Skip to main content
Log in

Bud formation inFunaria: Organelle redistribution following cytokinin treatment

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Cytokinin stimulates caulonemata ofFunaria to undergo an asymmetric division leading to the gametophore. The earliest detectable event is a small protuberance at the distal portion of the cell accompanied by the reorganization of the underlying organelles into a polarized distribution reminiscent of a tip growing cell. Dictyosomes and associated vesicles accumulate in the protuberance directly beneath the plasma membrane with mitochondria subjacent to the vesicular layer. Endoplasmic reticulum lies beneath the mitochondrial zone directly above the large central vacuole, while chloroplasts are outside the bud. As development continues the bud elongates causing the outer cell wall to exfoliate. During the above events the nucleus migrates toward the bud site concomitant with an increase in the number of microtubules between the nucleus and the base of the outgrowth. Nucleoli, extruded from the nucleus during a previous division, persist as diffuse fragments within the protuberance. Upon reaching the bud site, division occurs with the developing phragmoplast being initiated distal to the caulonema tip cell. The former polarized distribution of the cytoplasm is altered as mitochondria, chloroplasts and small vacuoles become evenly dispersed throughout the cytoplasm; dicytosomes and endoplasmic reticulum occupy a cortical position. These events indicate a change from 2-D tip growth to 3-D diffuse growth. To quantify the ultrastructural changes associated with bud formation we performed a morphometric analysis of cells in various stages of budding. The relative volumes of dictyosomes and vesicles adjacent to the bud apex decrease during bud development coincident with an increase in these organelles in lower portions of the cytoplasm. Mitochondria and chloroplasts follow this same pattern although their highest relative volumes initially are 4 μm from the bud apex and outside the bud site, respectively. These data, as well as density profile topographic maps for vesicle fractions, support the contention that cytokinin induces a change in morphological symmetry and polarity in the fine structure ofFunaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonnett, H. T., Newcomb, E. H., 1966: Coated vesicles and other cytoplasmic components of growing root hairs of radish. Protoplasma62, 59–75.

    Google Scholar 

  • Bopp, M., 1963: Development of the protonema and bud formation in mosses. J. Linn. Soc. (Bot.)58, 305–309.

    Google Scholar 

  • —, 1968: Control of differentiation in fern-allies and bryophytes. Ann. Rev. Plant. Physiol.19, 361–380.

    Google Scholar 

  • —, 1984: The hormonal regulation of protonema development in mosses. II. The first steps of cytokinin action. Z. Pflanzenphysiol.113, 435–444.

    Google Scholar 

  • Brandes, H., Kende, H., 1968: Studies on cytokinin-controlled bud formation in moss protonemata. Plant Physiol.43, 827–837.

    Google Scholar 

  • Cresti, M., Pacini, E., Ciampolini, F., Sarfatti, G., 1977: Germination and early tube developmentin vitro ofLycopersicum peruvianum pollen: ultrastructural features. Planta136, 239–247.

    Google Scholar 

  • Grove, S. N., Bracker, C. E., Morré, D. J., 1970: An ultrastructural basis for hyphal tip growth inPythium ultimum. Amer. J. Bot.57, 245–266.

    Google Scholar 

  • Hepler, P. K., 1981: The structure of the endoplasmic reticulum revealed by osmium tetroxide-potassium ferricyanide staining. Eur. J. Cell Biol.26, 102–110.

    PubMed  Google Scholar 

  • Herth, W., 1978: Ionophore A23187 stops tip growth, but not cytoplasmic streaming in pollen tubes ofLilium longiflorum. Protoplasma96, 275–282.

    Google Scholar 

  • Jaffe, L. A., Weisenseel, M. H., Jaffe, L. F., 1975: Calcium accumulations within the growing tips of pollen tubes. J. Cell Biol.67, 488–492.

    Google Scholar 

  • Jensen, L. C. W., Jensen, C. G., 1984: Fine structure of protonemal apical cells of the mossPhyscomitrium turbinatum. Protoplasma122, 1–10.

    Google Scholar 

  • Kiermayer, O., 1981: Cytoplasmic basis of morphogenesis inMicrasterias. In: Cytomorphogenesis in Plants (Kiermayer, O., ed.). Wien-New York: Springer.

    Google Scholar 

  • Laetsch, W. M., 1967: Ferns. In: Methods in Developmental Biology (Wilt, F. H., Wessells, N. K., eds.), pp. 319–328. New York: Thomas Y. Crowell Co.

    Google Scholar 

  • McKerracher, L. J., Heath, I. B., 1985: Microtubules around migrating nuclei in conventionally-fixed and freeze-substituted cells. Protoplasma125, 162–172.

