Skip to main content
Log in

Complementation tests between mutations in the phosphatespecific transport region ofEscherichia coli

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Complementation between mutants impaired in inorganic phosphate (Pi) transport via the phosphate-specific transport (PST) system was studied. For that purpose the transport of Pi via the alternative Pi transport (PIT) system was bioenergetically arrested. Complementation was found betweenpstB andphoT mutations, whereas each of these mutations failed to complement with aphoS mutation. The data obtained confirm previous studies in which the inducibility of alkaline phosphatase was used to determine complementation and indicated a polar effect of thephoS mutation onpstB andphoT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Amemura, M., Shinagawa, H., Makino, K., Otsuji, N., Nakata, A. 1982. Cloning and complementation tests with alkaline phosphatase regulatory genes (phoS andphoT) ofEscherichia coli. Journal of Bacteriology152:692–701.

    Google Scholar 

  2. Bachmann, B. 1983. Linkage map ofEscherichia coli K12, edition 7. Microbiological Reviews47:180–230.

    Google Scholar 

  3. Cox, G. B., Rosenberg, H., Downie, J. A., Silver, S. 1981. Genetic analysis of mutants affecting the Pst inorganic phosphate transport system. Journal of Bacteriology148:1–9.

    Google Scholar 

  4. Echols, H., Garen, A., Garen, S., Torriani, A. 1961. Genetic control of repression of alkaline phosphatase inE. coli. Journal of Molecular Biology3:425–438.

    Google Scholar 

  5. Garen, A., Otsuji, N. 1964. Isolation of a protein specified by a regulator gene. Journal of Molecular Biology8:841–852.

    Google Scholar 

  6. Gerdes, R. G., Rosenberg, H. 1974. The relationship between the phosphate-binding protein and a regulator gene product fromEscherichia coli. Biochimicha et Biophysica Acta351:77–86.

    Google Scholar 

  7. Iwakura, M., Shimura, Y., Tsuda, K. (1982). Isolation of DNA fragment containingphoS gene ofEscherichia coli. Journal of Biochemistry92:615–622.

    Google Scholar 

  8. Kaczorowski, G. J., Robertson, D. E., Kaback, H. R. 1979. Mechanism of lactose transduction in membrane vesicles fromEscherichia coli. II. Effect of imposed ΔΨ, ΔpH, and\(\Delta \mu _{H^ + } \). Biochemistry18:3697–3704.

    Google Scholar 

  9. Levitz, R., Bittan, R., Yagil, E. 1981. Complementation tests between alkaline phosphatase constitutive mutants (phoS andphoT) inEscherichia coli. Journal of Bacteriology145:1432–1435.

    Google Scholar 

  10. Lin, E. C. C., Koch, J. P., Chused, T. M., Jorgensen, S. E. 1962. Utilization ofL-α-glycerophosphate byEscherichia coli without hydrolysis. Proceedings of the National Academy of Sciences of the United States of America48:2145–2150.

    Google Scholar 

  11. Lowry O. H., Rosenbrough, N. J., Farr, A. L., Randall R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry193:265–275.

    Google Scholar 

  12. Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  13. Rosenberg, H., Gerdes, R. G., Chegwidden, K. 1977. Two systems for the uptake of phosphate inEscherichia coli. Journal of Bacteriology131:505–511.

    Google Scholar 

  14. Rosenberg, H., Gerdes, R. G., Harold, F. M. 1979. Energy coupling to the transport of inorganic phosphate inEscherichia coli K-12. Biochemical Journal178:133–137.

    Google Scholar 

  15. Shaw K. J., Berg, C. M. 1979.Escherichia coli K12 auxotrophs induced by insertion of the transposable element Tn5. Genetics92:741–747.

    Google Scholar 

  16. Sprague, G. F., Bell, R. M., Cronan, Jr., J. E. 1975. A mutant ofEscherichia coli auxotrophic for organic phosphates: evidence for two defects in inorganic phosphate transport. Molecular and General Genetics143:71–77.

    Google Scholar 

  17. Torriani, A. 1966. Alkaline phosphatase ofE. coli pp. 224–235. In: Cantoni, G. L., Davis, D. R. (eds.), Procedures in nucleic acid research. New York: Harper and Row.

    Google Scholar 

  18. Willsky, G. R., Bennet, R. L., Malamy, M. H. 1973. Inorganic phosphate transport inEscherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. Journal of Bacteriology113:529–539.

    Google Scholar 

  19. Willsky, G. R., Malamy, M. H. 1976 Control of the synthesis of alkaline phosphatase and the phosphate-binding protein inEscherichia coli. Journal of Bacteriology127:595–609.

    Google Scholar 

  20. Yagil, E., Silberstein, N., Gerdes, R. G. 1976. Coregulation of the phosphate-binding protein and alkaline phosphatase inEscherichia coli. Journal of Bacteriology127:656–659.

    Google Scholar 

  21. Zuckier, G., Torriani, A. 1981. Genetic and physiological tests of three phosphate-specific transport mutants ofEscherichia coli. Journal of Bacteriology145:1249–1256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brucker, R., Levitz, R., Yagil, E. et al. Complementation tests between mutations in the phosphatespecific transport region ofEscherichia coli . Current Microbiology 10, 303–307 (1984). https://doi.org/10.1007/BF01577145

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01577145

Keywords

Navigation