Skip to main content
Log in

New evidence for the mechanism of phototactic orientation ofEuglena gracilis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

When rotated horizontally in a cuvette in a strong lateral light beam, the flagellateEuglena gracilis effectively corrects its course and shows negative phototaxis, provided the angular velocity does not exceed 200s−1. Faster rotations cannot be corrected effeciently. In two strong light beams of equal illuminance perpendicular to each other, the cells move along the resultant away from the light beams. Decreasing the illuminance of one beam causes increasing numbers of the organisms to orient with respect to the stronger light source. In two perpendicular low illuminance beams (>200lx), the population splits into two components moving towards either light source. The percentage of cells in each component depends on the relative illuminances. The results can be explained by the shading hypothesis combined with a dichroic orientation of the photoreceptor molecules perpendicular to the long axis of the cells. Externally applied electric dc fields have no effect on positive or negative phototaxis; this supports the hypothesis that electrical potential changes are not involved in the sensory transduction chain of photoorientation inEuglena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. Bancrof FW (1913) Heliotropism, differential sensibility and galvanotropism inEuglena. J Exp Zool 15:383–420

    Google Scholar 

  2. Batschelet E (1965) Statistical methods for the analysis of problems in animal orientation and certain biological rhythms. In: Galles SR, Schmidt-Koenig K, Jacobs GJ, Belleville RF (eds) Animal orientation and navigation. Washington DC: NASA, pp 1–59

    Google Scholar 

  3. Batschelet E (1981) Circular statistics in biology, London: Academic Press

    Google Scholar 

  4. Benedetti PA, Checcucci A (1975) Paraflagellar body (PFB) pigments studied by fluorescence microscopy inEuglena gracilis. Plant Sci Lett 4:47–51

    Google Scholar 

  5. Benedetti PA, Lenci F (1977) In vivo microspectrofluorometry of photoreceptor pigments inEuglena gracilis. Photochem Photobiol 26:315–318

    Google Scholar 

  6. Buder J (1917) Zur Kenntnis der phototaktischen Richtungsbewegungen. Jahrb Wissenschf Bot 58:105–220

    Google Scholar 

  7. Checcucci A, Colombetti G, Ferrara R, Lenci (1976) Further analysis of the mass photoresponses ofEuglena gracilis Klebs (flagellate euglenoidina). Monit Zool Ital 10:271–277

    Google Scholar 

  8. Checcucci A, Favati L, Grassi S, Piaggesi T (1975) The measurement of phototactic activity inEuglena gracilis Klebs Monit Zool Ital 9:83–98

    Google Scholar 

  9. Colombetti G (1984) Receptor pigments in ligh-induced behavior of microorganisms. In: Borsellino A, Cervetto L (eds) Photoreceptors, New York: Plenum, pp 3–28

    Google Scholar 

  10. Colombetti G, Lenci F, Diehn B (1982) Responses to photic chemical, and mechanical stimuli. In: Buetow DE (ed) The biology ofEuglena, vol 3: physiology, New York: Academic Press, pp 169–195

    Google Scholar 

  11. Creutz C, Diehn B (1976) Motor responses to polarized light and gravity sensing inEuglena gracilis. J Protozool 23:552–556

    Google Scholar 

  12. Diehn B (1969) Phototactic response ofEuglena to single and repetitive pulses of actinic light. Exp Cell Res 56:375–381

    PubMed  Google Scholar 

  13. Diehn B (1973) Phototaxis and sensory transduction inEuglena. Science 181:1009–1015

    PubMed  Google Scholar 

  14. Diehn, B (1973) Phototaxis inEuglena. 1. Physiological basis of photoreception and tactic orientation. In: Perez-Miravete A (ed) Behaviour of microorganisms. London: Plenum, pp 83–90

    Google Scholar 

  15. Diehn B (1979) Photic responses and sensory transduction in motile protists. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Berlin: Springer, pp 23–68

    Google Scholar 

  16. Doughty MJ, Diehn B (1979) Photosensory transduction in the flagellated alga,Euglena gracilis. I. Action of divalent cations, Ca2+ antagonists and Ca2+ ionophore on motility and photobehavior. Biochem Biophys Acta 588:148–168

    PubMed  Google Scholar 

  17. Doughty MJ, Diehn B (1980) Flavins as photoreceptor pigments for behavioral responses. In: Hemmerich P (ed) Structure and bonding, vol 41. Berlin: Springer, pp 45–70

    Google Scholar 

  18. Doughty MJ, Diehn B (1982) Photosensory transduction in the flagellated alga,Euglena gracilis. III. Induction of Ca2+-dependent responses by monovalent cation ionophores. Biochim Biophys Acta 682:32–43

    Google Scholar 

  19. Doughty MJ, Diehn B (1983) Photosensory transduction in the flagellated alga,Euglena gracilis. IV. Long term effects of ions and pH on the expression of step-down photobehavior. Arch Microbiol 134:204–207

    Google Scholar 

  20. Doughty MJ, Diehn B (1984) Anion sensitivity of motility and step-down photophobic responses ofEuglena gracilis. Arch Microbiol 138:329–332

