Skip to main content

Advertisement

Log in

Activation PET scanning in pretreatment evaluation of patients with cerebral tumours or vascular lesions in or close to the sensorimotor cortex

  • Clinical Articles
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

Treatment of tumours and vascular lesions in or close to eloquent cortex may inflict neurological deficits. Intra-operative mapping procedures have been used for many decades in efforts to minimize neurological sequelae. The possibility for non-invasive preoperative brain mapping has emerged with the advent of positron emission tomography (PET).

In this paper we report on 11 patients with a tumour or vascular lesion in or close to the sensorimotor (10 patients) or visual cortex (one patient). The patients were subjected to activation PET scanning by means of vibrotactile or visual stimulation. The results show that in most of the patients the important relation between the lesion and the sensorimotor cortex could be determined. The patient with a lesion in the occipital lobe had involvement of the entire visual cortex as judged by comparison with activated areas on the nonlesion side.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammirati M, Vick N, Liao Y, Ciric I, Mikhael M (1987) Effect of the extent of surgical resection on survival and quality of life in patients with supratentorial glioblastomas and anaplastic astrocytomas. Neurosurgery 21: 201–206

    PubMed  Google Scholar 

  2. Berger M, Kincaid J, Ojemann R, Lettich B (1989) Brain mapping techniques to maximize resection, safety and seizure control in children with brain tumours. Neurosurgery 125: 786–792

    Google Scholar 

  3. Berger SM, Cohen WA, Ojemann GA (1990) Correlation of motor cortex brain mapping data with magnetic resonance imaging. J Neurosurg 72: 383–387

    PubMed  Google Scholar 

  4. Bergström M, Eriksson L, Bohm C, Blomqvist G, Litton J (1983) Correction for scattered radiation in a ring detector positron camera by integral transformations of the projections. J Comput Assist Tomogr 7: 42–50

    PubMed  Google Scholar 

  5. Black P, Ronner S (1987) Cortical mapping for defining the limits of tumour resection. Neurosurgery 20: 914–919

    PubMed  Google Scholar 

  6. Burchiel K, Clark H, Ojemann G, Dacey R, Winn R (1989) Use of stimulation in mapping and corticography in the excision of arteriovenous malformations in sensorimotor and language-related neocortex. Neurosurgery 24: 322–327

    PubMed  Google Scholar 

  7. Burton H, Fox PT, Raichle ME (1986) Localization of human second somatic sensory cortex (SII) using vibration stimulation and PET. Neurosci Abstr 12: 1429

    Google Scholar 

  8. Cherry SR, Woods RP, Maziotta JC (1993) Improved signalto-noise in activation studies by exploiting the kinetics of oxygen-15 labelled water. In: Uemura Ket al (eds) Quantification of brain function. Tracer kinetics and image analysis in brain PET. Excerpta Medica, Elsevier, Amsterdam

    Google Scholar 

  9. Constable RT, Mc Carthy G, Allison T, Anderson AW, Gor JC (1993) Functional brain imaging at 1.5 T using conventional gradient echo MR imaging techniques. Magn Reson Imag 11: 451–459

    Google Scholar 

  10. Cushing H (1909) A note upon the faradic stimulation of the postcentral gyrus in conscious patients. Brain 32: 44–53

    Google Scholar 

  11. Ericson K, Lilja A, Bergström M,et al (1985) Positron emission tomography with (methyl-11C)-L-methionine,11C-glucose and68Ga-EDTA in the examination of supratentorial tumours. J Comput Assist Tomogr 9: 683–689

    PubMed  Google Scholar 

  12. Eriksson L, Holte S, Bohm C, Hovander B (1988) Automated blood sampling systems for positron emission tomography. IEEE Trans Nucl Sci 35: 703–704

    Google Scholar 

  13. Fox PT, Burton H, Raichle ME (1987) Mapping human somatosensory cortex with positron emission tomography. J Neurosurg 67: 34–43

    PubMed  Google Scholar 

  14. Fox PT, Miezin FM, Allman JM, van Essen DC, Raichle ME (1987) Retinotopic organization of human visual cortex mapped with positron emission tomography. J Neurosci 7: 913–922

    PubMed  Google Scholar 

  15. Fox PT, Mintun MA, Raichle ME, Miezin FM, Allman JM, van Essen DC (1986) Mapping of the human visual cortex with positron emission tomography. Nature 323: 806–809

