Skip to main content
Log in

Platelet activation in normo- and hyperlipoproteinemias

  • Editorial
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

In the last few years it became obvious that platelets are involved in the development of atherosclerotic diseases. This involvement of platelets has been taken into account in the “response to injury” hypothesis of atherosclerosis. The hypothesis is based on the assumption that atherosclerotic lesions result from endothelial injury, followed by the interaction of, vessel wall constituents with lipoproteins, macrophages, and platelets.

In the first part of this review, general aspects of platelet activation are summarized and the pathways of platelet aggregation as well as their involvement in blood coagulation are discussed.

The second part of this paper describes the influence of cholesterol, lipoproteins, and apolipoproteins upon the activation and metabolic behavior of, platelets. Physiological and pathophysiological processes particularly occurring in different types of hyperlipoproteinemias and atherosclerotic disorders are discussed in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agranoff BW, Murthy P, Seguin EB (1983) Thrombin-induced phosphodiesterasic cleavage of phosphatidylinositol biphosphate in human platelets. J Biol Chem 258:2076–2078

    Google Scholar 

  2. Ahmed AA, Holub BJ (1984) Alteration and recovery of bleeding times, platelet aggregation and fatty acid composition of individual phospholipids in platelets of human subjects receiving a supplement of cod-liver oil. Lipids 19:617–624

    PubMed  Google Scholar 

  3. Albert DH, Snyder F (1983) Biosynthesis of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) from 1-alkyl-2-acyl-sn-glycero-3-phosphocholine by rat alveolar macrophages. J Biol Chem 258:97–102

    PubMed  Google Scholar 

  4. Allen RD, Zacharski LR, Widirstky ST, Rosenstein R, Zaitlin LM, Burgess DR (1979) Transformation and motility of human platelets. J Cell Biol 83:126–143

    PubMed  Google Scholar 

  5. Antoniades HN, Scher CD, Stiles CD (1979). Purification of human PDGF. Proc. Natl Acad Sci USA 76:1809–1813

    PubMed  Google Scholar 

  6. Antoniades HN (1984) Platelet-derived growth factor and malignant transformation. Biochem Pharmacol 33:2823–2828

    PubMed  Google Scholar 

  7. Aviram M, Brook JG (1981) Lipoprotein platelet interaction: The effect on platelet cholesterol content and platelet function. Thromb Haemostas 46:612

    Google Scholar 

  8. Aviram M, Brook JG, Lees AM, Lees RS (1981) Low density lipoprotein binding to human platelets: role of charge and specific amino acids. Biochem Biophys Res Commun 99:308–318

    PubMed  Google Scholar 

  9. Aviram M, Brook JG (1982) The effect of human plasma on platelet function in familial hypercholesterolaemia. Thromb Res 26:101–109

    PubMed  Google Scholar 

  10. Aviram M, Brook JG (1983) Characterization of the effect of plasma lipoproteins on platelet function in vitro. Haemostasis 13:344–350

    PubMed  Google Scholar 

  11. Aviram M, Brook JG (1983) The effect of blood constituents on platelet function: role of blood cells and plasma lipoproteins. Artery 11:297–305

    PubMed  Google Scholar 

  12. Aviram M, Brook JG (1983) Platelet interaction with high and low density lipoproteins. Atherosclerosis 46:259–268

    PubMed  Google Scholar 

  13. Aviram M, Brook JG (1984) Selective release from platelet granules induced by plasma lipoproteins. Biochem Med 32:30–33

    PubMed  Google Scholar 

  14. Aviram M, Winterstein G, Brook JG (1985) Differential effect of platelet inhibitors in normal and in hypercholesterinaemic subjects. Br J Pharmacol 19:715–719

    Google Scholar 

  15. Aviram M, Brook JG (1985) Plasma lipoprotein pattern and decreased platelet function in type V hyperlipoproteinemia. Isr J Med Sci 21:898–904

    PubMed  Google Scholar 

  16. Aviram M, Sirtori CR, Colli S, Maderna P, Morazzoni G, Tremoli E (1985) Plasma lipoproteins affect platelet malondialdehyde and thromboxane B2 production. Biochem Med 34:29–36

    PubMed  Google Scholar 

  17. Aviram M, Sechter Y, Brook JG (1985) Chylomicron-like particles in severe hypertriglyceridemia. Lipids 20:211–215

    PubMed  Google Scholar 

  18. Aviram M, Deckelbaum RJ, Brook JG (1985) Platelet function in a case with betalipoproteinemia. Atherosclerosis 57:313–323

    PubMed  Google Scholar 

  19. Baker RK, Joist HJ, Kay DM, Schonfeld G (1976) Increased platelet function in hyperlipoproteinaemia? Circulation 54:116

    Google Scholar 

  20. Bangham AD (1961) A correlation between surface charge and coagulant action of phospholipids. Nature 192:1197

    PubMed  Google Scholar 

  21. Baruch Y, Brook JG, Eidelman S, Aviram M (1984) Increased concentration of high density lipoprotein in plasma and decreased platelet aggregation in primary biliary cirrhosis. Atherosclerosis 53:151–162

    PubMed  Google Scholar 

  22. Bell RL, Kennerly DA, Stanford N, Majerus PW (1979) Diglyceride-lipase: A pathway for arachidonate release from human platelets. Proc Natl Acad Sci USA 76:3238–3241

