Skip to main content

Advertisement

Log in

A physico-mathematical model for the human femur, with and without a prosthesis, under the static constraints of one-legged stance

Modélisation physico-mathématique d'un fémur humain sous contraintes statiques en appui unipodal

  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Summary

The authors present a physico-mathematical model of a human femur, under « monopodal » static constraints, using the finite elements method. Three examples are considered: a normal femur, a femur implanted with a short-stem prosthesis without cement, and a femur implanted with a long-stem prosthesis without cement. The lines of isoconstraints were compared in the three examples, as well as the main constraints (direction and intensity). From the results, the authors suggest that a prosthesis made of titanium is currently best even though its YOUNG's modulus differs from that of the bone. A prosthesis of composite material is possible in the future. While the intensity of the constraints is nearly the same at the level of the epiphysis for the short-stem and long-stem prosthesis it seems that the short-stem prosthesis fitted accurately without cement is the best solution. The introduction of a hip prosthesis modifies the normal curve of the loaded femur by changing the center of this curve.

Résumé

Les auteurs ont procédé à la modélisation physico-mathématique à l'aide de la méthode des éléments finis d'un fémur humain sous contraintes statiques en appui unipodal.

Trois cas de figures ont été retenus: un fémur isolé, un fémur implanté avec une prothèse sans ciment à queue courte, un fémur implanté avec une prothèse sans ciment à queue longue. Les lignes d'isocontraintes ont été comparées dans les trois cas, de mÊme que les contraintes principales en direction et en intensité.

Les auteurs estiment, au vu des résultats, que les prothèses en titane, malgré l'écart entre le module de YOUNG de ces dernières et celui supposé de l'os, sont dans l'état actuel de nos connaissances la meilleure solution en attendant de futures prothèses en un matériau composite qui reste à définir.

Bien que l'intensité des contraintes soit sensiblement identique au niveau de l'épiphyse fémorale proximale dans le cas des prothèses à queue courte et dans celui des prothèses à queue longue, il semble que la meilleure solution soit apportée par des prothèses sans ciment exactement adaptées et munies d'une queue courte.

En effet, l'introduction d'une prothèse de hanche modifie la courbure naturelle du fémur sous chargement en déplaÇant le centre de celle-ci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afoke N, Byers PD, Hutton WC (1982) A finite element study of the human hip joint. Engineering in Medicine 11: 17–24

    Google Scholar 

  2. Anderson R, Cook SD, Weinstein AM (1982) Interface mechanics of LTI pyrolytre carbon, porous titatium and carbon coated porous titatium implants. 28th Annual Orthopedic reseach Symposium, January, 19–21, 178

  3. Andriacchi TP, Galante JO, Belystchko TB, Hampton S, (1976) A stress analysis of the femur in total hip replacement. J Bone Joint Surg 58 A: 618–624

    Google Scholar 

  4. Armstrong CG, Gardner DL (1977) Thickness and distribution of human femoral head articular cartilage. Ann Rheum Dis 36: 407–412

    PubMed  Google Scholar 

  5. Bathe KJ, Wilson EL, Peterson FE, Sap IV (1974) A structural Analysis program for static and dynamic response of linear systems. Report no EERC 73-11, Uni. of California, Berkeley California

    Google Scholar 

  6. Blaimont P, Halleux P, Jedwab J (1968) Distribution des contraintes osseuses dans le fémur. Rev Chir Orthop Rép App locomot 54: 303–319

    Google Scholar 

  7. Bougois R, Wagner J (1985) Détermination des tensions dans l'arthroplastie de renforcement de la hanche par voie numérique et expérimentale. Acta Orthop Belg 51: 182–189

    Google Scholar 

  8. Braune W, Fischer O (1889) Uber den schwerpunkt des merischlichen körpers. Hirzel, Leipzig

    Google Scholar 

  9. Brockhurst PJ, Svensson NL (1977) Design of total hip prothesis, the femoral stem. Med Progr Technol 5: 73–102

    Google Scholar 

  10. Brown TD, Digidia AM (1984) A contact coupled finite element analysis of the natural adult hip. J. Biomechan 17: 437–448

