Skip to main content
Log in

Immunological memory induced by genetically transduced tumor cells

  • Original Articles
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background: Recent studies have demonstrated the usefulness of gene-modified tumor cells for immunotherapy. Using the tumorigenic murine fibrosarcoma, MCA 106, we investigated the effects of localized interferon-γ (IFNg) secretion on tumorigenicity and on long-term memory.

Methods: The murine IFNg (MuIFNg) gene was introduced into tumor cells. High and low IFNg-secreting clones were isolated. C57BL/6 mice were injected subcutaneously (s.c.) with either parental (P), high or low IFNg-secreting (H- or L-IFNg) cells, and tumor growth was assessed weekly. Spleens were harvested on different days postinjection (p.i.) to assess in vitro cytolytic activity. In parallel, tissues from injection sites were stained with macrophage-, CD4-, and CD8-detecting antibodies. Mice were injected s.c. with H-IFNg MCA106 tumor. After 150 days the animals were rechallenged s.c. with MCA106P in one leg and with irrelevant syngeneic tumor in the other.

Results: Both P- and L-IFNg cells had similar growth, whereas the H-IFNg cells never grew. Only splenocytes from the H-IFNg animals showed in vitro CTL activity persisting until day 30 p.i. Histological data revealed a macrophage and CD4+ infiltrate much earlier in the H-IFNg group compared with the P group. Only the irrelevant, syngeneic tumor grew in animals previously injected with H-IFNg cells, whereas both P and irrelevant syngeneic tumors grew in controls.

Conclusions: Transduction of MCA106 cells with the MuIFNg gene diminished in vivo tumorigenicity in proportion to the amount of IFNg secreted. Immunization with H-IFNg cells elicited a host response characterized by macrophages and CD4+ cells. Long-term tumor-specific memory was seen after immunization with H-IFNg cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zwiebel JA, Su N, MacPherson A, Davis T, Ojeifo JO. The gene therapy of cancer: transgenic immunotherapy.Semin Hematol 1993;30:119–29.

    CAS  PubMed  Google Scholar 

  2. Borden EC, Schlom J. Williamsburg Conference on Biological and Immunological Treatments for Cancer, 1992.J Natl Cancer Inst 1993;85:1288–93.

    CAS  PubMed  Google Scholar 

  3. Key ME, Brandhorst JS, Hanna MG Jr. More on the relevance of animal tumor models: immunogenicity of transplantable leukemias of recent origin in syngeneic strain 2 guinea pigs.J Biol Response Mod 1984;3:359–65.

    CAS  PubMed  Google Scholar 

  4. Forni G, Santoni A. Immunogenicity of Nonimmunogenic Tumors.J Biol Response Mod 1984;3:128.

    CAS  PubMed  Google Scholar 

  5. Shu S, Chou T, Sakai K. Lymphocytes generated by in vivo priming and in vivo sensitization demonstrate therapeutic efficacy against a murine tumor that lacks apparent immunogenicity.J Immunol 1989;143:740.

    CAS  PubMed  Google Scholar 

  6. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes.Science 1986;233:1318.

    CAS  PubMed  Google Scholar 

  7. Schreiber H, Ward PL, Rowley DA, Srauss HJ. Unique tumor-specific antigens.Ann Rev Immunol 1988;6:465.

    Article  CAS  Google Scholar 

  8. Greenberg PD. Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells.Adv Immunol 1991;49:281.

    CAS  PubMed  Google Scholar 

  9. Oettgen H, Old LJ. The history of cancer immunotherapy. In: DeVita VT Jr, Hellman S, Rosenberg SA, eds.Biologic therapy of cancer. Philadelphia: JB Lippincott, 1991:87–119.

    Google Scholar 

  10. Porgador A, Tzehoval E, Vadai E, Feldman M, Eisenbach L. Immunotherapy via gene therapy: comparison of the effects of tumor cells transduced with the interleukin-2, interleukin-6, or interferon-g genes.J Immunother 1993;14:191–201.

    CAS  PubMed  Google Scholar 

  11. Golumbek PT, Lazenby AJ, Levitsky HI, Jaffee LM, Karasuyama H, Baker M, Pardoll DM. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4.Science 1991;254:713.

    CAS  PubMed  Google Scholar 

  12. Porgador A, Bannerji R, Watanabe Y, Feldman M, Gilboa E, Eisenback L. Antimetastatic vaccination of tumor-bearing mice with two types of IFNg gene-inserted tumor cells.J Immunol 1993;150:1458–70.

    CAS  PubMed  Google Scholar 

  13. Gastl G, Finstad CL, Guarini A, Bosl G, Gilboa E, Bander NH, Bansbacher B. Retroviral vector-mediated lymphokine gene transfer into human renal cancer cells.Cancer Res 1992;52:6229–36.

    CAS  PubMed  Google Scholar 

  14. Wantanabe Y, Kuribayashi K, Miyatake S, Nishihara K, Nakayama E, Taniyama T, Sakata T. Exogenous expression of mouse interferon g cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by augmented anti-tumor immunity.Proc Natl Acad Sci USA 1989;86:9456–60.

    Google Scholar 

  15. Ciolli V, Gabriele L, Sestili P, Barano F, Proietti E, Gresser I, Testa U, et al. Combined interleukin 1/interleukin 2 therapy of mice injected with highly metastatic Friend leukemia cells: host antitumor mechanisms and marked effects on established metastases.J Exp Med 1991;173:313–22.

