Skip to main content

Advertisement

Log in

Anaerobic change of bloody CSF in subarachnoid haemorrhage. Its relation to cerebral vasospasm

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

In our in vitro study of subarachnoid haemorrhage, the anaerobic incubation of CSF-blood mixture led to marked fall in the pH value thereof, which suggested to us that intracranial focal acidosis may play some role in the pathogenesis of cerebral vasospasm or disturbance of consciousness after the haemorrhage. To test this hypothesis, we treated 16 clinical cases of such disorders with carotid injection of 7% sodium bicarbonate solution. The treatment resulted in considerable improvement of the disturbance of consciousness by dilating the cerebral peripheral arteries; this we could observe angiographically 15 minutes after carotid injection. We found no morphological changes, however, in the spastic vessel itself up to 30 minutes after the injection.

Given the result both of this study and of our previous experiments, we offer the hypothesis that the synthesizing process of thromboxane A 2 and intracranial focal acidosis might play an important role in the pathogenesis of cerebral vasospasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, G. S., Gross, C. J., French, L. A., Chou, S. N., Cerebral arterial spasm. Part 5: In vitro contractile activity of vasoactive agents including human CSF on human basilar and anterior cerebral arteries. J. Neurosurg.44 (1976), 594–600.

    PubMed  Google Scholar 

  2. Allen, G. S., Henderson, L. M., Chou, S. N., French, L. A., Cerebral arterial spasm. Part 1: In vitro contractile activity of vasoactive agents on canine basilar and middle cerebral arteries. J. Neurosurg.40 (1974), 433–441.

    PubMed  Google Scholar 

  3. Broersma, R. J., Bullemer, G. D., Mammen, E. F., Acidosis induced disseminated intravascular microthrombosis and its dissolution by streptokinase. Thromb. Diath. Haemorrh.24 (1970), 55–67.

    PubMed  Google Scholar 

  4. Crowell, J. W., Houston, B., Effect of acidity on blood coagulation. Amer. J. Physiol.201 (1961), 379–382.

    PubMed  Google Scholar 

  5. Ellis, E. F., Nies, A. S., Oates, J. A., Cerebral arterial smooth muscle contraction by thromboxane A2. Stroke8 (1977), 480–483.

    PubMed  Google Scholar 

  6. Fletcher, T. M., Taveras, J. M., Pool, J. L., Cerebral vasospasm in angiography for intracranial aneurysms. Arch. Neurol.1 (1959), 38–47.

    PubMed  Google Scholar 

  7. Foltz, E. L., Ward, A. A., Communicating hydrocephalus from subarachnoid bleeding. J. Neurosurg.13 (1956), 546–566.

    PubMed  Google Scholar 

  8. Froman, C., Smith, A. C., Metabolic acidosis of the cerebrospinal fluid associated with subarachnoid haemorrhage. Lancet1 (1967), 965–967.

    PubMed  Google Scholar 

  9. Hagen, A. A., Gerber, J. N., Sweeley, C. C., White, R. P., Robertson, J. T., Levels and disappearance of prostaglandin F in cerebral spinal fluid: A clinical and experimental study. Stroke8 (1977), 672–675.

    PubMed  Google Scholar 

  10. Hardaway, R. M., Elovitz, M. J., Brewster, W. R., Houchin, D. N., Clotting time of hepalinized blood. Arch. Surg.89 (1964), 701–705.

    PubMed  Google Scholar 

  11. Kapp, J. P., Robertson, J. T., White, R. P., Spasmogenic qualities of prostaglandin F in the cat. J. Neurosurg.44 (1976), 173–175.

    PubMed  Google Scholar 

  12. Katsurada, K., Ogawa, M., Minami, T., Evaluation of CSF PO2 in management of the patients with acute head injury. I. CSF PO2 in relation to arterial PO2 and PCO2. Neurol. Surg. (Tokyo)1 (1973), 413–419.

    Google Scholar 

  13. LaTorre, E., Patrono, C., Fortuna, A. F., Grossi-Belloni, D., Role of prostaglandin F in human cerebral vasospasm. J. Neurosurg.41 (1974), 293–299.

