Skip to main content
Log in

Amino acids and osmolarity in honeybee drone haemolymph

  • Full Papers
  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

In the haemolymph of honeybee drones, concentrations of free amino acids were higher than in worker haemolymph, with different relative proportions of individual amino acids. The overall concentration of free amino acids reached its highest level at the 5th day after adult drone emergence, and after the 9th day only minor changes in the concentration and distribution of free amino acids were observed. This coincides with the age when drones reach sexual maturity and change their feeding behaviour. Levels of essential free amino acids were high during the first 3 days of life and thereafter decreased. Osmolarity was lowest at emergence (334 ± 41 mOsm), increased until the age of 3 days (423 ± 32mOsm) and then stayed generally constant until the 16th day of life. Only 25-day-old drones had significantly higher osmolarity (532 ± 38 mOsm). The overall change in osmolarity during a drone's lifetime was about 40%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger B, Crailsheim K, Leonhard B (1997) Proline, leucine and phenylalanine metabolism in adult honeybee drones (Apis mellifica carnica Pollm.). Insect Biochem Molec Biol 27/6: 587–593

    Google Scholar 

  • Buck JB (1953) Physical properties and chemical composition of insect blood. In: Roeder KD (ed) Insect physiology. John Wiley and Sons Inc, New York, pp 147–190

    Google Scholar 

  • Cardinaud B, Coles J, Perrottet P, Spencer AJ, Osborne MP, Tsacopoulos M (1994) The composition of the interstitial fluid in the retina of the honeybee drone: implications for the supply of substrates of energy metabolism from blood to neurones. Proc R Soc Lond B 257: 9–58

    Google Scholar 

  • Chen AC, Wagner RM (1992) Hemolymph constituents of the stable fly, Stomoxis calcitrans. Comp Biochem Physiol 102A: 133–137

    Google Scholar 

  • Crailsheim K (1985) Distribution of haemolymph in the honeybee (Apis mellifica) in relation to season, age and temperature. J Insect Physiol 31: 707–713

    Google Scholar 

  • Crailsheim K (1991) Interadult feeding of jelly in honeybee colonies (Apis mellifera L). J Comp Physiol B 161: 55–60

    Google Scholar 

  • Crailsheim K (1992) The flow of jelly within a honeybee colony. J Comp Physiol B 162: 681–689

    Google Scholar 

  • Crailsheim K, Leonhard B (1997) Amino acids in honeybee worker haemolymph. Amino Acids 13: 141–153

    Google Scholar 

  • Crailsheim K, Schneider LH, Hrassnigg N, Bühlmann G, Brosch U, Gmeinbauer R, Schöffmann B (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): dependence on individual age and function. J Insect Physiol 38: 409–419

    Google Scholar 

  • Currie RW (1987) The biology and behaviour of drones. Bee World 68: 129–143 Florkin M, Jeuniaux Ch (1974) Hemolymph: composition. In: Rockstein M (ed) The physiology of insecta, 2nd edn. vol 5. Academic Press, New York, pp 255–307

    Google Scholar 

  • Free JB (1957) The food of adult drone honeybees (Apis mellifera). Br J Anim Behav 5: 7–11

    Google Scholar 

  • Free JB, Williams IH (1975) Factors determining the rearing and rejection of drones by the honeybee colony. Anim Behav 23: 650–675

    Google Scholar 

  • Garrett MA, Bradley TJ (1987) Extracellular accumulation of proline, serine and trehalose in the haemolymph of osmoconforming brackish-water mosquitoes. J Exp Biol 129: 231–238

    Google Scholar 

  • Gmeinbauer R, Crailsheim K (1993) Glucose utilisation during flight of honeybee (Apis mellifera) workers, drones and queens. J Insect Physiol 39: 959–967

    Google Scholar 

  • Groot AP (1953) Protein and amino acid requirements of the honeybee (Apis mellifera L.). Physiol Comp Oecol 3: 197–285

