Skip to main content
Log in

Neurotransmitters in CSF of idiopathic adult-onset dystonia: Reduced 5-HIAA levels as evidence of impaired serotonergic metabolism

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

While several radiological findings point towards the basal ganglia as a possible anatomical site of the lesion in dystonia patients the biochemical basis of the disorder is still unknown. 5-Hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) levels — the respective metabolites of serotonin and dopamine — were measured in lumbar cerebrospinal fluid (lCSF) of 15 patients with idiopathic adult-onset focal dystonia and in lCSF of 11 controls. 100 μl lCSF were analyzed for 5-HIAA and HVA by reversed-phase HPLC with electrochemical detection. 5-HIAA levels were significantly reduced in dystonia patients (11.4μg/ml) compared to controls (18.4ng/ml) (p < 0.02). HVA levels in dystonia patients (30.3ng/ml) were below control values (41.6ng/ml) but this finding did not reach statistical significance. Decreased lCSF levels of 5-HIAA suggest an impaired serotonin metabolism in patients with idiopathic adult-onset dystonia. This observation may provide a biochemical basis for a more specific pharmacotherapy in dystonia patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams L, Foote S (1988) Possible involvement of brain noradrenergic neurons in dystonia. Adv Neurol 50: 313–333

    Google Scholar 

  • Banki CM, Vojnik M, Papp Z, Balla KZ, Arato M (1985) Cerebrospinal fluid magnesium and calcium related to amine metabolites, diagnosis, and suicide attempts. Biol Psychiatry 20: 163–171

    Google Scholar 

  • Bertilsson L (1987) 5-Hydroxyindolacetic acid in cerebrospinal fluid —methodological and clinical aspects. Life Sci 41: 821–824

    Google Scholar 

  • Black B, Uhde TW (1992) Acute dystonia and fluoxetine. J Clin Psychiatry 53: 327

    Google Scholar 

  • Bodner RA, Lynch T, Lewis L, Kahn D (1995) Serotonin syndrome. Neurology 45: 219–223

    Google Scholar 

  • Chase TN (1970) Biochemical and pharmacologie studies of dystonia. Neurology 20: 122–130

    Google Scholar 

  • Cohen DJ, Shaywitz BA, Bowers MB (1979) Central biogenic amine metabolism in children with the syndrome of chronic multiple tics of Gilles de la Tourette. J Am Acad Child Psychiat 18: 320–342

    Google Scholar 

  • Curzon G (1973) Involuntary movements other than parkinsonism: biochemical aspects. Proc Roy Soc Med 66: 873–876

    Google Scholar 

  • Durif F, Vidailhet M, Bonnet AM, Blin J, Agid Y (1995) Levodopa-induced dyskinesias are improved by fluoxetine. Neurology 45: 1855–1858

    Google Scholar 

  • Fahn S, Marsden CD, Calne DB (1987) Classification and investigation of dystonia, 2nd edn. Butterworth, London, pp 332–358

    Google Scholar 

  • Garelis E, Sourkes TL (1973) Sites and origin in the central nervous system of monoamine metabolites in human cerebrospinal fluid. J Neurol Neurosurg Psychiatry 36: 625–6292

    Google Scholar 

  • Hallett M (1993) Physiology of basal ganglia disorders: an overview. Can J Neurol Sci 20: 177–183

    Google Scholar 

  • Hedreen JC, Zweig R, DeLong, Whitehouse PJ, Price DL (1988) Primary dystonias: a review of the pathology and suggestions for new directions of study. Adv Neurol 50: 123–132

    Google Scholar 

  • Hornykiewicz O, Kish S, Backer L, Parley I, Shannak K (1986) Brain neurotransmitters in dystonia musculorum deformans. N Engl J Med 315: 247–353

    Google Scholar 

  • Hornykiewicz O, Kish S, Becker L, Parley I, Shannak K (1988) Biochemical evidence for brain neurotransmitter changes in idiopathic torsion dystonia (dystonia musculorum deformans). Adv Neurol 50: 157–165

    Google Scholar 

  • Humphrey PP, Hartig P, Hoyer D (1993) A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci 14: 233–236

    Google Scholar 

  • Jahanshahi M, Marsden CD (1988) Personality in torticollis: a controlled study. Psychol Med 18: 375–387

    Google Scholar 

  • Jankovic J, Ford J (1983) Blepharospasm and orofacial-cervical dystonia: clinical and pharmacological findings in 100 patients. Ann Neurol 13: 402–411

    Google Scholar 

  • Jankovic J, Svendsen C, Bird E (1987) Brain neurotransmitters dystonia. N Engl J Med 316: 278–279

    Google Scholar 

  • Jankovic J, Schwartz K, Donovan DT (1990) Botulinum toxin treatment of cranialcervical dystonia, spasmodic dystonia, other focal dystonias and hemifacial spasm. J Neurol Neurosurg Psychiatry 53: 633–639

    Google Scholar 

  • Lal S, Young SN, Kiely ME, Baxter DW, Sourkes TL (1981) Effect of L-tryptophan on spasmodic torticollis. Can J Neurol Sci 8: 305–308

