Skip to main content
Log in

Monoamine metabolism in the cerebrospinal fluid in Parkinson's disease: relationship to clinical symptoms and subsequent therapeutic outcomes

  • Full Papers
  • Published:
Journal of Neural Transmission - Parkinson's Disease and Dementia Section

Summary

We correlated monoamine concentrations in the cerebrospinal fluid from de novo (untreated) patients with Parkinson's disease with their clinical symptoms and therapeutic outcome after two years of L-dopa with/without other anti-parkinson medication. A significant correlation was found between the severity of some parkinsonian symptoms and the reduction in particular monoamines: Hoehn and Yahr's stage with dopamine, norepinephrine, and homovanillic acid: rigidity with dopamine; akinesia with dopamine and norepinephrine; freezing of gait with norepinephrine; and dementia with dopamine and homovanillic acid. Tremor had no correlations with the concentrations of the monoamines measured. Patients with dementia had a significantly increased level of epinephrine concentrations.

Insufficient therapeutic responses of invidividual symptoms were associated with significantly decreased concentrations of particular monoamines before treatment: Hoehn and Yahr's stage with norepinephrine and epinephrine; akinesia with homovanillic acid and 5-hydroxyindoleacetic acid; and freezing of gait with dopamine, norepinephrine, homovanillic acid, and 5-hydroxyindoleacetic acid. These results suggest a significant correlation between the reduction in particular monoamines and the severity of some parkinsonian symptoms and their subsequent responses to L-dopa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Psychiatric Association (1987) Diagnostic and statistical manual of mental disorders, 3rd ed, revised. APA, Washington DC, pp 21–23

    Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington: clinical morphological and neurochemical correlations. J Neurol Sci 20: 415–455

    Article  PubMed  Google Scholar 

  • Bianchine JR, Shaw GM (1976) Clinical pharmacokinetics of levodopa in Parkinson's disease. Clin Pharmacokinet 1: 313–338

    PubMed  Google Scholar 

  • Björklund A, Divac I, Lindvall O (1978) Regional distribution of catecholamines in monkey cerebral cortex, evidence for a dopaminergic innervation of the primate prefrontal cortex. Neurosci Lett 7: 115–119

    Article  Google Scholar 

  • Bowers MB Jr, Van Woert MH (1972) The probenecid test in Parkinson's disease. Lancet ii: 926–927

    Article  Google Scholar 

  • Brannan T, Bhardwaj A, Yahr MD (1990) L-threodops increases extracellular norepinephrine levels in the brain: an in vivo study. Neurology 40: 1134–1135

    PubMed  Google Scholar 

  • Brown RG, Marsden CD, Quinn N, Wyke MA (1984) Alterations in cognitive performance and affect arousal state during fluctuations in motor function in Parkinson's disease. J Neurol Neurosurg Psychiatry 47: 454–465

    PubMed  Google Scholar 

  • Chase TN, Ng LK (1972) Central monoamine metabolism in Parkinson's disease. Arch Neurol 27: 486–491

    PubMed  Google Scholar 

  • Cunha L, Goncalves AF, Oliveira C, Dinis M, Amaral R (1983) Homovanillic acid in the cerebrospinal fluid of parkinsonian patients. Can J Neurol Sci 10: 43–46

    PubMed  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Klin Wochenschr 38: 1236–1239

    Article  PubMed  Google Scholar 

  • Farley IJ, Hornykiewicz O (1976) Noradrenaline in subcortical brain regions of patients with Parkinson's disease and control subjects. In: Birkmayer W, Hornykiewicz O (eds) Advances in parkinsonism. Roche, Basel, pp 178–185

    Google Scholar 

  • Glowinski J, Tassin JP, Thierry AM (1984) The mesocortico-prefrontal dopaminergic neurons. Trends Neurosci 7: 415–418

    Article  Google Scholar 

  • Godwin-Austen RB, Frears CC, Tomlinson EB, Kok HW (1969) Effects of L-dopa in Parkinson's disease. Lancet ii: 165–168

    Article  Google Scholar 

  • Gumpert J, Sharpe DM, Curzon G (1973) Amine metabolites in the cerebrospinal fluid in Parkinson's disease and the response to L-dopa. J Neurol Sci 19: 1–12

    Article  PubMed  Google Scholar 

  • Hasegawa K, Inoue K, Moriya K (1974) A study on dementia scaling in the elderly. Clin Psychiatry 16: 965–969 (in Japanese)

    Google Scholar 

  • Hoehn MM, Yahr MD (1967) Parkinsonsim: onset, progression, and mortality. Neurology 17: 427–442

    PubMed  Google Scholar 

  • Jequier E, Dufresne JJ (1972) Biochemical investigations in patients with Parkinson's disease treated with L-dopa. Neurology 22: 15–21

