Skip to main content
Log in

Structural variations of N-acetylneuraminic acid, part 19: Synthesis of both epimeric pairs of the 4-C-methyl- and 4-deoxy-4-C-methyl- as well as of the β-methylketoside of 4-deoxy-4-C-methylene-N-acetylneuraminic acid

Strukturelle Abwandlungen an N-Acetylneuraminsäure, 19. Mitt.: Synthese der beiden Epimerenpaare der 4-C-Methyl- und 4-Deoxy-4-C-methyl- sowie des β-Methylketosids der 4-Deoxy-4-C-methylen-N-acetylneuraminsäure. Verhalten gegenüber CMP-Sialat-Synthase

Behaviour towards CMP-sialate synthase

  • Organische Chemie Und Biochemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary

While the reaction of the 4-oxo-Neu 5 Ac derivative2 a with tributoxy methyl zirconate led exclusively to equatorial 4-C-methyl derivative3 a, the analogous reaction with tetramethyl zirconate yielded a 3:2 mixture of both diastereoisomeres3 a and4 a. After removal of protecting groups the 5-acetamido-3,4-dideoxy-4-C-methyl-D-glycero-D-galacto-2-nonulosonic acid5 a and 5-acetamido-3,4-dideoxy-4-C-methyl-D-glycero-D-talo-2-nonulosonic acid6 a were obtained. The 4-C-methylene derivative was prepared by treatment of the same 4-oxo-derivative with CH2I2/Zn/Cp 2ZrCl2. Subsequent hydrogenation led to both epimeric 4-deoxy-4-C-methyl derivatives8 a and9 a. Final removal of protecting groups gave the 5-acetamido-3,4,5-trideoxy-4-C-methyl-D-glycero-D-galacto-2-nonulosonic acid10 a respectively the 5-acetamido-2,7-anhydro-4-C-methyl-3,4,5-trideoxy-D-glycero-D-talo-2-nonulosonic acid11 a. The β-methylketosides of the 4-deoxy-4-C-methyl- (16) and 4-C-methylene-Neu 5 Ac (15) were prepared via the peracetylated derivatives to obtain modell substrates for enzymatic studies. Thus all free acids were tested for inhibition of CMP-sialate synthease. Only the 4-C-methylene compound15 showed most unexpectedly a strong competitive inhibition of this enzyme.

Zusammenfassung

Während die Umsetzung des 4-Oxoderivates2 a mit (BuO)3 MeZr ausschließlich zur equatorialen 4-C-Methylverbindung3 a führt, wurde bei der Reaktion mitMe 4Zr ein 3:2-Gemisch der beiden Diastereomeren3 a und4 a erhalten. Das 4-C-Methylenderivat7 a wurde durch Reaktion derselben 4-Oxoverbindung mit CH2I2/Zn/Cp 2ZrCl2 erhalten. Eine anschließende Hydrierung (H2-Pd/C) führte zu einem trennbaren Germisch der beiden 4-Deoxy-4-C-methylderivative8 a und9 a. Diese Verbindungen konnten durch das Entfernen der Schutzgruppen einerseits in die 5-Acetamido-3,4,5-trideoxy-4-C-methyl-D-glycero-D-galacto-2-nonulosonsäure10 a und 5-Acetamido-2,7-anhydro-4-C-methyl-3,4,5-tridoxy-D-glycero-D-talo-2-nonulosonsäure11 a umgewandelt werden. Die Verbindungen Methyl-5-acetamido-4-C-methylen-3,4,5-trideoxy-β-D-manno-2-nonulopyranosidonat (15) und Methyl-5-acetemido-4-C-methyl-3,4,5-tridoxy-β-D-glycero-D-talo-2-nonulopyranosidonat (16) wurden als Modellverbindungen für enzymatische Untersuchungen über peracetylierte Zwischenstufen hergestellt. Überraschenderweise zeigte nur die 4-C-Methylenverbindung15 eine starke kompetitive Hemmung gegenüber CMP-Sialat-Synthase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and References

  1. Previous Commun. (Part 18): Bandgar B. P., Hartmann M., Schmid W., Zbiral E. (in press) Liebigs Ann. Chem.

  2. Schauer R. (1982) Adv. Carbonhydr. Chem. Biochem.40: 132

    Google Scholar 

  3. Schauer R. (1982) Sialic Acids. In: Cell Biology Monographs, Vol. 10. Springer, Wien New York

    Google Scholar 

  4. Zbiral E., Brandstetter H. H. (1985) Monatsh. Chem.116: 87

    Google Scholar 

  5. Schmid W., Christian R., Zbiral E. (1988) Tetrahedron Lett.29: 3643

    Google Scholar 

  6. Zbiral E., Schreiner E., Christian R. (1989) Carbohydr. Res.194: C 15

  7. Hartmann M., Christian R., Zbiral E. (1990) Liebigs Ann. Chem.: 83

  8. Schreiner E., Christian R., Zbiral E. (1990) Liebigs Ann. Chem.: 93

  9. Christian R., Schreiner E., Zbiral E., Schulz G. (1989) Carbohydr. Res.194: 49

    Google Scholar 

  10. Zbiral E., Brandstetter H. H., Christian R., Schauer R. (1987) Liebigs Ann. Chem.: 781

  11. Zbiral E., Schreiner E., Christian R., Kleineidam R. G., Schauer R. (1989) Liebigs Ann. Chem.: 159

  12. Zbiral E., Schreiner E., Salunkhe M. M., Schulz G., Kleineidam R. G., Schauer R. (1989) Liebigs Ann. Chem.: 519

  13. Schauer R., Stoll S., Zbiral E., Schreiner E., Brandstetter H. H., Vasella A., Baumberger F. (1987) Glycoconjugate J.4: 361