    Article  Google Scholar 

  11. Brown TD, Ferguson AB (1980) Mechanical properties distributions in the cancellous bone of the human proximal femur. Acta Orthop Scand 51: 429–437

    PubMed  Google Scholar 

  12. Brown TD, Graf GE (1978) Material property distribution in the human femoral head. Proc of 24th Annual Orthop Res Soc

  13. Brown TD, Mutschler TA, Ferguson AB (1982) A non linear finite element analysis of some early collapse processes in femoral head osteonecrosis. J Biomech 15: 705–715

    Article  PubMed  Google Scholar 

  14. Brown TD, Radin EL, Martin RB, Burr DB (1984) Finite element studies of some juxta articular stress changes due to localized subchondral stiffenuig. J Biomech 17: 11–24

    Article  PubMed  Google Scholar 

  15. Brown TD, Shaw DB (1983) “in vitro” contact stress distributions in the natural hip. J Biomech 16: 373–384

    Article  PubMed  Google Scholar 

  16. Brown TD, Vrahas MS (1983) The apparent elastic modulous of juxta articular subchondral bone of the femoral head. 9th annual meeting of the Society for biomaterials 12

  17. Carter DR, Spengler DM (1978) Mechanical properties of cortical bone. Clin Orthop 135: 192

    PubMed  Google Scholar 

  18. Christel P, Dierothe P, Sedel L (1975) Mesure par stimulation de l'amortissement d'une hanche normale et prothésée. 4e symposium de biomécanique osseuse. CIBO, 21 mai 1976, Acta Orthop Belg 42: 183–193

    Google Scholar 

  19. Cook SD, Klamitter JJ, Weinstein AM (1980) The influence of design parameters on calcar stresses following femoral head arthroplasty. J Biomed Mater Res 14: 133

    Article  PubMed  Google Scholar 

  20. Crick D, Wagner J, Bougois R, Deho P (1985) Comportement mécanique de l'épiphyse supérieure du fémur resurfacée et incidence des variations anatomiques et des différents types de cupules. Acta Orthop Belg 51: 168–179

    PubMed  Google Scholar 

  21. Crowninshield RD (1978) Use of optimisation techniques to predict muscle forces. J Biomech Eng 100: 88–92

    Google Scholar 

  22. Crowninshield RD, Branch AJ (1978) The effect of stem cross sectional shape on load transmission from total hip prothesis. Trans Orthop Res Soc 3: 255

    Google Scholar 

  23. Crowninshield RD, Brand RA, Johnston RC, Milnoy JC (1980) An analysis of femoral composent stem design in total hip arthroplasty. J Bone Joint Surg 62 A: 68

    Google Scholar 

  24. Crowninshield RD, Johnston RC, Andrews JG (1978) A biomechanical investigation of the human hip. J Biomech 11: 75–85

    Article  PubMed  Google Scholar 

  25. Digida A (1983) A contact coupled non linear finite element analysis of the hip joint and porous ingrouth hip prothesis. M.S Thesis, Biomedical engineering program and department of civil engineering, Carnegie, Mellon University

    Google Scholar 

  26. Evans FG (1957) Stress an strain in bones. CC Thomas, Springfield

    Google Scholar 

  27. Evans FG (1964) Significant difference in the tensile strength of adult human compact bone. Proc. European bone and tooth symposium, Ist The Pergamon Press Oxford

    Google Scholar 

  28. Ferré JC, Barbin JY, Laude M, Helary JL (1984) A physiomathematical approach to the structure of the mandible. Anat Clin 6: 45–52

    Article  PubMed  Google Scholar 

  29. Ferré JC, Barbin JY, Helary JL, Lumineau JP (1984) The mandible, an overhanging mechanically suspended structure. Anat Clin 6: 3–10

    Article  PubMed  Google Scholar 

  30. Ferré JC, Legoux R, Helary JL, Lumineau JP, Chevalier C, Orio E, Le Cloarec AY, Barbin JY (1985) Application des techniques de modélisation à l'étude structurale de la mandibule sous contraintes. A.M.T.B. 2e colloque internationale biologie théorique et médecine, Abbaye de Fontrevaud. Anat Clin 7: 183–192