    PubMed  Google Scholar 

  23. Bell RL, Majerus PW (1980) Thrombin induced hydrolysis of PI in human platelets. J Biol Chem 255:1790–1792

    PubMed  Google Scholar 

  24. Benditt EB, Benditt JM (1973) Evidence for a monoclonal origin of human atherosclerotic plaques. Proc Natl Acad Sci USA 70:1753–1756

    PubMed  Google Scholar 

  25. Bennett JS, Colman RF, Colman RW (1978) Identification of adenosine nucleotide binding proteins in human platelet membrane by affinity labeling with 5′-p-fluorosulfonyl-benzoyl adenosine. J Biol Chem 253:7346–7354

    PubMed  Google Scholar 

  26. Benveniste J, Tence M, Vareen P, Bidault J, Boullel C, Polonsky J (1979) Semi-synthèse et structure proposée du facteur activant les plaquettes (PAF). PAF acether, un alkylether analogue de la lysophosphatidylcholine. C R Acad Sci Paris D289:1037–1040

    Google Scholar 

  27. Benveniste J, Vargaftig BB (1983) Platelet-activating factor: an ether lipid with biological activity. In: Mangold HK, Paltauf F (eds) Ether lipids. Academic Press, 355–376.

  28. Bevers EM, Comfurius P, Van Rijn LML, Hemker CH, Zwaal RFA (1982) Generation of prothrombin converting activity and the exposure of phosphatidylserine at the outer surface of platelets. Eur J Biochem 122:429–436

    PubMed  Google Scholar 

  29. Bevers EM, Comfurius P, Zwaal RFA (1983) Changes in membrane phospholipid distribution during platelet activation. BBA 736:57–66

    PubMed  Google Scholar 

  30. Bevers EM, Rosing J, Zwaal RFA (1986) Platelets and coagulation. In: Gordon JL (ed) Platelets in physiology and pathology. Elsevier/North Holland (in press)

    Google Scholar 

  31. Bevers EM, Nimpf J, Till U, Wurm H, Kostner GM, Zwaal RFA (1986) β2-Glycoprotein-I (apo-H) inhibits the prothrombinase activity of human platelets. BBA (submitted)

  32. Billah MM, Lapetina EG (1982) Formation of lysophosphatidylinositol in platelets stimulated with thrombin or ionophore A23187. J Biol Chem 257:5196–5200

    PubMed  Google Scholar 

  33. Boberg M, Croon LB, Gustafsson IB, Versby B (1985) Platelet fatty acid composition in relation to fatty acid composition in plasma and to serum lipoprotein lipids in healthy subjects with special reference to the linoleic acid pathway. Clin Sci 68:581–587

    PubMed  Google Scholar 

  34. Born GVR (1962) Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194:927–929

    PubMed  Google Scholar 

  35. Boyle-Kay MM, Fuldenberg HH (1973) Inhibition on reversal of platelet activation by cytochalasin B or colcemid. Nature 244:288–289

    Google Scholar 

  36. Broekman MJ, Handin RI, Cohen P (1975) Distribution of fibrinogen, and platelet factor IV and XIII in subcellular fractions of human platelets. Br J Haematol 31:51–55

    PubMed  Google Scholar 

  37. Brown MS, Kovanen PT, Goldstein JL (1981) Regulation of plasma cholesterol by lipoprotein receptors. Science 212:628–635

    PubMed  Google Scholar 

  38. Brox HJ, Killie JE, Gunner S, Nordoy A (1981) The effect of cod liver oil and coin oil on platelets and vessel wall in man. Thromb Haemostas 46:604–611

    Google Scholar 

  39. Bruckdorfer KR, Buckley S, Hassall DG (1984) The effect of low-density lipoprotein on the synthesis of cyclic nucleotides induced by prostacyclin in isolated platelets. Biochem J 223:189–196

    PubMed  Google Scholar 

  40. Caen JP, Nurden AT, Jeanneau C, Michel H, Tobelem G, Levy-Toledano S, Sultan Y, Valensi F, Bernard J (1976) Bernard-Soulier syndrome: A new platelet glycoprotein abnormality. In relationship with platelet adhesion to subendothelium and with the factor VIII von Willebrand protein. J Lab Clin Med 87:586–596

    PubMed  Google Scholar 

  41. Cardinal DC, Flower RJ (1980) The electronic aggregometer: A novel device of assessing platelet behavior in blood. J Pharmacol Methods 3:135–158

    PubMed  Google Scholar 

  42. Carey F, Menashi S, Crawford N (1982) Localization of cyclo-oxygenase and thromboxane synthetase in human platelet intracellular membranes. Biochem J 204:847–851

    PubMed  Google Scholar 

  43. Carvalho ACA, Colman RW, Lees RS (1974) Platelet function in hyperlipoproteinemia. New Engl J Med 290:434–438

    PubMed  Google Scholar 

  44. Carvalho ACA, Colman RW, Lees RS (1974) Clofibrate reversal of platelet hypersensitivity in hyperbetalipoproteinemia. Circulation 50:570–574

    PubMed  Google Scholar 

  45. Cazenave JP, Benveniste J, Mustard JF (1979) Aggregation of rabbit platelets by platelet activating factor is independent of the release reaction and the arachidonate pathway and inhibited by membrane-active drugs. Lab Invest 41:275–285

    PubMed  Google Scholar 

  46. Chap HJ, Zwaal RFA, Van Deenen LLM (1977) Action of highly purified phospholipases on blood platelets. Evidence for an asymetric distribution of phospholipids in the surface membrane. BBA 467:146–164