    PubMed  Google Scholar 

  16. Fox PF, Mintun MA (1989) Noninvasive functional brain mapping by change-distribution analysis of averaged PET images of H2 15O tissue activity. J Nucl Med 30: 141–149

    PubMed  Google Scholar 

  17. Fox PT, Raichle ME (1984) Stimulus rate dependence of regional cerebral blood flow in human striate cortex demonstrated by positron emission tomography. J Neurophysiol 51: 1109–1121

    PubMed  Google Scholar 

  18. Gado M, Hanaway J, Frank R (1979) Functional anatomy of the cerebral cortex by computed tomography. J Comput Assist Tomogr 3: 1–19

    PubMed  Google Scholar 

  19. Giordani B, Boivin MJ, Berent S, Betley AT, Koeppe RA, Rothley JM, Modell JG, Hichwa RD, Kuhl DE (1990) Anxiety and cerebral cortical metabolism in normal persons. Psychiatry Res 35: 49–60

    PubMed  Google Scholar 

  20. Grafton ST, Martin NA, Mazziotta JC, Woods RP, Vinuela F, Phelps ME (1994) Localization of motor areas adjacent to arteriovenous malformations. A positron emission tomographic study. J Neuroimaging 2: 97–103

    Google Scholar 

  21. Herscovitch P, Markham J, Raichle M (1983) Brain blood flow measured with intravenous H2O. I. Theory and error analysis. J Nucl Med 24: 782–789

    PubMed  Google Scholar 

  22. Hino A,et al (1990) Metabolic and hemodynamic aspects of peritumoural low density areas in human brain tumour. Neurosurgery 4: 615–621

    Google Scholar 

  23. Holte S, Eriksson L, Dahlbom M (1989) A preliminary evaluation of the Scanditronix PC 2048-15B brain scanner. Eur J Nucl Med 15: 719–721

    PubMed  Google Scholar 

  24. Iida H, Kanno I, Miura S (1991) Rapid measurement of cerebral blood flow with positron emission tomography. In: Chadwick D, Whelan J (eds) Ciba Foundation Symposium 163: Exploring brain functional anatomy with positron tomography, vol 1. Wiley, West Sussex, pp 23–37

    Google Scholar 

  25. Ingvar DH, Risberg J (1967) Increase of regional cerebral blood flow during mental effort in normals and in patients with focal brain disorders. Exp Brain Res 3: 195–211

    PubMed  Google Scholar 

  26. Iwasaki S,et al (1991) Identification of pre and postcentral gyri and CT and MR images on the basis of the medullary pattern of cerebral white matter. Radiology 179: 207–213

    PubMed  Google Scholar 

  27. Kaas JH (1990) Somatosensory system. In:Paxinos G (ed) The human nervous system. Academic Press, San Diego

    Google Scholar 

  28. King R, Schell G (1987) Cortical localizations and monitoring during cerebral operations. J Neurosurg 67: 210–219

    PubMed  Google Scholar 

  29. Laws ER, Taylor WF, Clifton MB, Okazaki H (1984) Neurosurgical management of low-grade astrocytoma of the cerebral hemispheres. J Neurosurg 61: 655–673

    Google Scholar 

  30. Leblanc R, Meyer E (1990) Functional PET scanning in the assessment of cerebral arteriovenous malformations. J Neurosurg 73: 615–619

    PubMed  Google Scholar 

  31. Lilja A, Bergström K, Hartvig P,et al (1985) Dynamic study of supratentorial gliomas with L-methyl-11C methionine and positron emission tomography (PET). AJNR 4: 505–514

    Google Scholar 

  32. Martin N, Grafton S, Vinuela F, Dion J, Duckwiler G, Maziotta J, Lufkin R, Becker D (1992) Imaging techniques for cortical functional localization. Clin Neurosurg 38: 132–165

    PubMed  Google Scholar 

  33. Meyer E (1989) Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H2 15O autoradiographic method and dynamic PET. J Nucl Med 30: 1069–1078

    PubMed  Google Scholar 

  34. Ogawa T, Shishido F, Kanno I,et al (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186: 45–53

    PubMed  Google Scholar 

  35. Ojemann G (1987) Intraoperative functional mapping at the University of Washington, Seattle. In: Engel J (ed) Surgical treatment of the epilepsies. Raven, New York, pp 635–639