    Article  PubMed  Google Scholar 

  31. Ferré JC (1986) Approche biomécanique à l'étude de la structure de la mandibule. Thèse pour le Doctorat d'Etat en Biologie Humaine. Amiens. Nℴ 7

  32. Ferré JC (1986) Moyens d'exploration modernes de l'ostéo-architecture mandibulaire (techniques et résultats). Act Odonto. Stomatologiques, 156: 713–734

    Google Scholar 

  33. Fischer O (1899) Der gang des menschen. Teufner

  34. Gaetner R (1975) Le programme AXSYM — Description et utilisation. Publication interne à l'INSA, Lyon

    Google Scholar 

  35. Gallacher RH (1976). Introduction aux éléments finis. Pluralis, Paris

    Google Scholar 

  36. Gallacher RH (1976) Finite element analysis. Springer, Stuttgart

    Google Scholar 

  37. Goel VK, Valliapan S, Swensson NL (1978) Stresses in the normal pelvis. Comput Biol Med 8: 91–104

    Article  PubMed  Google Scholar 

  38. Hampton SJ, Andriacchi TP, Galante JO (1970) Three dimensional stress analysis in the femoral stress of a total hip prothesis. J Biomech 13: 443–448

    Article  Google Scholar 

  39. Harris LJ, Chao R, Bloch R (1978) A three dimensional finite element analysis of the proximal third of femur. Trans Orthop Res Soc 3: 16

    Google Scholar 

  40. Hilton PD, Gifford LN, Lomacky O (1975) Finite element Fracture mechanics analysis of two dimensional and axisymetric elastic and elastic-plastic craked structures. Nacal ship research and development center report nℴ 4493

  41. Huiskes R, Chao E (1983) A survey of finite element analysis in orthopedic biomechanics: the first decade. J Biomechanics 16: 385–409

    Article  Google Scholar 

  42. Huiskes R, Janssen JD, Slooff TJ (1981) A detailed comparison of experimental and theoretical stress analysis of a human femur. Mechanical Properties of bone 45: 211–234

    Google Scholar 

  43. Johnston RC, Brand RA, Crowninshield RD (1979) Reconstruction of the hip. A mathematical approach to determin optimum geometric relations of hips. J Bone Joint Surg 61 A: 639–652

    Google Scholar 

  44. Johnson GR, Dowson D, Wright V (1975) A new approach to the elastic modulus of articular cartilage. Ann Rheum Dis 34: 116–117

    Google Scholar 

  45. Lecoeur (in Cartier J) (1950–1952) Thèse pour le Doctorat d'Etat en Médecine, Paris

  46. Leudemann R, Skinner HB, Cood SD, Weinstein AM (1982) Bone remodelling associated with prothesis attachment. 28th Annual Orthop Research symposium, January, 19–21: 79

  47. Lord, Marotte JH, Blanchard P (1980) Valeur de l'assise horizontale et de l'appui diaphysaire dans la répartition des contraintes du fémur prothèsé. Rev Chir Orthop 66: 141–156

    PubMed  Google Scholar 

  48. McNiece GM, Eng P, Amstutz MC (1976) Finite element studies in the hip reconstruction. Proc. 5th Int Conf Biomech Komi PV. University Park Press, Baltimore: 399–405

    Google Scholar 

  49. Moretton JC, Claudon B, Craudisy JC, Magnien P (1986) Conception et fabrication assistée par ordinateur d'une prothèse fémorale de hanche. Rev Chir Orthop 72: 89–96

    PubMed  Google Scholar 

  50. Oonishi H (1981) Three dimensional finite element analysis of the pelvis and ceramic acetabulum. Transactions of the 27th Orthopaedis. Research Society ORS, Chicago

    Google Scholar 

  51. Oonishi H, Isha H, Hasegawa T (1983) Mechanical analysis of the human pelvis and its application to the artificial hip joint by means of the three dimensional finite element method. J Biomech 16: 427–444

    Article  PubMed  Google Scholar 

  52. Oonishi H, Kotani PT, Skikita T, Hamaguchi T (1976) Study on the surface shape and coutours of the femoral head and acetabulum of the human joint. Acta Orthop Belg 42: 153–182

    PubMed  Google Scholar 

  53. Paul JP (1976) Loading on normal hip and knee joints and on joint replacements. Artificial hip and knee joint technology, Springer Verlag, Berlin

