Skip to main content
Log in

Wechselwirkungen zwischen Na+-, Ca2+- und K+-Einflüssen auf Dynamik und Kontraktilität des Myokards

  • Published:
Archiv für Kreislaufforschung Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Abbott, B. C. andW. F. H. M. Mommaerts, A study of inotropic mechanisms in the papillary muscle preparation. J. Gen. Physiol.42, 533 (1959).

    Google Scholar 

  • Antoni, H., G. Engstfeld undA. Fleckenstein, Inotrope Effekte von ATP und Adrenalin am hypodynamen Froschmyokard nach elektromechanischer Entkoppelung durch Ca++-Entzug. Pflüger's Arch. ges. Physiol.272, 87 (1961a).

    Google Scholar 

  • Dieselben, Über elektromechanische Entkoppelungs-Effekte von Magnesium am Froschmyokard und die restitutiven Wirkungen von Adrenalin bzw. ATP. Pflüger's Arch. ges. Physiol.272, 88 (1961b).

    Google Scholar 

  • Antoni, H., G. Engstfeld, A. Fleckenstein undH. D. Klein, Die Mg++-Lähmung des isolierten Froschmyokards. Ein Beitrag zur Frage der Beziehung zwischen Aktionspotential und Kontraktion. Pflüger's Arch. ges. Physiol.275, 507 (1962).

    Google Scholar 

  • E. Bozler, Control of the contractile mechanism of smooth and cardiac muscle. Amer. J. Physiol.215, 509 (1968).

    Google Scholar 

  • Brady, A. J., Time and displacement dependence of cardiac contractility: problems in defining the active state and force-velocity relations. Fed. Proc.24, 1410 (1965).

    Google Scholar 

  • Briggs, A. H. andW. C. Holland, Effect of temperature and ouabain on resting tension and Ca45 entry in rabbit atria. Amer. J. Physiol.202, 641 (1962).

    Google Scholar 

  • Buccino, R. A., E. H. Sonnenblick, J. F. Spann, W. F. Friedman, andE. Braunwald, Interactions between changes in the intensity and duration of the active state in the characterization of inotropic stimuli on heart muscle. Circul. Res.21, 857 (1967).

    Google Scholar 

  • Carsten, M. E., The cardiac calcium pump. Proc. Natl. Acad. Sci. (Wash.)52, 1456 (1964).

    Google Scholar 

  • Coleman, H. N., Role of acetylstrophantidin in augmenting myocardial oxygen consumption. Circul. Res.21, 487 (1967).

    Google Scholar 

  • Cohn, K., S. Pirages, andD. C. Harrison, The effects of potassium on the positive inotropic action of ouabain. Amer. Heart J.73, 516 (1967).

    Google Scholar 

  • Conn, H. L. andJ. C. Wood, Sodium exchange and distribution in the isolated heart of the normal dog. Amer. J. Physiol.197, 631 (1959).

    Google Scholar 

  • Covell, J. W., J. Ross, E. H. Sonnenblick, andE. Braunwald, Comparison of the force-velocity relation and the ventricular function curve as measures of the contractile state of the intact heart. Circul. Res.19, 364 (1966).

    Google Scholar 

  • Dudel, J., K. Peper, R. Rüdel, andW. Trautwein, Excitatory membrane current in heart muscle. (Purkinje fibers.) Pflüger's Arch. ges. Physiol.292, 255 (1966).

    Google Scholar 

  • Ebashi, S. andF. Lipmann, Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J. Cell. Biol.14, 389 (1962).

    Google Scholar 

  • Fairhurst, A., Calcium accumulation by heavy sceletal muscle particles. Fed. Proc.26, 397 (1967).

    Google Scholar 

  • Fanburg, B., R. M. Finkel, andA. Martonosi, The role of calcium in the mechanism of relaxation of cardiac muscle. J. Biol. Chem.239, 2298 (1964).

    Google Scholar 

  • Fleckenstein, A., Metabolic aspects of the excitation-contraction coupling. Symposium on the cellular function of membrane transport. 16th annual meeting of the society of general physiologists. (New Jersey 1963).

  • DerselbeFleckenstein, A., Die Bedeutung der elektromechanischen Koppelung in der Herzpathologie. In: Herzinsuffizienz. Pathophysiologie und Klinik. S. 85. (Stuttgart 1967.)

  • Fleckenstein, A. undR. Kaufmann, Über den Einfluß der extrazellulären K+-Konzentration auf das mechanische Verhalten des isolierten Warmblüter-Myokards. Pflüger's Arch. ges. Physiol.289, R 17 (1966).