    PubMed  Google Scholar 

  47. Chesney CM, Pifer DD, Byers LW, Muirhed EE (1982) Effect of platelet-activating factor (PAF) on human platelets. Blood 59:582–585

    PubMed  Google Scholar 

  48. Chignard M, Le Couedic JP, Tence M, Vargaftig BB, Benveniste J (1979) The role of platelet-activating factor in platelet aggregation. Nature 279:799–800

    PubMed  Google Scholar 

  49. Chignard M, Le Couedic JP, Vargaftig BB, Benveniste J (1980) Platelet-activating factor (PAF-acether) secretion from platelets: Effect of aggregating agents. Br J Haematol 46:455–464

    PubMed  Google Scholar 

  50. Colli S, Lombrosa M, Maderna P, Tremoli E, Nicosia S (1983) Effects of PGI2 on platelet aggregation and adenylate cyclase activity in human type IIa hypercholesterolemia. Biochem Pharmacol 32:1989–1993

    PubMed  Google Scholar 

  51. Colli S, Maderna P, Tremoli E, Baraldi A, Rovati GE, Gianfranceschi G, Nicosia S (1985) Prostacyclin-lipoprotein interaction. Studies on human platelet aggregation and adenylate cyclase. Biochem Pharmacol 34:2451–2457

    PubMed  Google Scholar 

  52. Colman RW, Figures WR (1984) Characteristics of an ADP receptor mediating platelet activation. Molec Cell Biochem 59:101–111

    PubMed  Google Scholar 

  53. Culp BR, Titus BG, Lands LEM (1979) Inhibition of prostaglandin biosynthesis by eicosapentaenoic acid. Prostagland Med 3:269–278

    Google Scholar 

  54. Curtiss LK, Plow EF (1984) Interaction of plasma lipoproteins with human platelets. Blood 64:365–374

    PubMed  Google Scholar 

  55. Demopoulos CA, Pinckard RN, Hanahan DJ (1979) Platelet activating factor: evidence for 1-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid). J Biol Chem 254:9355–9358

    PubMed  Google Scholar 

  56. Deranleau DA, Dubler D, Rothen C, Lüscher EF (1982) Transient kinetics of the rapid shape change of unstirred human blood platelets stimulated with ADP. Proc Natl Acad Sci USA 79:7297–7301

    PubMed  Google Scholar 

  57. Derksen A, Cohen P (1975) Extensive incorporation of (2-14C) mevalonic acid into cholesterol precursors by human platelets in vitro. J Biol Chem 248:7396–7403

    Google Scholar 

  58. Deuel TF, Senior RM, Chang D, Griffin GL, Heinrikson RL (1981) Platelet factor 4 is chemotactic for neutrophiles and monocytes. Proc Natl Acad Sci USA 78:4584–4587

    PubMed  Google Scholar 

  59. Deuel TF, Huang FS (1984) Platelet derived growth factor: Structure, function, and roles in normal and transformed cells. J Biol Chem 74:669–676

    Google Scholar 

  60. v. Dieijen G, Tans G, Rosing J, Hemker HC (1981) The role of phospholipids and factor VIIIa in the activation of bovine factor X. J Biol Chem 256:3433–3442

    PubMed  Google Scholar 

  61. Dubler D, Daranleau DA, Lüscher EF (1983) Optimal efficiency of human platelet shape change. Haemostas 13:341–343

    Google Scholar 

  62. Dyerberg J, Bang HO, Stoffersen E, Moncada S, Vane JR (1978) Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis. Lancet i:117–119

    Google Scholar 

  63. Dyerberg J, Bang HO (1979) Lipid metabolism, atherogenesis and haemostasis in Eskimos: the role of the prostaglandin-3 family. Haemostas 8:227–233

    Google Scholar 

  64. Egan RW, Gale PH, Kuehl FA (1979) Reduction of hydroperoxides in the prostaglandin biosynthetic pathway by a microsomal peroxidase. J. Biol Chem 254:3295–3302

    PubMed  Google Scholar 

  65. Ek B, Heldin CH (1982) Characterization of a tyrosine-specific kinase activity in human fibroblast membrane stimulated by PDGF. J. Biol Chem 257:10486–10492

    PubMed  Google Scholar 

  66. Feinman RD, Lubowsky J, Caro LF, Zabinski MP (1977) The lumi-aggregometer: A new instrument for simultaneous measurement of secretion and aggregation by platelets. J Lab Clin Med 90:125–131

    PubMed  Google Scholar 

  67. Figures WR, Niewiarowski S, Morinelli TA, Colman RF, Colman RW (1981) Affinity labeling of human platelet membrane protein with 5′-p-fluorosulfonylbenzoyl adenosine. J Biol Chem 256:7789–7795

    PubMed  Google Scholar 

  68. Fischer S, Weber PC (1984) Prostaglandin I3 is formed in vivo in man after dietary eicosapentaenoic acid. Nature 307:165–168

    PubMed  Google Scholar 

  69. Fuijmura K, Phillips DR (1983) Calcium cation regulation of glycoprotein IIb-IIIa complex formation in platelet plasma membrane. J Biol Chem 258:10247–52

    PubMed  Google Scholar 

  70. Galli C, Tremoli E, Giani E, Maderna P, Gianfranceschi G, Sirtori CR (1985) Oral polyunsaturated phosphatidylcholine reduces platelet lipid and cholesterol contents in healthy volunteers. Lipids 20:561–566