    PubMed  Google Scholar 

  14. Murphy, J. R., Erythrocyte metabolism. II. Glucose metabolism and pathways. J. Lab. Clin. Med.55 (1960), 286–302.

    PubMed  Google Scholar 

  15. Ohnishi, H., Kosuzume, H., Yamaguchi, K., Suzuki, Y., Itoh, R., Experimental studies of trapidil on thromboxane A2 (TXA2)—induced aggregation of platelets, ischemic changes in heart and synthesis of TXA2. J. Jap. Atheroscler. Soc.7 (1979), 407–415.

    Google Scholar 

  16. Ohta, T., personal communication 1980.

  17. Ohta, T., Bardwin, M., Experimental mechanical arterial stimulation at the circle of Willis. J. Neurosurg.28 (1968), 405–408.

    PubMed  Google Scholar 

  18. Ohta, T., Waga, S., Handa, H., Saito, I., Takeuchi, H., Suzuki, J., Takaku, A., New grading of level of disordered consciousness. Neurol. Surg. (Tokyo)2 (1974), 623–627.

    Google Scholar 

  19. Osaka, K., Prolonged vasospasm produced by breakdown products of erythrocytes. J. Neurosurg.47 (1977), 403–411.

    PubMed  Google Scholar 

  20. Pool, J. L., Cerebral vasospasm associated with ruptured intracranial aneurysms. Arch. Neurol.4 (1961), 208–210.

    Google Scholar 

  21. Reimondi, A. J., Torres, H., Acute hydrocephalus as a complication of subarachnoid hemorrhage. Surg. Neurol.1 (1973), 23–26.

    PubMed  Google Scholar 

  22. Saito, I., Ueda, Y., Sano, K., Significance of vasospasm in the treatment of ruptured intracranial aneurysms. J. Neurosurg.47 (1977), 412–429.

    PubMed  Google Scholar 

  23. Shannon, D. C., Shore, N., Kazemi, H., Acid-base balance in hemorrhagic cerebrospinal fluid. Neurology22 (1972), 585–589.

    PubMed  Google Scholar 

  24. Suzuki, S., Experimental study of cerebral vasospasm—vasospasm of the circle of Willis. Brain Nerve (Tokyo)22 (1970), 393–403.

    Google Scholar 

  25. Suzuki, S., Ishii, M., Ottomo, M., Iwabuchi, T., Changes in the subarachnoid space after experimental subarachnoid haemorrhage in the dog: Scanning electron microscopic observation. Acta neurochir. (Wien)39 (1977), 1–14.

    Google Scholar 

  26. Suzuki, S., Suzuki, J., Cerebral vasospasm in cases of cerebral aneurysm—In association with recurrence of attack. Clin. Neurol. (Tokyo)14 (1974), 496–504.

    Google Scholar 

  27. Suzuki, S., White, R. P., Chapleau, C. E., Robertson, J. T., An experimental evaluation of anaerobic condition in the pathogenesis of cerebral vasospasm associated with subarachnoid hemorrhage. Hirosaki Med. J.32 (1980), 48–56.

    Google Scholar 

  28. Takahashi, S., Correlation of vasospasm and intracranial metabolism under experimental subarachnoid hemorrhage—Part 1. In reference with the acid-base-balance of cerebral blood and cerebrospinal fluid. Brain Nerve (Tokyo)30 (1978), 777–787.

    Google Scholar 

  29. White, R. P., Hagen, A. A., Morgan, H., Dawson, W. N., Robertson, J. T., Experimental study on the genesis of cerebral vasospasm. Stroke6 (1975), 52–57.

    PubMed  Google Scholar 

  30. Wilkins, R. H., Levitt, P., Intracranial arterial spasm in the dog. A chronic experimental model. J. Neurosurg.33 (1970), 260–269.

    PubMed  Google Scholar 

  31. Yamamoto, Y. L., Feindel, W., Wolfe, L. S., Katoh, H., Hodge, C. D., Experimental vasoconstriction of cerebral arteries by prostaglandins. J. Neurosurg.37 (1972), 385–397.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, S., Sobata, E., Ando, A. et al. Anaerobic change of bloody CSF in subarachnoid haemorrhage. Its relation to cerebral vasospasm. Acta neurochir 58, 15–26 (1981). https://doi.org/10.1007/BF01401680

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01401680

Keywords

Navigation