    Google Scholar 

  • Govier, W. C. andW. C. Holland, The relationship between atrial contractions and the effect of ouabain on contractile strength and calcium exchange in rabbit atria. J. Pharmacol. exp. Ther.148, 284 (1965).

    Google Scholar 

  • Hartmann, D. undM. Reiter, Elektromechanische Kopplung durch Strontium. Arch. exp. Path. Pharmak.251, 151 (1965).

    Google Scholar 

  • Hasselbach, W. andM. Makinose, Die Calciumpumpe der “Erschlaffungsgrana” des Muskels und ihre Abhängigkeit von der ATP-Spaltung. Biochem. Z.333, 518 (1961).

    Google Scholar 

  • Hasselbach, W., ATP-Spaltung und aktiver Ionentransport. Arzneimittel-Forschg.12, 877 (1962).

    Google Scholar 

  • Hill, A. V., The heat of shortening and the dynamic constants of muscle. Proc. roy. Soc. (B)126, 136 (1938).

    Google Scholar 

  • Holland, W. C. andA. A. Sekul, Effect of ouabain on Ca45 and Cl36 exchange in isolated rabbit atria. Amer. J. Physiol.197, 757 (1959).

    Google Scholar 

  • Huxley, A. F. andR. E. Taylor, Local activation of striated muscle fibers. J. Physiol.44, 425 (1958).

    Google Scholar 

  • Huxley, A. F., Local activation of muscle. Ann. N. Y. Acad. Sci.81, 446 (1959).

    Google Scholar 

  • Kaufmann, R. undA. Fleckenstein, Die Bedeutung der Aktionspotential-Dauer und der Ca++-Ionen beim Zustandekommen der positiv-inotropen Kältewirkungen am Warmblüter-Myokard. Pflüger's Arch. ges. Physol.285, 1 (1965).

    Google Scholar 

  • Klaus, W., Zur Wirkung von Herzglykosiden auf den Elektrolytstoffwechsel. In: Herzinsuffizienz, Pathophysiologic und Klinik. S. 546. (Stuttgart 1967.)

  • Kleinfeld, M. andE. Stein, Action of divalent cations on membrane potentials and contractility in rat atrium. Amer. J. Physiol.215, 593 (1968).

    Google Scholar 

  • Lahrtz, H. G. undP. A. van Zwieten, Ca++-Stoffwechsel in isolierter Herzmuskulatur bei akuter Stoffwechselhemmung. Arch. exp. Path. Pharmak.255, 35 (1966).

    Google Scholar 

  • Langer, G. A. andA. J. Brady, Calcium flux in the mammalian ventricular myocardium. J. gen. Physiol.46, 703 (1963).

    Google Scholar 

  • Langer, G. A., Sodium exchange in dog ventricular muscle. J. gen. Physiol.50, 1221 (1967).

    Google Scholar 

  • Derselbe, Ion fluxes in cardiac excitation and contraction and their relation to myocardial contractility. Physiol. Rev.48, 708 (1968).

    Google Scholar 

  • Lee, K. S., Present status of cardiac relaxing factor. Fed. Proc.24, 1432 (1965).

    Google Scholar 

  • Lee, K. S., H. Ladinsky, S. J. Choi, andJ. Kasuya, Studies on the in vitro interaction of electrical stimulation and Ca++ movement in sarcoplasmic reticulum. J. gen. Physiol.49, 689 (1966).

    Google Scholar 

  • Lee, Y. C. P., H. C. Richman, andM. B. Visscher, Extracellular calcium ion activity and reversible cardiac arrest. Amer. J. Physiol.210, 493 (1966).

    Google Scholar 

  • Levine, H. J., S. A. Forwand, K. M. Mc Intyre, andE. Schechter, Effect of afterolad on force-velocity relations and contractile element work in the intact dog. Circul. Res.18, 729 (1966).

    Google Scholar 

  • Locke, F. S. andO. Rosenhelm, Contributions to the physiology of the isolated heart. The consumption of dextrose by mammalian cardiac muscle. J. Physiol.36, 205 (1907).

    Google Scholar 

  • Loewi, O., Über den Zusammenhang zwischen Digitalis- und Calciumwirkung. Arch. exp. Path. Pharmak.82, 131 (1917).

    Google Scholar 

  • Lüllmann, H. andW. C. Holland, Influence of ouabain on an exchangeable calcium fraction, contractile force and resting tension of guinea pig atria. J. Pharm. exp. Ther.137, 186 (1962).