    PubMed  Google Scholar 

  71. Galloway JH, Cartwright IJ, Woodcock BE, Greaves M, Russell GG, Preston FE (1985) Effects of dietary fish oil supplementation on the fatty acid composition of the human platelet membrane: demonstration of selectivity in the incorporation of eicosapentaenoic acid into membrane phospholipid pools. Clin Sci 68:449–454

    PubMed  Google Scholar 

  72. Goodnight SH, Harris WS, Connor WE, Illingworth DR (1982) Polyunsaturated fatty acids, hyperlipidemia, and thrombosis. Arteriosclerosis 2:87–113

    PubMed  Google Scholar 

  73. Haurand M, Ullrich V (1985) Isolation and characterization of thromboxane synthase from human platelets as a cytochrome P-450 enzyme. J Biol Chem 260:15059–67

    PubMed  Google Scholar 

  74. Hamberg M, Svensson J, Samuelsson B (1974) Prostaglandin endoperoxide. A new concept concerning the mode of action and release of prostaglandins. Proc Natl Acad Sci USA 81:3824–3828

    Google Scholar 

  75. Hamberg M, Svensson J, Samuelsson B (1975) Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci USA 72:2994–2998

    PubMed  Google Scholar 

  76. Harker LA, Hazzard W (1979) Platelet kinetic studies in patients with hyperlipoproteinemia: effect of clofibrate therapy. Circulation 60:492–496

    PubMed  Google Scholar 

  77. Hassall DG, Forrest LA, Bruckdorfer KR, Marenah CB, Turner P, Cortese C, Miller NE, Lewis B (1983) Influence of plasma lipoproteins on platelet aggregation in a normal male population. Aterosclerosis 3:332–338

    Google Scholar 

  78. Hassall DG, Owen JS, Bruckdorfer KR (1983) The aggregation of isolated human platelets in the presence of lipoproteins and prostacyclin. Biochem J 216:43–49

    PubMed  Google Scholar 

  79. Hokin MR, Hokin LE (1953) Enzyme secretion and the incorporation of 32P into phospholipids of pancreas slices. J Biol Chem 203:967–977

    PubMed  Google Scholar 

  80. Holme S, Brox JH, Krane H, Nordoy A (1984) The effect of albumin bound polyunsaturated fatty acids on human platelets. Thromb Haemostas 51:32–36

    Google Scholar 

  81. Holmsen H, Day HJ, Stormorken H (1969) Distribution of fibrinogen, and platelet factor IV and XIII in subcellular fractions of human platelets. Br J Haematol 31:51–55

    Google Scholar 

  82. Holmsen H, Day HJ (1970) The selectivity of the thrombin-induced platelet release reaction: subcellular localization of released and retained constituents. J Lab Clin Med 75:849–855

    Google Scholar 

  83. Holmsen H (1977) Platelet energy metabolism in relation to function. In: Mills DCB, Pareti FI (eds) Platelets and thrombosis, Academic Press, New York, pp 45–62

    Google Scholar 

  84. Holmsen H (1978) Platelet secretion (“Release reaction”). In: Mielke CH, Redvier R (eds) Mechanism of haemostasis and thrombosis. Symposia Specialists, Miami, pp 73–111

  85. Holub BJ (1984) Altered phospholipid metabolism in thrombin stimulated platelets. Can J Biochem Cell Biol 62:341–351

    PubMed  Google Scholar 

  86. Hornstra G (1985) Dietary lipids, platelet function and arterial thrombosis in animals and man. Proc Nutr Soc 44:371–378

    PubMed  Google Scholar 

  87. Huang JS, Huang SS, Kennedy B, Deuel TF (1982) PDGF specific binding to target cells. J Biol Chem 257:8130–8136

    PubMed  Google Scholar 

  88. Insel PA, Nirenberg P, Turnbull J, Shattil SJ (1978) Relationships between membrane cholesterol, α-adrenergic receptors, and platelet function. Biochem 17:5269–5274

    PubMed  Google Scholar 

  89. Jakubowski JA, Ardlie NG (1979) Evidence for the mechanism by which eicosapentaenoic acid inhibits human platelet aggregation and secretion-implications for the prevention of vascular disease. Thromb Res 16:205–217

    PubMed  Google Scholar 

  90. Joist JH, Baker RK, Schonfeld G (1974) Increased in vivo and in vitro platelet function in type II and type IV hyperlipoproteinaemia. Thromb Res 15:95–108

    Google Scholar 

  91. Kaplan KL, Nassel HL, Drillings M, Leszuik G (1978) Radioimmunoassay of platelet factor 4 and β-thromboglobulin: development and application to studies of platelet release reaction in relation to fibrinopeptide A generation. Br J Haematol 39:129–146

    PubMed  Google Scholar 

  92. Kaplan DR, Charo FC, Stiles CD, Antoniades HN, Scher CD (1979) Platelet α granules contain a growth factor for fibroblasts. Blood 53:1043–1052

    PubMed  Google Scholar 

  93. Kloprogge E, De Haas GH, Gorter G, Akkerman JWN (1983) Stimulus-response coupling in human platelets. Evidence against a role of PAF-acether in the third pathway. Thromb Res 30:107–112

    PubMed  Google Scholar 

  94. Kloprogge E, Akkerman JWN (1984) Binding kinetics of PAF-acether (1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine) to intact platelets. Biochem J 223:901–909

