistance.Biochim. Biophys. Acta 288:73–89

    PubMed  Google Scholar 

  • Spanswick, R.M. 1980. Biophysical control of electrogenicity in theCharaceae.In: Plant Membrane Transport: Current Conceptual Issues. R.M. Spanswick, W.J. Lucas, and J. Dainty, editors, pp. 305–316. Elsevier/North-Holland, Amsterdam

    Google Scholar 

  • Spanswick, R.M. 1981. Electrogenic ion pump.Annu. Rev. Plant Physiol. 32:267–289

    Google Scholar 

  • Takeuchi, Y., Kishimoto, U. 1983. Changes of adenine nucleotide levels inChara internodes during metabolic inhibition.Plant Cell Physiol. 24:1401–1409

    Google Scholar 

  • Walker, N.W., Smith, F.A. 1977. Circulating electric currents between acid and alkaline zones associated with HCO 3 assimilation inChara.J. Exp. Bot. 28:1190–1206

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kishimoto, U., Kami-ike, N., Takeuchi, Y. et al. A kinetic analysis of the electrogenic pump ofChara corallina: I. Inhibition of the pump by DCCD. J. Membrain Biol. 80, 175–183 (1984). https://doi.org/10.1007/BF01868773

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868773

Key Words

Navigation