    Google Scholar 

  • Lüttgau, H. C. andR. Niedergerke, The antagonism between Ca and Na ions on the frogs heart. J. Physiol.143, 486 (1958).

    Google Scholar 

  • Müller, P., Ouabain effects on cardiac contraction, action potential, and cellular potassium. Circul. Res.17, 46 (1965).

    Google Scholar 

  • Nelson, D. A. andE. S. Benson, On the structural continuities of the transverse tubular system of rabbit and human myocardial cells. J. Cell Biol.16, 297 (1963).

    Google Scholar 

  • Niedergerke, R., Calcium and activation of contraction. Experientia15, 128 (1959).

    Google Scholar 

  • Otsuka, M., F. Ebashi, andS. Imai, Cardiac myosin and calcium ions. J. Biochem. (Tokyo)55, 192 (1964).

    Google Scholar 

  • Palmer, R. F. andV. A. Posey, Ion effects on calcium accumulation by cardiac sarcoplasmic reticulum. J. gen. Physiol.50, 2085 (1967).

    Google Scholar 

  • Peachy, L. D., Transverse tubules in excitation-contraction coupling. Fed. Proc.24, 1124 (1964).

    Google Scholar 

  • Podolsky, R. J., Mechanochemical basis of muscular contraction. Fed. Proc.21, 964 (1962).

    Google Scholar 

  • Portzehl, H., P. C. Caldwell, andJ. C. Rüegg, Die Einschaltung und die Ausschaltung der Kontraktion durch den Calcium-Ionen-Spiegel im Innern der lebenden Muskelfaser. Pflüger's Arch. ges. Physiol.278, 9 (1963).

    Google Scholar 

  • Portzehl, H., Die intracelluläre Regulation der Aktivität der contractilen Strukturen des Skeletmuskels. Verh. Dtsch. Ges. Inn. Med.71, 125 (München 1965).

    Google Scholar 

  • Portius, H. J. andK. Repke, Versuche zur Charakterisierung einer Transport-ATPase für Na und K in der Zellmembran des Herzmuskels. Arch. exp. Path. Pharmak.245, 62 (1963).

    Google Scholar 

  • Portius, H. J. undK. R. H. Repke, Darstellung des Na++K+-aktivierten, Mg++-abhängigen Adenosintriphosphat Phosphohydrolase-Systems des Herzmuskels durch Isolierung der Zellmembran. Acta biol. med. german.19, 879 (1967).

    Google Scholar 

  • Prignitz, R., Der Einfluß von Adrenalin auf das Verhalten des zellulären Calciums während der K-Depolarisation des Herzmuskels von Meerschweinchen. Experientia24, 913 (1968).

    Google Scholar 

  • Reiter, M., Über die verschiedene Temperaturabhängigkeit der Wirkung erhöhter Ca++- und verringerter Na+-Konzentrationen auf die Kontraktionskraft des Rattenherzens. Arch. exp. Path. Pharmak.241, 171 (1961).

    Google Scholar 

  • Derselbe, Die Beziehung von Calcium und Natrium zur inotropen Glykosidwirkung. Arch. exp. Path. Pharmak.245, 487 (1963).

    Google Scholar 

  • DerselbeReiter, M., Electrolytes and myocardial contractility. Pharmacology of cardiac function. S. 25. (Oxford 1964.)

  • Derselbe, Der Einfluß der Natriumionen auf die Beziehung zwischen Frequenz und Kraft der Kontraktion des isolierten Meerschweinchenmyokards. Arch. exp. Path. Pharmak.254, 261 (1966).

    Google Scholar 

  • Remington, J. W., Introduction to muscle mechanics, with a glossary of terms. Fed. Proc.21, 954 (1962).

    Google Scholar 

  • Retzius, G., Muskelfibrille und Sarkoplasma. Biol. Untersuch.1, 51 (1890).

    Google Scholar 

  • Reuter, H. andN. Seitz, The ionic dependence of calcium efflux from guinea pig auricles. Arch. exp. Path. Pharmak.259, 190 (1968).

    Google Scholar 

  • Ringer, S., A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol.4, 29 (1883).

    Google Scholar 

  • Ross, J., J. W. Covell, E. H. Sonnenblick, andE. Braunwald, Contractile state of the heart characterized by force-velocity relations in variably afterloaded and isovolumic beats. Circul. Res.18, 141 (1966).

    Google Scholar 

  • Rothberger, C. J. undL. Zwillinger, Über die Wirkung von Magnesium auf die Strophanthin- und die Barium-Tachykardie. Arch. exp. Path. Pharmak.181, 301 (1936).