    PubMed  Google Scholar 

  95. Koller E, Koller F, Doleschel W (1982) Specific binding sites on human blood platelets for plasma lipoproteins. Hoppe-Seyler's Z Physiol Chem 363:395–405

    PubMed  Google Scholar 

  96. Kramer RM, Jakubowski JA, Vaillancourt R, Deykin D (1982) Effect of membrane cholesterol on phospholipid metabolism in thrombin-stimulated platelets. J Biol Chem 257:6844–6849

    PubMed  Google Scholar 

  97. Lapetina EG, Watson SP (1985) Relative importance of diacylglycerol, phosphatidate, lysophosphatidate, inositol triphosphate and arachidonate metabolism in platelet receptor signalling. Nouv Rev Fr Hematol 27:235–238

    PubMed  Google Scholar 

  98. Lee NS, Brewer HB, Osborne JC (1983) β2-Glycoprotein-I: Molecular properties of an unusual apolipoprotein, apolipoprotein H. J Biol Chem 258:4765–70

    PubMed  Google Scholar 

  99. Lewis LA, Naito HK (1978) Relation of hypertension, lipids, and lipoproteins to atherosclerosis. Clin Chem 24:2081–2098

    PubMed  Google Scholar 

  100. MacIntyre DE, Pollock WK (1983) Platelet-activating factor stimulates phosphatidylinositol turnover in human platelets. Biochem J 212:433–437

    PubMed  Google Scholar 

  101. MacMillan DC (1966) Secondary clumping effect in human citrated platelet-rich plasma produced by adenosine diphosphate and adrenaline. Nature 211:140–144

    PubMed  Google Scholar 

  102. Mahley RW (1985) Atherogenic lipoproteins and coronary artery disease: concepts derived from recent advances in cellular and molecular biology. Circ 72:943–948

    Google Scholar 

  103. Marche P (1985) Polyphosphoinositides and cell activation. Nouv Rev Fr Hematol 27:223–228

    PubMed  Google Scholar 

  104. Marcus AJ (1978) The role of lipids in platelet function: with particular reference to the arachidonic acid pathway. J Lip Res 19:793–826

    Google Scholar 

  105. Marcus AJ, Safier LB, Ullman HL, Wong KTH, Broekman MJ, Weksler BB, Kaplan KL (1981) Effects of acetyl glyceryl ether phosphorycholine on human platelet function in vitro. Blood 58:1027–1031

    PubMed  Google Scholar 

  106. Marcus AJ, Broekman MJ, Weksler BB, Jaffe EA, Safier LB, Ullman HL, Islam N, Tack-Goldman K (1982) Arachidonic acid metabolism in endothelial cells and platelets. Ann NY Acad Sci 195–202

  107. Marcus AJ, Broekman MJ, Safier LB, Ullman HL, Islam N, Serhan CN, Weissmann G (1984) Production of arachidonic acid lipoxygenase products during platelet-neutrophil interaction. Clin Physiol Biochem 2:78–83

    PubMed  Google Scholar 

  108. Marguerie GA, Plow EF, Edgington TS (1979) Human platelet possess an inducible and saturable receptor for fibrinogen. J Biol Chem 245:5357–5363

    Google Scholar 

  109. Marguerie GA, Edgington TS, Plow EF (1980) Interaction of fibrinogen with its platelet receptor as a part of a multistep reaction in ADP-induced platelet aggregation. J Biol Chem 255:154–161

    PubMed  Google Scholar 

  110. Marguerie GA, Plow EF (1983) The fibrinogen-dependent pathway of platelet aggregation. Ann NY Acad Sci 556–566

  111. Martin JF, Slater DN, Kishk YT, Trownridge EA (1985) Platelet and megakaryocyte changes in cholesterol-induced experimental atherosclerosis. Atherosclerosis 5:604–612

    Google Scholar 

  112. Mauco G, Chap H, Douste-Blazy L (1983) Platelet activating factor, (PAF-acether) promotes an early degradation of phosphatidylinositol-4,5-bisphosphate in rabbit platelets. FEBS Lett 2:361–365

    Google Scholar 

  113. Michel RH (1982) Is phosphatidylinositol really out of the calcium gate? Nature 296:492–493

    PubMed  Google Scholar 

  114. Miettinen TA (1974) Hyperlipoproteinemia-relation to platelet lipids, platelet function and tendency of thrombosis. Thromb Res 4:suppl 1, 41–47

    PubMed  Google Scholar 

  115. Mills DCB, Rohlo IA, Roberts GCK (1986) The release of nucleotides, 5-hydroxytryptamine and enzymes from human blood platelets during aggregation. J Physiol 195:715–729

    Google Scholar 

  116. Milton JG, Frojmovic MM (1983) Turbidometric evaluations of platelet activation: relative contributions of measured shape change, volume, and early aggregation. J Pharmacol Methods 9:101–115

    PubMed  Google Scholar 

  117. Moore S, Pepper DS (1976) Identification and characterization of a platelet specific release product: β-thromboglobulin. In: Gordon JL (ed) Platelets in biology and pathology. North-Holland Publishing Co, Amsterdam, p 389

    Google Scholar 

  118. Morgenstern E, Reimers HJ (1984) The platelet contacts during aggregation. Blut 48:81–90

    PubMed  Google Scholar 

  119. Mustard JF, Perry DW, Kinlough-Rathbone RL, Packham MA (1975) Factors responsible for ADP-induced release reaction of human platelets. Am J Physiol 228:1757–1765