    Google Scholar 

  • Meindl, U., 1983: Cytoskeletal control of nuclear migration and anchoring in developing cells ofMicrasterias denticulata and the change caused by the anti-microtubular herbicide amiprophosmethyl (APM). Protoplasma118, 75–90.

    Google Scholar 

  • —,Kiermayer, O., 1981: Biologischer Test zur Bestimmung der Antimikrotubuli-Wirkung verschiedener Stoffe mit Hilfe der GrünalgeMicrasterias denticulata. Mikroskopie38, 325–336.

    PubMed  Google Scholar 

  • Oakley, B. R., Morris, N. R., 1980: Nuclear movement is βtubulin-dependent inAspergillus nidulans. Cell19, 255–262.

    PubMed  Google Scholar 

  • Reiss, H-D., Herth, W., 1978: Visualization of the Ca2+ gradient in growing pollen tubes ofLilium longiflorum with chlorotetracycline fluorescence. Protoplasma97, 373–377.

    Google Scholar 

  • —, 1979 a: Calcium gradients in tip growing plant cells visualized by chlorotetracycline fluorescence. Planta146, 615–621.

    Google Scholar 

  • —, 1979b: Calcium ionophore A23187 affects localized wall secretion in the tip region of pollen tubes ofLilium longiflorum. Planta145, 225–232.

    Google Scholar 

  • —, 1982: Disoriented growth of pollen tubes ofLilium longiflorum Thunb. induced by prolonged treatment with the calcium-chelating antibiotic, chlorotetracycline. Planta156, 218–225.

    Google Scholar 

  • — —,Nobiling, R., 1985: Development of membrane- and calcium-gradients during pollen germination ofLilium longiflorum. Planta163, 84–90.

    Google Scholar 

  • — —,Schnepf, E., Nobiling, R., 1983: The tip-to-base calcium gradient in pollen in tubes ofLilium longiflorum measured by proton-induced X-ray emission (PIXE). Protoplasma115, 153–159.

    Google Scholar 

  • Reynolds, E. S., 1963: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol.17, 208–212.

    PubMed  Google Scholar 

  • Rosen, W. G., Gawlik, S. R., Dashek, W. V., Siegesmund, K. A., 1964: Fine structure and cytochemistry ofLilium pollen tubes. Amer. J. Bot.51, 61–71.

    Google Scholar 

  • Saunders, M. J., Hepler, P. K., 1981: Localization of membrane-associated calcium following cytokinin treatment inFunaria using chlorotetracycline. Planta152, 272–281.

    Google Scholar 

  • — —, 1982: Calcium ionophore A 23187 stimulates cytokinin-like mitosis inFunaria. Science217, 943–945.

    Google Scholar 

  • — —, 1983: Calcium antagonists and calmodulin inhibitors block cytokinin-induced bud formation inFunaria. Dev. Biol.99, 41–49.

    PubMed  Google Scholar 

  • Schmiedel, G., Schnepf, E., 1979 a: Side branch formation and orientation in the caulonema of the moss,Funaria hygrometrica: normal development and fine structure. Protoplasma100, 367–383.

    Google Scholar 

  • — —, 1979 b: Side branch formation and orientation in the caulonema of the moss,Funaria hygrometrica: experiments with inhibitors and with centrifugation. Protoplasma101, 47–59.

    Google Scholar 

  • — —, 1980: Polarity and growth of caulonema tip cells of the mossFunaria hygrometrica. Planta147, 405–413.

    Google Scholar 

  • Spurr, A. R., 1969: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43.

    PubMed  Google Scholar 

  • Steer, M. W., 1981: Understanding Cell Structure. Cambridge: Cambridge University Press.

    Google Scholar 

  • Uwate, W. J., Linn, J., 1980: Cytological zonation ofPrunus avium L. pollen tubesin vivo. J. Ultrastruct. Res.71, 173–184.

    PubMed  Google Scholar 

  • Vogelmann, T. C., Bassel, A. R., Miller, J. H., 1981: Effects of microtubule-inhibitors on nuclear migration and rhizoid differentiation in germinating fern spores (Onoclea sensibilis). Protoplasma109, 295–316.

    Google Scholar 

  • Weibel, E. R., 1973: Stereological techniques for electron microscopic morphometry. In: Principles and Techniques of Electron Microscopy: Biological Applications. Vol. 3 (Hayat, M. A., ed.), pp. 237–296. New York: Van Nostrand Rheinhold Co.

    Google Scholar 

  • Weisenseel, M. H., Jaffe, L. F., 1976: The major growth current through lily pollen tubes enters as K+ and leaves as H+. Planta133, 1–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, P.A., Steucek, G.L. & Hepler, P.K. Bud formation inFunaria: Organelle redistribution following cytokinin treatment. Protoplasma 131, 211–223 (1986). https://doi.org/10.1007/BF01282984

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01282984

Keywords

Navigation