    Google Scholar 

  • Lance JW (1993) The pathophysiology of migraine, 6th edn. Oxford University Press, New York, pp 59–95

    Google Scholar 

  • Maltese W, Bressmann S, Fahn S, De Vivo D (1985) Acetylcholinesterase activity in patients with torsion dystonia. Arch Neurol 45: 154–155

    Google Scholar 

  • Marsden CD, Harrison MJG (1974) Idiopathic torsion dystonia (dystonia musculorum deformans). A review of fourty-two patients. Brain 97: 793–810

    Google Scholar 

  • Marsden CD, Obeso JA, Zarranz JJ, Lang E (1985) The anatomical basis of symptomatic hemidystonia. Brain 108: 463–483

    Google Scholar 

  • Mori K, Fujita Y, Shimabukuro H, Ito M, Handa H (1975) Some considerations for treatment of spasmodic torticollis. Clinical and experimental studies. Confinita Neurologica 37: 265–269

    Google Scholar 

  • Perry TL, Hansen S, Quinn N, Marsden CD (1982) Concentrations of GABA and other amino acids in CSF from torsion dystonia patients. J Neurochem 39: 1188–1191

    Google Scholar 

  • Post RM, Kotin J, Goodwin FK, Gordon EK (1973) Psychomotor activity and cerebrospinal fluid amine metabolites in affective illness. Am J Psychiatry 130: 67–72

    Google Scholar 

  • van Praag HM (1980) Central monoamine metabolism in depression. Serotonin and related compounds. Compr Psychiatry 21: 30–43

    Google Scholar 

  • Rothwell JC, Day BL, Marsden CD (1983) Pathophysiology of dystonia. Adv Neurol 39: 851–863

    Google Scholar 

  • Ruhberg M, Villageois A, Bonnet AM, Rieger F, Agid Y, Fahn S (1988) Acetylcholinesterase and buturylcholinesterase in cerebrospinal fluid from patients with dystonia. Adv Neurol 50: 211–213

    Google Scholar 

  • Schnider P, Wenzel T, Müller C, Wimmer A, Auff E (1994) Psychiatrie disorders in patients with torticollis or blepharospasm. Mov Disord 9 [Suppl 1]: 37

    Google Scholar 

  • Shihabuddin L, Rapport D (1994) Sertraline and extrapyramidal side effects. Am J Psychiatry 151: 288

    Google Scholar 

  • Sofic E, Riederer P, Schmidt B, Fritze J, Kollegger H, Dierks, Beckmann H (1992) Biogenic amines and metabolites in CSF from patients with HIV infection. Biogen Amines 8: 293–298

    Google Scholar 

  • Soininen HS, MacDonald E, Rekonen M, Riekinen PJ (1981) HVA and 5-HIAA levels in CSF of patients with senile dementia of Alzheimer type. Acta Neurol Scand 64: 217–224

    Google Scholar 

  • Stahl S, Berger P (1982) Bromocriptine, physostigmine, and neurotransmitter mechanism in the dystonias. Neurology 32: 889–892

    Google Scholar 

  • Stanley M, Traskmann-Bendz L, Dorovini-Zis K (1985) Correlations between aminergic metabolites simultaneously obtained from human CSF and brain. Life Sci 37: 1279–1286

    Google Scholar 

  • Steinbusch HWM, Nieuwenhuys R (1983) The raphe nuclei of the rat brainstam: a cytoarchitectonic and immunohistological study, 2nd edn. Raven Press, New York, p 131

    Google Scholar 

  • Tabaddor K, Wolfson L, Sharpless N (1978) Diminished ventricular fluid dopamine metabolites in adult-onset dystonia. Neurology 28: 1254–1258

    Google Scholar 

  • Tate JL (1989) Extrapyramidal symptoms in a patient taking haloperidol and fluoxetine. Am J Psychiatry 146: 399–400

    Google Scholar 

  • Wagner J, Vitali MG, Palfreyman MH, Zraika M, Huot S (1982) Simultaneous determination of 3,4-dihydroxyphenylalanine, 5-hydroxytryptophan, dopamine, 4-hydroxy-3-methoxyphenylalanin, norepinephrine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, serotonin and 5-hydroxyindolacetic acid in rat cerebrospinal fluid and brain by high performance liquid chromatography with electrochemical detection. J Neurochem 38: 1241–1254

    Google Scholar 

  • Wolfson L, Sharpless N, Thal L, Waltz J, Shapiro K (1983) Decreased ventricular fluid norepinephrine metabolite in childhood-onset dystonia. Neurology 33: 369–372

    Google Scholar 

  • Zambrino CA, Balottin U, Borgatti R, Lanzi G (1991) Considerations on two cases of dystonia-parkinsonism. Ital J Neurol Sci 12: 475–478

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumann, M., Götz, M., Reiners, K. et al. Neurotransmitters in CSF of idiopathic adult-onset dystonia: Reduced 5-HIAA levels as evidence of impaired serotonergic metabolism. J. Neural Transmission 103, 1083–1091 (1996). https://doi.org/10.1007/BF01291793

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01291793

Keywords

Navigation