    PubMed  Google Scholar 

  120. Mustard JF, Packham MA, Kinlough-Rathbone RL, Perry DW, Regoesczi E (1978) Fibrinogen and ADP-induced platelet aggregation. Blood 52:453–466

    PubMed  Google Scholar 

  121. Nachman RL, Leung LLK (1982) Complex formation of platelet membrane glycoproteins IIb and IIIa with fibrinogen. J Clin Invest 69:263–269

    PubMed  Google Scholar 

  122. Nath N, Niewiarowski S, Joist JH (1973) Platelet factor 4-Antiheparin protein releasable from platelets. Purification and properties. J Lab Clin Med 82:754–768

    PubMed  Google Scholar 

  123. Needlman P, Raz A, Minkes MS, Ferrendelli JA, Sprecher H (1979) Triene prostaglandins: Prostacycline and thromboxane biosynthesis and unique biological properties. Proc Natl Acad Sci USA 76:944–948

    PubMed  Google Scholar 

  124. Nimpf J, Wurm H, Kostner GM (1985) Interaction of β2-glycoprotein-I with human platelets: Influence upon the ADP-induced aggregation. Thromb Haemostas 54:397–401

    Google Scholar 

  125. Nimpf J, Gries A, Wurm H, Kostner GM (1985) Influence of β2-glycoprotein-I upon the content of cAMP and cGMP in human platelets. Thromb Haemostas 54:824–827

    Google Scholar 

  126. Nimpf J, Bevers EM, Bomans PHH, Wurm H, Zwaal RFA, Kostner GM (1986) β2-Glycoprotein-I (Apo-H) inhibits the prothrombinase activity of phospholipid vesicles. BBA submitted

  127. Nimpf J, Wurm H, Kostner GM (1986) β2-Glycoprotein-I (Apo-H) inhibits the release reaction of human platelets during ADP-induced aggregation. Atherosclerosis (submitted)

  128. Nokes TJC, Mahmoud NA, Savidge GF, Goodall AH, Meyer D, Edgington TS, Hardisty RM (1984) Von Willebrand factor has more than one binding site for platelets. Thromb Res 43:361–366

    Google Scholar 

  129. Nordoy A, Rodset JM (1971) Platelet function and platelet phospholipids in patients with hyperbetalipoproteinemia. Acta Med Scand 189:385–389

    PubMed  Google Scholar 

  130. Nordoy A, Bjorge JM, Strom E (1973) Comparison of the main lipids in platelets and plasma in men. Acta Med Scand 193:59–64

    PubMed  Google Scholar 

  131. Nordoy A, Strom E, Gjesdal K (1974) The effect of alimentary hyperlipaemia and primary hypertriglyceridaemia on platelets in men. Scand J Haemat 12:329–340

    PubMed  Google Scholar 

  132. Nordoy A, Svensson B, Wiebe D, Hoak JC (1978) Lipoproteins and the inhibitory effect of human endothelial cells on platelet function. Circ Res 43:527–534

    PubMed  Google Scholar 

  133. Nordoy A, Brox JH, Holme S, Killie JE, Lenner RA (1983) Platelets and coagulation in patients with familial hypercholesterolemia (type IIa). Acta Med Scand 213:129–135

    PubMed  Google Scholar 

  134. Nordoy A, Lagarde M, Renaud S (1984) Platelets during alimentary hyperlipaemia induced by cream and cod liver oil. Eur J Clin Invest 14:339–345

    PubMed  Google Scholar 

  135. Owen JS, Shukla K, Hutton RA, Hassall D, Bruckdorfer KR (1985) Lipoprotein interaction with isolated platelets. In: Proceedings of Poster Communications; 7th International Symposium on Atherosclerosis. Melbourne, October 1985, 108

  136. Palmer RH, Miller RV, Owen J, Grossman B, Kaplan KL (1985) Collagen-induced platelet aggregation and release is affected by hypercholesterolemia. In 39th Ann Meeting Council on Atherosclerosis. Washington DC, November 1985, 529a

  137. Peng V, Boschello M, Prandoni P, Schivazappa L, Girolani A (1985) Beta-thromboglobulin (β-TG) and platelet factor 4 (PF4) release by adenosine diphosphate (ADP) contact with native whole blood. Thromb Res 39:645–650

    PubMed  Google Scholar 

  138. Pike LJ, Bowen-Pope DF, Ross R, Krebs EG (1983) Characterization of platelet-derived growth factor-stimulated phosphorylation in cell membranes. J Biol Chem 258:9383–9390

    PubMed  Google Scholar 

  139. Raines EW, Ross R (1982) Platelet-derived growth factor. I. High yield purification and evidence for multiple forms. J Biol Chem 257:5154–5159

    PubMed  Google Scholar 

  140. Rittenhouse SE (1985) The mobilization of arachidonate and metabolism of phosphoinositides in stimulated human platelets. In: Bleasdale JE, Eichberg J, Hauser G (eds) Inositol and phosphoinositides: Metabolism and regulation. The Human Press, pp 459–473

  141. Rosing J, Tans G, Govers-Riemslag JWP, Zwaal RFA, Hemker HC (1980) The role of phospholipids and factor Va in the prothrombinase complex. J Biol Chem 255:274–283

    PubMed  Google Scholar 

  142. Rosing J, Bevers EM, Comfurius P, Hemker HC, Dieijen G, Weiss HJ, Zwaal RFA (1985) Impaired factor X and prothrombin activation associated with decreased phospholipid exposure from a patient with a bleeding disorder. Blood 65:1557–1561