    Google Scholar 

  • Koeniger G (1988) Discrimination between different coloured queen models by free flying drones (Apis mellifera L.). Biona Report 6: 35–42

    Google Scholar 

  • Lehnherr B, Lavanchy P, Wille M (1979) Pollensammeln 1978: 5. Eiweiß-und Aminosäuregehalt einiger häufiger Pollenarten. Schweiz Bienenzeitung 10: 482–488

    Google Scholar 

  • Maurizio A (1954) Pollenerndhrung und Lebensvorgänge bei der Honigbiene (Apis mellifica L). Landw Jb Schweiz 68: 115–182

    Google Scholar 

  • Mindt B (1962) Untersuchungen über das Leben der Drohnen, insbesondere Ernährung und Geschlechtsreife. Z Bienenforsch 6: 9–33

    Google Scholar 

  • Nakayama S (1991) Osmotic pressure of haemolymph in the silkworm, Bombyx mori: changes in amino acid and cation concentrations during development. Appl Ent Zool 26: 99–105

    Google Scholar 

  • Pabst MA, Pfeiler G (1994) The sperms of young drones of apis mellifera. Proc of the 13th Int Congr on Electron Microscopy 4a: 689–690

    Google Scholar 

  • Pant R, Agrawal HC (1964) Free amino acids of the haemolymph of some insects. J Insect Physiol 10: 443–446

    Google Scholar 

  • Panzenböck U, Crailsheim K (1997) Glycogen in honeybee queens, workers and drones (Apis mellifera carnica Pollm.). J Insect Physiol 43-2: 155–165

    Google Scholar 

  • Ruttner F (1966) The life and flight activity of drones. Bee World 47: 93–100

    Google Scholar 

  • Ruttner F (1985) Reproductive behaviour in honeybees. In: Hölldobler B, Lindauer M (eds) Experimental behavioral ecology. Fortschritte der Zoologie, vol 31. G Fischer, Stuttgart New York, pp 225–236

    Google Scholar 

  • Sachs L (1972) Statistische Auswertungsmethoden, 3rd edn. Springer, Berlin, Heidelberg New York, pp 230–238

    Google Scholar 

  • Sacktor B, Childress C (1967) Metabolism of proline in insect flight muscle and its significance in stimulating the oxidation of pyruvate. Arch Biochim Biophys 120: 583–588

    Google Scholar 

  • Schneider LHW, Crailsheim K (1994) Die Verdnderungen von Hämolymph-und Flugparametern von Drohnen (Apis mellifera carnica Pollm) bei unterschiedlichen Klimabedingungen. Apidologie 25: 466–467

    Google Scholar 

  • Szolderits MJ, Crailsheim K (1993) A comparison of pollen consumption and digestion in honeybee (Apis mellifera carnica) drones and workers. J Insect Physiol 39/10: 877–881

    Google Scholar 

  • Tsacopoulos M (1995) Metabolite exchanges and signal trafficking between glial cells and photoreceptor- neurons in the honeybee retina. Verh Dtsch Zool Ges 88.2: 53–59

    Google Scholar 

  • Tsacopoulos M, Veuthey AL, Saravelos SG, Perrottet P, Tsoupras G (1994) Glial cells transform glucose to alanine, which fuelsneurones in the honeybee retina. J Neurosci 14: 1339–1351

    Google Scholar 

  • Vallet AM, Coles JA (1993) The perception of small objects by the drone honeybee. J Comp Physiol A 172: 183–188

    Google Scholar 

  • Weiss K (1962) Untersuchungen über die Drohnenerzeugung im Bienenvolk. Archiv für Bienenkunde 39: 1–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonhard, B., Crailsheim, K. Amino acids and osmolarity in honeybee drone haemolymph. Amino Acids 17, 195–205 (1999). https://doi.org/10.1007/BF01361882

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01361882

Keywords

Navigation