Skip to main content
Log in

Frequency-dependent membrane impedance inChara corallina estimated by Fourier analysis

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The white noise method of measuring membrane impedance has been applied to internodal cells ofChara corallina. Fourier analysis of a white noise transmembrane current signal and the voltage response has been used to obtain the frequency-dependent impedance of the in-series combination of the plasmalemma and tonoplast membranes. The results are similar to those of other workers who have measured membrane impedances by different techniques. At very low frequencies the equivalent capacitance of the membrane treated as an RC-circuit becomes negative, indicating a pseudoinductive effect.

Membrane impedance has been measured over a range of pH values from pH 5.2 to pH 11; impedance magnitude reaches a maximum at pH 7. At interesting effect of fusicoccin at pH 11 has been observed, in which a decrease in membrane conductance occurs simultaneously with a small hyperpolarization of membrane PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barsoum, Y.H., Pickard, W.F. 1982. Radio-frequency rectification in electrogenic and nonelectrogenic cells ofChara andNitella.J. Membrane Biol. 65:81–87

    Google Scholar 

  • Beilby, M.J., Beilby, B.N. 1983. Potential dependence of the admittance ofChara plasmalemma.J. Membrane Biol. 74:229–245

    Google Scholar 

  • Bisson, M.A., Walker, N.A. 1980. TheChara plasmalemma at high pH. Electrical measurements show rapid specific passive uniport of H or OH.J. Membrane Biol. 56:1–7

    Google Scholar 

  • Bisson, M.A., Walker, N.A. 1981. The hyperpolarization of theChara membrane at high pH: Effects of external potassium, internal pH and DCCD.J. Exp. Bot. 23:951–971

    Google Scholar 

  • Blinks, L.R. 1936. The effects of current flow in large plant cells.Cold Spring Harbor Symp. Quant. Biol. 4:34–42

    Google Scholar 

  • Bradley, J., Williams, E.J. 1967. Voltage-controllable negative differential resistance inNitella translucens.Biochim. Biophys. Acta 135:1078–1080

    Google Scholar 

  • Chilcott, T.C., Coster, H.G.L., Ogata, K., Smith, J.R. 1983. Spatial variation of the electrical properties ofChara australis. II. Membrane capacitance and conductance as a function of frequency.Aust. J. Plant Physiol. 10:353–362

    Google Scholar 

  • Cole, K.S. 1968. Membranes, Ions and Impulses. University of California Press, Berkeley

    Google Scholar 

  • Cole, K.S., Curtis, H.J. 1938. Electric impedance ofNitella during activity.J. Gen. Physiol. 22:37–64

    Google Scholar 

  • Coster, H.G.L., Laver, D.R., Smith, J.R. 1980. On a molecular basis of anaesthesia.In: Bioelectrochemistry. H. Keyzer and F. Gutman, editors. pp. 331–352. Plenum, New York

    Google Scholar 

  • Coster, H.G.L., Smith, J.R. 1974. The effect of pH on the low-frequency capacitance of the membranes inChara corallina.In: Membrane Transport in Plants. U. Zimmermann and J. Dainty, editors. pp. 154–161. Springer, Heidelberg

    Google Scholar 

  • Coster, H.G.L., Smith, J.R. 1977. Low frequency impedance ofChara corallina: Simultaneous measurements of the separate plasmalemma and tonoplast capacitance and conductance.Aust. J. Plant Physiol. 4:667–674

    Google Scholar 

  • Ferrier, J.M., Dainty, J., Ross, S.M. 1985. Theory of negative capacitance in membrane impedance measurements.J. Membrane Biol. 85:245–249

    Google Scholar 

  • Ferrier, J.M., Morvan, C., Lucas, W.J., Dainty, J. 1979. Plasmalemma voltage noise inChara corallina.Plant Physiol. 63:709–714

    Google Scholar 

  • Franceschi, V.R., Lucas, W.J. 1980. Structure and possible function(s) of charasomes; complex plasmalemma-cell wall elaborations present in some characean species.Protoplasma 104:253–271

    Google Scholar 

  • Hayashi, H., Hirakawa, K. 1980.Nitella fluctuation and instability in the membrane potential near threshold.Biophys. J. 31:31–44

    Google Scholar 

  • Hope, A.B., Walker, N.A. 1975. The Physiology of Giant Algal Cells. Cambridge University Press, London

    Google Scholar 

  • Lucas, W.J., Ferrier, J.M. 1980. Plasmalemma transport of OH inChara corallina: III. Further studies on transport substrate and directionality.Plant Physiol. 66:46–50

    Google Scholar 

  • Marmarelis, P.Z., Marmarelis, V.Z. 1978. Analysis of Physiological Systems. Plenum, New York

    Google Scholar 

  • Marrè, E. 1978. Membrane activities as regulating factors for plant cell functions.Biol. Cellulaire 32:19–24

    Google Scholar 

  • Marrè, E. 1979. Fusicossin: A tool in plant physiology.Annu. Rev. Plant Physiol. 20:273–288

    Google Scholar 

  • Ogata, K., Chilcott, T.C., Coster, H.G.L. 1983. Spatial variation in the electrical properties ofChara australis. I. Electrical potentials and membrane conductance.Aust. J. Plant Physiol. 10:339–351

    Google Scholar 

  • Ross, S.M. 1982. NOISE: An interactive program for time series analysis of physiological data.Comput. Programs Biomed. 15:217–232

    Google Scholar 

  • Stevens, C.F. 1972. Inferences about membrane properties from electrical noise measurements.Biophys. J. 12:1028–1047

    Google Scholar 

  • Williams, E.J., Johnston, R.J., Dainty, J. 1964. The electrical resistance and capacitance of the membranes ofNitella translucens.J. Exp. Bot. 15:1–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, S.M., Ferrier, J.M. & Dainty, J. Frequency-dependent membrane impedance inChara corallina estimated by Fourier analysis. J. Membrain Biol. 85, 233–243 (1985). https://doi.org/10.1007/BF01871518

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871518

Key Words

Navigation