    Google Scholar 

  21. Doughty MJ, Grieser R, Diehn B (1980) Photosensory transduction in the flagellated alga,Euglena gracilis. II. Evidence that blue light effects alteration in Na+/K+ permeability of the photoreceptor membrane. Biochim Biophys Acta 602:10–23

    PubMed  Google Scholar 

  22. Ghetti F, Colombetti G, Lenci F, Campani E, Polacco E, Quaglia M (1985) Fluorescence ofEuglena gracilis photoreceptor pigment: an in vivo microspectrofluorometric study. Photochem Photobiol 42:29–33

    Google Scholar 

  23. Gössel I (1957) Über das Aktionsspektrum der Phototaxis chlorophyllfreier Euglenen und über die Absorption des Augenfleckes. Arch Microbiol 27:288–305

    Google Scholar 

  24. Häder D-P (1985) Effects of UV-B on motility and photobehavior in the green flagellate,Euglena gracilis. Arch Microbiol 141:159–163

    Google Scholar 

  25. Häder D-P (1985) Computer-aided studies of photoinduced behaviors. In: Colombetti G, Lenci F (eds) Sensory perception and transduction in aneural organisms. New York: Plenum, pp 75–91

    Google Scholar 

  26. Häder D-P, Lebert M (1985) Real time computer-controlled tracking of motile microorganisms. Photochem Photobiol 42:509–514

    PubMed  Google Scholar 

  27. Häder D-P, Lipson ED (1986) Fourier analysis of angular distributions for motile microorganisms. Photochem Photobiol (in press)

  28. Häder D-P, Colombetti G, Lenci F, Quaglia M (1981) Phototaxis in the flagellates,Euglena gracilis andOchromonas danica. Arch Microbiol 130:78–82

    Google Scholar 

  29. Jahn TL, Bovee EC (1968) Locomotive and motile responses ofEuglena. In: Beutow DE (ed) The biology ofEuglena. New York: Academic Press, pp 45–108

    Google Scholar 

  30. Jennings HS (1904) Reactions to light in ciliates and flagellates. In: Contributions to the study of the behavior of microorganisms. Washington, DC: Carnegie Institute, pp 29–71

    Google Scholar 

  31. Jennings HS (1906) The behavior of lower organisms. Indiana University Press, pp 134–141

  32. Lenci F, Colombetti G, Häder D-P (1983) Role of quenchers and inhibitors in the sensory transduction of the negative phototaxis in the flagellate,Euglena gracilis. Curr Microbiol 9:285–290

    Google Scholar 

  33. Lenci F, Häder D-P, Colombetti G (1984) Photosensory responses in freely motile microorganisms. In: Colombeti G, Lenci F (eds) Membranes and sensory transduction. New York: Plenum, pp 199–229

    Google Scholar 

  34. Litvin FF, Sineshchekov OA, Sineshchekov VA (1978) Photoreceptor electric potential in the phototaxis of the algaHaematococcus pluvialis. Nature 271:476–478

    PubMed  Google Scholar 

  35. Loeb J, Maxwell SS (1910) Further proof of the identity of heliotropism in animals and plants. Univ Calif Publ Physiol 3:195–197

    Google Scholar 

  36. Marbach I, Mayer AM (1971) Effect of electric field on the phototactic response ofChlamydomonas reinhardii. Isr J Bot 20:196–200

    Google Scholar 

  37. Mardia KV (1972) Statistics of directional data. London: Academic Press

    Google Scholar 

  38. Mast SO (1911) Light and behavior of organisms. New York: John Wiley and Sons

    Google Scholar 

  39. Mast SO (1941) Motor response in unicellular organisms. In: Calkins GN, Summer FM (eds) Protozoa in biological research. New York: Columbia University Press, pp 271–351

    Google Scholar 

  40. Mast SO, Johnson PL (1932) Orientation in light from two sources and its bearing on the function of the eyespot. Z Vergl Physiol 16:252–274

    Google Scholar 

  41. Nichols KM, Rikmenspoel R (1977) Mg2+-dependent electrical control of flagellar activity inEuglena. J Cell Sci 23:211–225

    PubMed  Google Scholar 

  42. Nichols KM, Rikmenspoel R (1978) Control of flagellar motion inChlamydomonas andEuglena by microinjection of Mg2+ and Ca2+ and by electrical current injection. J Cell Sci 29:233–247

    PubMed  Google Scholar 

  43. Shimmen T (1980) Quantitative studies on step-down photophobic responses ofEuglena in an individual cell Protoplasma 106:37–48

    Google Scholar 

  44. Verworn M (1889) Die polare Erregung der Protisten durch den galvanischen Strom. Pflügers Arch 46:269–303

    Google Scholar 

  45. Votta JJ, Jahn TL (1972) Galvanotaxis ofEuglena gracilis. J Protozool 19:43

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Häder, DP., Lebert, M. & Di Lena, M.R. New evidence for the mechanism of phototactic orientation ofEuglena gracilis . Current Microbiology 14, 157–163 (1986). https://doi.org/10.1007/BF01568368

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01568368

Keywords

Navigation