    Google Scholar 

  • Ruska, H., G. A. Edwards, andR. Caesar, A concept of intracellular transmission of excitation by means of endoplasmic reticulum. Experientia14, 117 (1958).

    Google Scholar 

  • Sarnoff, S. J., J. P. Gilmore, R. H. Mc Donald, W. M. Daggett, M. L. Weisfeldt, andP. B. Mansfield, Relationship between myocardial K+ balance, O2-consumption and contractility. Amer. J. Physiol.211, 361 (1966).

    Google Scholar 

  • Scales, B. andD. A. D. Mc Intosh, Effects of propranolol and its optical isomers on the radiocalcium uptake and the adenosine triphosphatases of skeletal and cardiac sarcoplasmic reticulum fractions (SRF). J. Pharmacol. exp. Ther.160, 261 (1968a).

    Google Scholar 

  • Dicselben, Studies on the radiocalcium uptake and the adenosine triphosphatases of skeletal and cardiac sarcoplasmic reticulum fractions (SRF). J. Pharmacol. exp. Ther.160, 249 (1968b).

    Google Scholar 

  • Sekul, A. A. andW. C. Holland, Effects of ouabain on Ca45 entry in quiescent and electrically driven rabbit atria. Amer. J. Physiol.199, 457 (1960).

    Google Scholar 

  • Smith, P. K., A. W. Winkler, andH. E. Hoff, Electrocardiographic changes and concentration of magnesium in serum following intravenous injection of magnesium salts. Amer. J. Physiol.126 720 (1939).

    Google Scholar 

  • Sonnenblick, E. H. andZ. T. McCallium, Active state, force-velocity relationships and inotropic mechanisms in mammalian papillary muscle. Fed. Proc.20, 126 (1961).

    Google Scholar 

  • Sonnenblick, E. H., Implications of muscle mechanics in the heart. Fed. Proc.21, 975 (1962).

    Google Scholar 

  • Derselbe, Determinals of active state in heart muscle: force, velocity, instantaneous muscle length, time. Fed. Proc.24, 1396 (1965).

    Google Scholar 

  • Stam, A. C. andC. R. Honig, Preparation and characterization of a cardiac relaxing substance. Biochim. Biophys. Acta60, 259 (1964).

    Google Scholar 

  • Stanley, E. J. andM. Reiter, The antagonistic effects of sodium and calcium on the action potential of guinea pig papillary muscle. Arch. exp. Path. Pharmak.252, 159 (1965).

    Google Scholar 

  • Stickel, F. J. undM. Reiter, Zum Mechanismus der positiv inotropen Wirkung der Kalium-Verminderung am Meerschweinchenpapillarmuskel. Arch. exp. Path. Pharmak.251, 150 (1965).

    Google Scholar 

  • Tuttle, R. S. andA. Farah, The effect of ouabain on the frequency-force relation and on post-stimulation potentiation in isolated atrial and ventricular muscle. J. Pharmacol. exp. Ther.135, 142 (1962).

    Google Scholar 

  • A. Weber, andR. Herz, The binding of calcium to actomyosin systems in relation to their biological activity. J. biol. Chem.238, 599 (1963).

    Google Scholar 

  • Weidmann, S., Effect of increasing the calcium-concentration during a single heart beat. Experientia15, 128 (1959).

    Google Scholar 

  • Wilbrandt, W. undH. Koller, Die Calciumwirkung am Froschherzen als Funktion des Ionengleichgewichtes zwischen Zellmembran und Umgebung. Helv. Physiol. Pharmacol. Acta6, 208 (1948).

    Google Scholar 

  • Wilde, W., The pulsatile nature of the release of potassium from heart muscle during the systole. Ann. N. Y. Acad. Sci.65, 693 (1957).

    Google Scholar 

  • Winegrad, S. andA. M. Shanes, Calcium flux and contractility in guinea pig atria. J. gen. Physiol.45, 371 (1962).

    Google Scholar 

  • Wood, J. C. andH. L. Conn, Potassium transfer kinetics in the isolated dog heart. Influence of contraction rate, ventricular fibrillation, high serum potassium and acetylcholine. Amer. J. Physiol.195, 451 (1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit 11 Abbildungen in 13 Einzeldarstellungen und 1 Tabelle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohlhardt, M., Wirth, K. & Dudeck, J. Wechselwirkungen zwischen Na+-, Ca2+- und K+-Einflüssen auf Dynamik und Kontraktilität des Myokards. Archiv für Kreislaufforschung 59, 261–286 (1969). https://doi.org/10.1007/BF02120046

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02120046

Navigation