    Google Scholar 

  14. Gross H. J., Brossmer R. (1987) Glycoconjugate J.4: 145

    Google Scholar 

  15. Hotta K., Kurokawa M. (1970) J. Biol. Chem.245: 6307

    Google Scholar 

  16. Hannessian S., Pernet A. G. (1976) Adv. Carbohydr. Chem. Biochem.33: 111

    Google Scholar 

  17. Ezekiel A. D., Overend W. G., Williams N. R. (1969) Tetrahedron Lett.: 1635

  18. Overend W. G., Williams N. R. (1965) J. Chem. Soc.: 3446

  19. Brimacombe J. S., Mahmood S., Rollins A. J. (1975) J. Chem. Soc. P. T.1: 1292

    Google Scholar 

  20. Burton J. S., Overend W. G., Williams N. R. (1965) J. Chem. Soc.: 3433

  21. Yoshimura J., Hong N., Sato K. (1980) Chemistry Lett.: 113

  22. Hong N., Sato K., Yoshimura J. (1981) Bull. Chem. Soc. Jpn.54: 2379

    Google Scholar 

  23. Rees R. D., James K., Tatchell A. R., Williams R. H. (1968) J. Chem. Soc. C.: 2716

  24. Sato K., Kubo K., Hong N., Kodama H., Yoshimura J. (1982) Bull. Chem. Soc. Jpn.55: 938

    Google Scholar 

  25. Hartmann M., Zbiral E. (1989) Monatsh. Chem.120: 899

    Google Scholar 

  26. Imamoto T., Sugiura Y., Takiyama N. (1984) Tetrahedron Lett.25: 4233

    Google Scholar 

  27. Imamoto T., Takiyama N., Nakamura K. (1985) Tetrahedron Lett.26: 4763

    Google Scholar 

  28. Imamoto T., Kusumoto T., Yokoyama M. (1982) Chem. Commun.: 1042

  29. Imamoto T., Kusumoto T., Tawarayama Y., Sugiura Y., Mita T., Hatanaka Y., Yokoyama M. (1984) J. Org. Chem.49: 3904

    Google Scholar 

  30. Nagasawa K., Kanbara H., Matsushita K., Ito K. (1985) Tetrahedron Lett.26: 6477

    Google Scholar 

  31. Seebach D., Weidmann B., Widler L. (1983) Titanum and Zirconium Derivatives in Organic Chemistry. In: Scheffold R. (ed.) Modern Synthetic Methods. Sauerländer, Frankfurt, p. 217

    Google Scholar 

  32. Philipp C., Klaffke W. (1989) In: Cerny M., Drasar P. (eds.) Vth European Symposium on Carbohydrates, Prag, A 78

  33. Berthold H. J., Groh G. (1966) Angew. Chem.78: 495

    Google Scholar 

  34. Reetz M. T., Steinbach R., Westermann J., Urz R., Wenderoth B., Peter R. (1982) Angew. Chem.94: 133

    Google Scholar 

  35. Weidmann B., Seebach D. (1980) Helv. Chim. Acta63: 2451

    Google Scholar 

  36. Senda Y., Ishiyana J, Imaizumi S. (1975) Tetrahedron31: 1601

    Google Scholar 

  37. Wilson N. K., Stothers J. B. (1973) Top. Stereochem.8: 1

    Google Scholar 

  38. Barton D. H. R., Cookson R. C. (1956) C. Q. Rev.10: 44

    Google Scholar 

  39. Hartmann M., Zbiral E. (1990) Tetrahedron Lett.31: 2875

    Google Scholar 

  40. Brandstetter H. H., Zbiral E. (1983) Liebigs Ann. Chem.: 2055

  41. Greenwald R., Chaykovsky M., Corey E. J. (1963) J. Org. Chem.28: 1128

    Google Scholar 

  42. Anderson R. (1985) Synthesis: 717

  43. Peterson D. J. (1967) J. Org. Chem.32: 780

    Google Scholar 

  44. Carey F. A., Frank W. C. (1982) J. Org. Chem.47: 3548

    Google Scholar 

  45. Tebbe F. N., Parshall G. W., Reddy G. S. (1978) J. Am. Chem. Soc.100: 3611

    Google Scholar 

  46. Takai K., Hotta Y., Oshima K., Nozaki H. (1978) Tetrahedron Lett.: 2417

  47. Lombardo L. (1982) Tetrahedron Lett.23: 4293

    Google Scholar 

  48. Furber M., Mander L. (1988). J. Am. Chem. Soc.110: 4084

    Google Scholar 

  49. Tour J. M., Bedworth P. V., Wu R. (1989) Tetrahedron Lett.30: 3927

    Google Scholar 

  50. Schreiner E., Schulz G., Zbiral E. (unpubl. results)

  51. Ritchie R. G. S., Cyr N., Perlin A. S. (1976) Can. J. Chem.54: 2301

    Google Scholar 

  52. Czarniezki M. F., Thornton E. R. (1977) J. Am. Chem. Soc.99: 8273

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, M., Christian, R. & Zbiral, E. Structural variations of N-acetylneuraminic acid, part 19: Synthesis of both epimeric pairs of the 4-C-methyl- and 4-deoxy-4-C-methyl- as well as of the β-methylketoside of 4-deoxy-4-C-methylene-N-acetylneuraminic acid. Monatsh Chem 122, 111–125 (1991). https://doi.org/10.1007/BF00815172

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00815172

Keywords

Navigation