    PubMed  Google Scholar 

  143. Ross R, Glomset J, Kariya B, Harker L (1974) A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc Natl Acad Sci USA 71:1207–1210

    PubMed  Google Scholar 

  144. Ross R, Glomset J (1976) The pathogenesis of atherosclerosis. N Engl J Med 295:369–377

    PubMed  Google Scholar 

  145. Ross R (1984) Atherosclerosis. J Cardiovasc Pharmacol 6:S714-S719

    PubMed  Google Scholar 

  146. Ross R, Faggiotto A, Bowen-Pope D, Raines E (1984) The role of endothelial injury and platelet and macrophage interactions in atherosclerosis. Circ 70:III77-III82

    Google Scholar 

  147. Ruggeri TM, Zimmerman TS (1985) Platelets and Van Willebrand disease. Sem Hematol 22:203–218

    Google Scholar 

  148. Sano T, Motomiya T, Yamazaki H (1983) Influence of lipid metabolism on platelet activation in vivo. Thromb Res 31:675–684

    PubMed  Google Scholar 

  149. Sanders TAB, Younger KM (1981) The effect of dietary supplement of w3 polyunsaturated fatty acids on the fatty acid composition of platelets and plasma choline phosphoglyceride. Br J Nutr 45:613–616

    PubMed  Google Scholar 

  150. Sanders TAB, Vickers M, Haines AP (1981) Effect on blood lipids and haemostasis of a supplement of cod-liver oil, rich in eicosapentaenoic and docosahexaenoic acid, in healthy young men. Clin Sci 61:317–324

    PubMed  Google Scholar 

  151. v. Schacky C, Siess W, Fischer S, Weber PC (1985) A comparative study of eicosapentaenoic acid metabolism by human platelets in vivo and vitro. J Lip Res 26:457–464

    Google Scholar 

  152. Schick BP, Schick PK (1985) Cholesterol exchange in platelets, erythrocytes and megakaryocytes. BBA 833:281–290

    PubMed  Google Scholar 

  153. Schick BP, Schick PK (1985) The effect of hypercholesterolemia on guinea pig platelets, erythrocytes and megakaryocytes. BA 833:291–302

    Google Scholar 

  154. Schousboe I (1980) Binding of β2-glycoprotein-I to platelets: Effect of adenylate cyclase activity. Thromb Res 19:225–237

    PubMed  Google Scholar 

  155. Schousboe I (1983) Effect of β2-glycoprotein-I on the activity of adenylate cyclase in platelet membranes. Thromb Res 32:291–299

    PubMed  Google Scholar 

  156. Senior EM, Griffin GL, Huang JS, Walz DA, Deuel TF (1983) Chemotactic activity of platelet alpha-granule proteins for fibroblasts. J Cell Biol 96:382–385

    PubMed  Google Scholar 

  157. Shattil SJ, Cooper RA (1972) Maturation of macroreticulocyte membranes in vivo. J Lab Clin Med 79:215–227

    PubMed  Google Scholar 

  158. Shattil SJ, Anaya-Galindo R, Bennett J, Colman RW, Cooper RA (1975) Platelet hypersensitivity induced by cholesterol incorporation. J Clin Invest 55:636–643

    PubMed  Google Scholar 

  159. Shattil SJ, Cooper RA (1976) Membrane microviscosity and human platelet function. Biochem 15:4832–4837

    PubMed  Google Scholar 

  160. Shattil SJ, Bennett JS, Colman RW, Cooper RA (1977) Abnormalities of cholesterol-phospholipid composition in platelet and low density lipoproteins of human hyperbetalipoproteinemia. J Lab Clin Med 98:341–353

    Google Scholar 

  161. Shattil SJ, Cooper RA (1978) Role of membrane lipid composition, organisation, and fluidity in human platelet function. Progr Haemostas Thrombos 4:59–86

    Google Scholar 

  162. Shinitzky M, Barenholz Y (1974) Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J Biol Chem 249:2652–2657

    PubMed  Google Scholar 

  163. Shmulewitz A, Brook JG, Aviram M (1984) Native and modified low-density-lipoprotein interaction with human platelets in normal and homozygous familial hypercholesterolaemic subjects. Biochem J 225:13–20

    Google Scholar 

  164. v Siebenthal K, Graf CH, Rhynes K (1984) Werden Blutplättchen in der Lunge freigesetzt? Schweiz Med Rundschau 73:39–43

    Google Scholar 

  165. Siess W, Roth P, Scherer B, Kurzman I, Böhlig B, Weber PC (1980) Platelet membrane fatty acids, platelet aggregation and thromboxane formation during mackarel diet. Lancet 1:441–444

    PubMed  Google Scholar 

  166. Simon LS, Mills JA (1980) Non steroidal antiinflammatory drugs I. N Engl J Med 302:1179–1185

    PubMed  Google Scholar 

  167. Sinha AK, Shattil SJ, Colman RW (1977) Cyclic AMP metabolism in cholesterol-rich platelets. J Biol Chem 252:3310–3314

    PubMed  Google Scholar 

  168. Srivastava KC (1985) Transformation of exogenous arachidonic acid in human platelets in the presence of oleic- and eicosapentaenoic acids. Prostagl Leukotriens Med 18:31–37

    Google Scholar 

  169. Stuart MJ, Gerrard JM, White JG (1980) Effect of cholesterol on production of thromboxane B2 by platelets in vitro. N Engl J Med 302:6–10