    Google Scholar 

  36. Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60: 389–443

    Google Scholar 

  37. Penfield W, Jasper J (1954) Epilepsy and the functional anatomy of the human brain. Little, Brown, Boston

    Google Scholar 

  38. Perrine K (1994) Future directions for functional mapping. Epilepsia [Suppl 6] 35: 90–102

    Google Scholar 

  39. Potchen EJ, Potchen MJ (1991) The imaging of brain function. Invest Radiol 26: 258–265

    PubMed  Google Scholar 

  40. Prichard JW, Rosen BR (1994) Functional study of the brain by NMR. J Cereb Blood Flow Metab 14: 365–372

    PubMed  Google Scholar 

  41. Raichle M, Martin W, Herscovitch P, Mintun M, Markham J (1983) Brain blood flow measured with intravenous H2 15O. II. Implementation and validation. J Nucl Med 24: 790–798

    PubMed  Google Scholar 

  42. Reivich M, Greenberg J, Alavi A,et al (1979) The use of 18F-fluorodeoxyglucose technique for mapping functional neural pathways in man. Acta Neurol Scand [Suppl 72] 60: 198–199

    Google Scholar 

  43. Roland PE, Meyer E, Shibasaki T, Yamamoto YL, Thompson CJ (1982) Regional cerebral blood flow changes in cortex and basal ganglia during voluntary movements in normal volunteers. J Neurophysiol 48: 467–480

    PubMed  Google Scholar 

  44. Schad LR, Trost U, Knopp MV, Muller E, Lorentz WJ (1993) Motor cortex Stimulation measured by magnetic resonance imaging on a standard 1.5T clinical scanner. Magn Reson Imaging 11: 461–464

    PubMed  Google Scholar 

  45. Schneider W, Noll DC, Cohen JD (1993) Functional topographic mapping of the cortical ribbon in human vision with conventional MRI scanners. Nature 365: 150–153

    PubMed  Google Scholar 

  46. Talbot JD,et al (1991) Multiple representations of pain in human cerebral cortex. Science 251: 1355–1358

    PubMed  Google Scholar 

  47. Tyler JL, Diksic M, Villeneuve JG, Evans AC, Meyer E, Yamamoto XL, Feindel W (1987) Metabolic and hemodynamic evaluation of gliomas using positron emission tomography. J Nucl Med 28: 1123–1133

    PubMed  Google Scholar 

  48. Uematsu S, Lesser R, Fischer RS, Gordon B, Hara K, Krauss GL, Vining EP, Webber RW (1992) Motor and sensory cortex in humans: topography studied with chronic subdural stimulation. Neurosurgery 31: 59–72

    PubMed  Google Scholar 

  49. Uematsu S, Lesser R, Fischer RS, Gordon B (1992) Localization of sensorimotor cortex: the influence of Sherrington and Cushing on the modern concept. Neurosurgery 30: 904–913

    PubMed  Google Scholar 

  50. Volkow ND, Trancredi LR (1991) Biological correlates of mental activity studied with PET. Am J Psychiatry 148: 439–443

    PubMed  Google Scholar 

  51. Wood C, Spencer D, Allison T, McCarthy G, Williamson P, Goff W (1988) Localization of human sensorimotor cortex during surgery by cortical surface recording of somatosensory evoked potentials. J Neurosurg 68: 99–111

    PubMed  Google Scholar 

  52. Woods RP, Cherry RS, Maziotta C (1992) Rapid automated algorithm for aligning and reslicing PET images. J Comput Assist Tomogr 16: 620–633

    PubMed  Google Scholar 

  53. Woolsey CN (1958) Organisation of somatic sensory and motor areas of the cerebral cortex. In: Harlow HF, Woolsey CN (eds) Biological and biochemical bases of behaviour. University of Wisconsin Press, Madison, pp 63–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyberg, G., Andersson, J., Antoni, G. et al. Activation PET scanning in pretreatment evaluation of patients with cerebral tumours or vascular lesions in or close to the sensorimotor cortex. Acta neurochir 138, 684–694 (1996). https://doi.org/10.1007/BF01411473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01411473

Keywords

Navigation