    Article  CAS  PubMed  Google Scholar 

  16. Chen LK, Tourveille B, Burns GF, Bach FG, Matieu-Mahul D, Sasportes M, Bensussan A. Interferon: a cytotoxic T-lymphocyte differentiation signal.Eur J Immunol 1986;16:767.

    CAS  PubMed  Google Scholar 

  17. Landolfo S, Gariglio M, Gribaudo G, Jemma C, Giovarelly M, Cavello G. Interferon-gamma is not an antiviral, but a growth-promoting factor for T lymphocytes.Eur J Immunol 1988;18:503.

    CAS  PubMed  Google Scholar 

  18. Maraskovsky E, Chen W, Shortman K. IL-2 and IFN-gamma are two necessary lymphokines in the development of cytolytic T cells.J Immunol 1989;143:1210.

    CAS  PubMed  Google Scholar 

  19. Adams DO, Hamilyon TA. Molecular transduction mechanisms by which IFN-gamma and other signals regulate macrophage development.Immunol Rev 1987;97:5.

    CAS  PubMed  Google Scholar 

  20. Nathan C, Yoshida R. Cytokines: IFN-gamma. In: Gallin JI, Goldstein IM, Snyderman R, eds.Inflammation: basic principles and correlates. New York: Raven Press, 1988:229.

    Google Scholar 

  21. Tyring S, Klimpel GR, Fleischmann WR, Baron S. Direct cytolysis by partially purified preparations of immune IFN.Int J Cancer 1982;30:59.

    CAS  PubMed  Google Scholar 

  22. Sugarman BJ, Aggarwal BB, Hass PE, Figani IS, Palladino MA, Shepard HM. Recombinant hTNF-a: effects on proliferation on normal and transformed cells in vitro.Science 1985;230:943.

    CAS  PubMed  Google Scholar 

  23. Gray PW, Goeddel DV. Cloning and expression of murine immune IFN.Proc Natl Acad Sci 1983;80:5842–6.

    CAS  PubMed  Google Scholar 

  24. Lewis JA. Biological assays for interferons. In: Clemens MJ, Morris AG, Gearing AJH, eds.Lymphokines and interferons: a practical approach. Washington, DC: IRL Press, 1987:73.

    Google Scholar 

  25. Connor J, Bannerji R, Saito S, Heston W, Fair W, Gilboa E. Regression of bladder tumors in mice treated with interleukin 2 gene-modified tumor cells.J Exp Med 1993;177:1127–34.

    Article  CAS  PubMed  Google Scholar 

  26. Weigent DA, Stanton GJ, Johnson HM. Recombinant gamma IFN enhances natural killer cell activity similar to natural gamma IFN.Biochem Biophys Res Commun 1983;11:525–9.

    Google Scholar 

  27. Barth RJ Jr, Mule JJ, Spiess PJ, Rosenberg SA. Interferon g and tumor necrosis factor have a role in tumor regressions mediated by murine CD8- tumor-infiltrating lymphocytes.J Exp Med 1991;173:647–58.

    Article  CAS  PubMed  Google Scholar 

  28. Greenberg PD, Cheever MA, Fefer A. Eradication of disseminated murine leukemia by chemoimmunotherapy with cytoxan and adoptively transferred syngeneic Lyt-1-2- lymphocytes.J Exp Med 1981;154:952.

    Article  CAS  PubMed  Google Scholar 

  29. Prat M, DiRenzo MF, Comoglio P. Characterization of T lymphocytes mediating in vivo protection against RSV-induced murine sarcomas.Int J Cancer 1983;31:757.

    CAS  PubMed  Google Scholar 

  30. Bhan AK, Perry LL, Cantor H, McCluskey RT, Benacerraf B, Greene MI. The role of T-cell sets in the rejection of MCA induced sarcoma (S1509a) in syngeneic mice.Am J Pathol 1981;102:20.

    CAS  PubMed  Google Scholar 

  31. Fujiwara J, Fukuyawa M, Yoshioka T, Nakajima H, Hamaoka T. The role of tumor specific Lyt-1-2- T cells in eradicating tumor cells in vivo.J Immunol 1984;133:1671.

    CAS  PubMed  Google Scholar 

  32. Prat M, Bretti S, Amedeo M, Landolfo S, Comoglio PM. Monoclonal antibody against IFN gamma abrogates in vivo tumor immunity against RSV-induced murine sarcomas.J Immunol 1987;138:4530.

    CAS  PubMed  Google Scholar 

  33. Abbas AK, Lichtman AH, Pober JS.Cellular and molecular immunology. Philadelphia: WB Saunders, 1991:254.

    Google Scholar 

  34. North RJ. Down-regulation of the antitumor immune response.Adv Cancer Res 1985;45:1.

    CAS  PubMed  Google Scholar 

  35. Takei F, Levy JG, Kilburn DG. In vitro induction of cytotoxicity against syngeneic mastocytoma and its suppression by spleen and thymus cells from tumor-bearing mice.J Immunol 1976;116:288.

    CAS  PubMed  Google Scholar 

  36. Takei F, Levy JG, Kilburn DG. Characterization of suppressor cells in mice bearing syngeneic mastocytoma.J Immunol 1977;118:412.

    CAS  PubMed  Google Scholar 

  37. Gansbacher B, Zier K, Daniels B, Cronin K, Bannerji R, Gilboa E. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity.J Exp Med 1990;172:1217–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dar, M.M., Abdel-Wahab, Z., Vervaert, C.E. et al. Immunological memory induced by genetically transduced tumor cells. Annals of Surgical Oncology 3, 247–254 (1996). https://doi.org/10.1007/BF02306279

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02306279

Key Words

Navigation