    Google Scholar 

  54. Pauwels F (1976) Gesammelte abhandlungen zur funktionnellen anatomie des Benegungsapparates. Springer Verlag, Berlin

    Google Scholar 

  55. Pauwels F (1979) Biomécanique de l'appareil locomoteur. Springer Verlag, Berlin, Heidelberg, New York

    Google Scholar 

  56. Pedersen DR, Crowninshield RD, Brand RA, Johnston RC (1982) An axisymetric model of acetabular components in total hip arthroplasty. J Biomech 15: 305–315

    Article  PubMed  Google Scholar 

  57. Penrod DD, Davy TD, Singh DP (1974) An optimization approach to tendon force analysis. J Biomech 7: 123–129

    Article  PubMed  Google Scholar 

  58. Pekman WM, Brown TD (1983) A finite element analysis of acetabular reconstruction following metastatic bone loss. Biomech Symposium: 43–46, American Society of Mechanicals Engineers, New York.

    Google Scholar 

  59. Rab GT (1980) An orthopaedist looks at finite element analysis. Proceedings of the international conference on finite elements in biomechanics: 7–11

  60. Reilly DT, Burnstein AM (1981) The elastic and ultimate Properties of compact bone tissue. J Biomech 8: 383–405

    Google Scholar 

  61. Rohlmann A, Mossner U, Bergmann G, Kolbel R (1982) Finite element analysis and experimental investigation of stresses in a femur. J Biomed Engin 4: 241–246

    Google Scholar 

  62. Rohlmann A, Mossner U, Bergmann G, Kolbel R (1983) Finite element analysis and experimental investigation in a femur with hip endoprothesis. J Biomech 16: 727–742

    Article  PubMed  Google Scholar 

  63. Rohrle H, Scholten R, Sollbach W (1978) Analysis of stress distribution on material and artificial hip joints using finite element method. S Afr Mech Engr 28: 220–225

    Google Scholar 

  64. Rumelhart C (1980) Capteur de pression à diaphragme et jauges in situ. Application à l'étude des PTH Rev FranÇ Méca 78: 53–65

    Google Scholar 

  65. Rumelhart C, Bahuaud J, Contet JJ (1975) Etude de la répartition des pressions articulaires dans l'interface d'une prothèse artificielle de hanche type Mc Kee Farrar. Rapport ATP, CNRS Physiol Pathol tissu calc, 5302

  66. Rumelhart C, Contet JJ, Bahuaud J, Moyen B (1980) The use of a hip joint simulator for pressure measurement at the interface of total hip prothesis. Evaluation of biomatherials. John Wiley and sons Ltd: 157–165

  67. Rumelhart C, Martineau G, Bahuaud J (1974) Etude de la répartition des pressions à la surface d'un modèle de PTH type Mc Kee Farrar. Proceeding of the fifth international conference on experimental stress analysis, sup 3: 70–79

    Google Scholar 

  68. Rybicki EF, Simonen FA, Weis EB Jr (1972) On the mathematical analysis of stress in the human femur. J Biomech 5: 203–215

    Article  PubMed  Google Scholar 

  69. Scholten R, Rohrle H, Sollbach W (1978) Analysis of stress distribution in natural and artificial hip joint using the finite element method. S Afr Mech Engr 28: 220–225

    Google Scholar 

  70. Taar R, Lewis J, Ghassemi F, Sarmiento A, Clarke I, Weingarten V (1980) Anatomic three dimensional finite element model of the proximal femur with total hip prothesis. International conference proceedings, Finite Element in Biomechanics (Edited by Simon B.R) vol 2, 511–525

  71. Villiapan S, Svensson NL, Wood RD (1977) Three dimensional stress analysis of the human femur. Com Biol Med 7: 253–264

    Article  Google Scholar 

  72. Zienkiewicz OC (1971) The finite element method in engineering science. Mc Graw Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferré, J.C., Legoux, R., Marquet, F. et al. A physico-mathematical model for the human femur, with and without a prosthesis, under the static constraints of one-legged stance. Surg Radiol Anat 9, 241–249 (1987). https://doi.org/10.1007/BF02109635

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02109635

Key words

Navigation