    PubMed  Google Scholar 

  170. Sturk A, Asyee GM, Schaap MCL, v Maarsen M, ten Cate JW (1985) Synergistic effects of platelet-activating factor and other platelet agonists in human platelet aggregation and release: the role of ADP and products of the cyclooxygenase pathway. Thromb Res 40:359–372

    PubMed  Google Scholar 

  171. Symons C, De Toszeghi A, Cook IJY (1964) Effect of ethyl chlorophenoxyisobutyrate with or without andosterone on platelet stickyness. Lancet 2:233–234

    Google Scholar 

  172. Tandon N, Harmon JT, Rodbard D, Jamieson GA (1983) Thrombin receptors define responsiveness of cholesterol-modified platelets. J Biol Chem 258:11840–45

    PubMed  Google Scholar 

  173. Tandon NN, Hoeg JM, Jamieson GA (1985) Perfusion studies on the formation of mural thrombi with cholesterol-modified and hypercholesterolemic platelets. J Lab Clin Med 105:157–163

    PubMed  Google Scholar 

  174. Thörngren M, Gustafson A (1981) Effect of 11-week increase in dietary eicosapentaenoic acid on bleeding time, lipids, and platelet aggregation. Lancet 2:1190–1193

    PubMed  Google Scholar 

  175. Tobelem G (1984) Glycoproteins and platelet functions. J Pharmacol (Paris Suppl, 1:85–94

    Google Scholar 

  176. Tremoli E, Maderna P, Sirtori M, Sirtori CR (1979) Platelet aggregation and malondialdehyde formation in type IIa hypercholesterolemic patients. Haemostas 8:47–53

    Google Scholar 

  177. Tremoli E, Maderna P, Colli S, Morazzoni G, Sirtori CR (1984) Increased platelet sensitivity and thromboxane B2 formation in type-II hyperlipoproteinaemic patients. Eur J Clin Invest 14:329–333

    PubMed  Google Scholar 

  178. Turner SR, Tainer JA, Lynn WS (1975) Biogenesis of chemotactic molecules by arachidonic lipoxygenase system of platelets. Nature 257:680–681

    PubMed  Google Scholar 

  179. Ugurbil K, Fukami MH, Holmsen H (1984) Proton NMR studies of nucleotide and amine storage in the dense granules of pig platelets. Biochem 23:416–428

    Google Scholar 

  180. Vargaftig BB, Chignard M, Le Couedic JP, Benveniste J (1980) One, two, three or more pathways for platelet aggregation. Acta Med Scand Suppl 642:23–29

    PubMed  Google Scholar 

  181. Vargaftig BB, Chignard M, Benveniste J (1981) Present concepts on the mechanisms of platelet aggregation. Biochem Pharmacol 30:263–271

    PubMed  Google Scholar 

  182. Viener A, Brook G, Aviram M (1984) Abnormal plasma lipoprotein composition in hypercholesterolemic patients induces platelet activation. Eur J Clin Invest 14:207–213

    PubMed  Google Scholar 

  183. Virchow R (1856) Gesammelte Abhandlungen zur Wissenschaftlichen Medizin. Frankfurt/Main, pp 458–463

  184. Waterfield MD, Scrace GT, Whittle N, Stroobant P, Johnssen A, Wasteson A, Westermark W, Heldin C, Huang JS, Deuel TF (1983) Platelet-derived growth factor is structurally related to the putative transforming protein p28 sis of simian sarcoma virus. Nature 304:35–39

    PubMed  Google Scholar 

  185. Weaver BJ, Holub BJ (1985) The relative incorporation of arachidonic and eicosapentaenoic acid into human platelet phospholipids. Lipids 20:773–777

    PubMed  Google Scholar 

  186. Weaver BJ, Holub BJ (1985) The inhibition of arachidonic acid incorporation into human platelet phospholipids by eicosapentaenoic acid. Nutr Res 5:31–37

    Google Scholar 

  187. Werner P, Patscheke H (1980) Hyperreactivity by an enhancement of the arachidonic pathway of platelets treated with cholesterol-rich phospholipid dispersions. Thromb Res 18:439–451

    PubMed  Google Scholar 

  188. Whitaker MO, Wyche A, Fitzpatrik F, Sprecher H, Needleman P (1979) Triene prostaglandins: prostaglandin D3 and eicosapentaenoic acids as potential antithrombotic substances. Proc Natl Acad Sci USA 76:5919–5923

    PubMed  Google Scholar 

  189. White JG, Burris SM (1984) Morphometry of platelet internal contraction. Am J Pathol 115:412–417

    PubMed  Google Scholar 

  190. Zahari J, Betteridge JD, Jones NAG, Galton DJ, Kakkar W (1981) Enhanced in vivo plateletrelease reaction and malondialdehyde formation in patients with hyperlipidaemia. Am J Med 70:59–64

    PubMed  Google Scholar 

  191. Zucker MB, Nachmias VT (1985) Platelet activation. Arteriosclerosis 5:2–18

    PubMed  Google Scholar 

  192. Zwaal RFA (1978) Membrane and lipid involvement in blood coagulation. BBA 515:163–205

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nimpf, J., Wurm, H., Kostner, G.M. et al. Platelet activation in normo- and hyperlipoproteinemias. Basic Res Cardiol 81, 437–453 (1986). https://doi.org/10.1007/BF01907750

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01907750

Key words

Navigation