    PubMed  Google Scholar 

  • Klawans HL (1986) Individual manifestations of Parkinson's disease after ten or more years of levodopa. Mov Disord 1: 187–192

    Article  PubMed  Google Scholar 

  • Koller WC (1986) Pharmacologic treatment of parkinsonian tremor. Arch Neurol 43: 126–127

    PubMed  Google Scholar 

  • Lakke JP, Korf J, van Praag HM (1971) Predicting response to levodopa. Lancet ii: 164–165

    Article  Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980

    Google Scholar 

  • Lees AJ, Smith E (1983) Cognitive deficits in the early stages of Parkinson's disease. Brain 106: 257–270

    PubMed  Google Scholar 

  • Lieberman A, Dziatolowski M, Gopinathan G, Kupersmith K, Neophytides A, Korein J (1980) Evaluation of Parkinson's disease. In: Goldstein M, Calne DB, Lieberman AN, Thorner MO (eds) Ergot compounds and brain function. Neuropsychiatric aspects. Raven, New York, pp 277–286

    Google Scholar 

  • Nagatsu T, Kato T, Numata Y, Sano M, Nagatsu I, Kondo Y, Inagaki S, Iizuka R, Hori A, Narabayashi H (1977) Phenylethanolamine N-methyl-transferase and other enzymes of catecholamine metabolism in human brain. Clin Chim Acta 75: 221–232

    Article  PubMed  Google Scholar 

  • Nagatsu T, Kato T, Nagatsu I, Kondo Y, Inagaki S, Iizuka R, Narabayashi H (1979) Catecholamine related enzymes in the brain of patients with parkinsonism and Wilson's disease. Adv Neurol 24: 283–292

    Google Scholar 

  • Nagatsu T, Wakui Y, Kato T, Fujita K, Kondo T, Yokochi F, Narabayashi H (1982) Dopamine beta-hydroxylase activity in cerebrospinal fluid of Parkinsonian patients. Biomed Res 3: 95–98

    Google Scholar 

  • Narabayashi H, Kondo T (1987) Results of a double-blind study of L-threo-DOPS in parkinsonism. In: Fahn S, et al (eds) Recent developments in Parkinson's disease, vol II. Macmillan, New Jersey, pp 279–291

    Google Scholar 

  • Narabayashi H, Kondo T, Hayashi A, Suzuki T, Nagatsu T (1981) L-threo-3,4-dihydroxyphenylserine treatment for akinesia and freezing of parkinsonism. Proc Jpn Acad 57 (Ser B): 351–354

    Google Scholar 

  • Quinn NP, Luthert P, Honarar M, Marsden CD (1989) Pure akinesia due to Lewy body Parkinson's disease: a case with pathology. Mov Disord 4: 85–89

    Article  PubMed  Google Scholar 

  • Riederer P, Birkmayer W, Seeman D, Wuketich S (1977) Brain-noradrenaline and 3-methoxy-hydroxyphenylglycol in Parkinson's syndrome. J Neural Transm 41: 241–251

    Article  PubMed  Google Scholar 

  • Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease. Brain Res 275: 321–328

    Article  PubMed  Google Scholar 

  • Tohgi H, Abe T, Takahashi S, Ueno M, Nozaki Y (1990a) Cerebrospinal fluid dopamine, norepinephrine, and epinephrine concentrations in Parkinson's disease correlated with clinical symptoms. Adv Neurol 53: 277–282

    PubMed  Google Scholar 

  • Tohgi H, Abe T, Takahashi S, Takahashi J, Ueno M, Nozaki Y (1990b) Effect of a synthetic norepinephrine precursor, L-threo-3-4-dihydroxyphenylserine on the total norepinephrine concentration in the cerebrospinal fluid of parkinsonian patients. Neurosci Lett 116: 194–197

    Article  PubMed  Google Scholar 

  • Tyce GM, Rorie DK, Byer DE, Danielson DR (1985) Free and conjugated amines in human lumbar cerebrospinal fluid. J Neurochem 49: 322–324

    Google Scholar 

  • Van Woert MH, Weintraub MI (1971) Predicting the response to levodopa. Lancet i: 1015–1016

    Google Scholar 

  • Weiner WJ, Klawans HL Jr (1973) Failure of cerebrospinal fluid homovanillic acid to predict levodopa response in Parkinson's disease. J Neurol Neurosurg Psychiatry 36: 747–752

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohgi, H., Abe, T., Takahashi, S. et al. Monoamine metabolism in the cerebrospinal fluid in Parkinson's disease: relationship to clinical symptoms and subsequent therapeutic outcomes. J Neural Transm Gen Sect 5, 17–26 (1993). https://doi.org/10.1007/BF02260911

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02260911

Keywords

Navigation