Skip to main content
Log in

l-Cysteine metabolism via 3-mercaptopyruvate pathway and sulfate formation in rat liver mitochondria

  • Published:
Amino Acids Aims and scope Submit manuscript

Summary

We have studied the 3-mercaptopyruvate pathway (transamination pathway) ofl-cysteine metabolism in rat liver mitochondria.l-Cysteine and other substrates at 10 mM concentration were incubated with mitochondrial fraction at pH 8.4, and sulfate and thiosulfate were determined by ion chromatography. Whenl-cysteine alone was incubated, sulfate formed was 0.7µmol per mitochondria from one g of liver per 60 min. Addition of 2-oxoglutarate and GSH resulted in more than 3-fold increase in sulfate formation, and thiosulfate was formed besides sulfate. The sum (A + 2B) of sulfate (A) and thiosulfate (B) formed was approximately 7-times that withl-cysteine alone. Incubation with 3-mercaptopyruvate resulted in sulfate and thiosulfate formation, and sulfate was formed with thiosulfate. These reactions were stimulated with glutathione. Sulfate formation froml-cysteinesulfinate and 2-oxoglutarate was not enhanced by glutathione and thiosulfate was not formed. These findings indicate thatl-cysteine was metabolized and sulfate was formed through 3-mercaptopyruvate pathway in mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baxter CF, van Reen R (1958a) Biochim Biophys Acta 28: 567–573

    Google Scholar 

  • Baxter CF, van Reen R (1958b) Biochim Biophys Acta 28: 573–578

    Google Scholar 

  • Baxter CF, van Reen R, Pearson PB, Rosenberg C (1958) Biochim Biophys Acta 27: 584–591

    Google Scholar 

  • Cerletti P (1986) TIBS 11: 369–372

    Google Scholar 

  • Cohen HJ, Betcher-Lange S, Kesskler DL, Rajagopalan KV (1972) J Biol Chem 247: 7759–7766

    Google Scholar 

  • Cooper AJL (1983) Annu Rev Biochem 52: 187–222

    Google Scholar 

  • Crawhall JC (1978) In: Stanbury JB, Wyngaarden JB, Fredrickson DS (eds) The metabolic basis of inherited disease, 4th edn. McGraw-Hill, New York, pp 504–513

    Google Scholar 

  • Eriksson B, Eriksson SA (1967) Acta Chem Scand 21: 1304–1312

    Google Scholar 

  • Finkelstein JD, Kyle WE, Harris BJ, Martin JJ (1982) J Nutr 112: 1011–1018

    Google Scholar 

  • Flohé L, Schlegel W (1971) Hoppe-Seyler's Z Physiol Chem 352: 1401–1410

    Google Scholar 

  • Gaitonde MK (1967) Biochem J 104: 627–633

    Google Scholar 

  • Griffith OW (1987) Methods Enzymol 143: 366–376

    Google Scholar 

  • Griffith OW, Meister A (1985) Proc Natl Acad Sci USA 82: 4668–4672

    Google Scholar 

  • Hannestad U, Mårtensson J, Sjödahl R, Sörbo B (1981) Biochem Med 26: 106–114

    Google Scholar 

  • Hosaki Y, Nishina H, Ubuka T (1985) Acta Med Okayama 39: 425–429

    Google Scholar 

  • Hylin JW (1962) Methods Enzymol 5: 987–990

    Google Scholar 

  • Jackson JF, Lindahl-Kiessling K (1963) Science 141: 424–426

    Google Scholar 

  • Jacobs EE, Jacob M, Sanadi DR, Bradley LB (1956) J Biol Chem 223: 147–156

    Google Scholar 

  • Jocelyn PC (1972) Biochemistry of the SH group. Academic Press, London, pp 170–173

    Google Scholar 

  • Koj A, Frendo J, Janik Z (1967) Biochem J 103: 791–795

    Google Scholar 

  • Koj A, Frendo J, Wojtczak 1 (1975) FEBS Lett 57: 42–46

    Google Scholar 

  • Kun E (1957) Biochim Biophys Acta 25: 135–137

    Google Scholar 

  • Meister A, Fraser PE, Tice SV (1954) J Biol Chem 206: 561–575

    Google Scholar 

  • Ohta J, Ubuka T (1989) Acta Med Okayama 43: 89–95

    Google Scholar 

  • Palmieri F, Stipani I, Iacobazzi V (1979) Biochim Biophys Acta 555: 531–546

    Google Scholar 

  • Shie VE, Carney MM, Fitzgerald L, Monedjikova V (1977) Pediatr Res: 464

  • Singer TP (1975) In: Greenber DM (ed) Metabolic pathways, 3rd edn, vol 7. Academic Press, New York, pp 535–546

    Google Scholar 

  • Sörbo B (1957) Biochim Biophys Acta 24: 324–329

    Google Scholar 

  • Sörbo B (1958) Biochim Biophys Acta 27: 324–329

    Google Scholar 

  • Sörbo B (1962) Acta Chem Scand 16: 243–245

    Google Scholar 

  • Sörbo B (1964) Acta Chem Scand 18: 821–823

    Google Scholar 

  • Sörbo B (1975) In: Greenberg DM (ed) Metabolic pathways, 3rd edn, vol 7. Academic Press, New York, pp 433–456

    Google Scholar 

  • Stipanuk MH (1986) Annu Rev Nutr 6: 179–209

    Google Scholar 

  • Ubuka T, Akagi R, Kiguchi S, Taniguchi M, Mikami H (1983) Biochem Int 6: 291–296

    Google Scholar 

  • Ubuka T, Kinuta M, Akagi R, Kiguchi S, Azumi M (1982) Anal Biochem 126: 273–277

    Google Scholar 

  • Ubuka T, Kobayashi K, Yao K, Kodama H, Fujii K, Hirayama K, Kuwaki T, Mizuhara S (1968) Biochim Biophys Acta 158: 493–495

    Google Scholar 

  • Ubuka T, Umemura S, Yuasa S, Kinuta M, Watanabe K (1978) Physiol Chem Phys 10: 483–500

    Google Scholar 

  • Ubuka T, Yuasa S, Ishimoto Y, Shimomura M (1977) Physiol Chem Phys 9: 241–246

    Google Scholar 

  • Ubuka T, Yuasa S, Ohta J, Masuoka N, Yao K, Kinuta M (1990) Acta Med Okayama 44: 55–64

    Google Scholar 

  • Wahlländer A, Soboll S, Sies H (1979) FEBS Lett 97: 138–140

    Google Scholar 

  • Wainer A (1964) Biochem Biophys Res Commun 16: 141–144

    Google Scholar 

  • Wainer A (1967) Biochim Biophys Acta 141: 466–472

    Google Scholar 

  • Yamaguchi K, Hosokawa Y (1987) Methods Enzymol 143: 395–403

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ubuka, T., Ohta, J., Yao, W.B. et al. l-Cysteine metabolism via 3-mercaptopyruvate pathway and sulfate formation in rat liver mitochondria. Amino Acids 2, 143–155 (1992). https://doi.org/10.1007/BF00806085

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00806085

Keywords

Navigation