Skip to main content
Log in

Cardiac efficiency

  • Original Contributions
  • Review
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Efficiency is defined as the ratio of the energy delivered by a system to the energy supplied to it. Depending on the particular question being addressed, there exist a plethora of definitions of efficiency in medical texts, thus hampering their comparison. If only the ventricular work seen by the arterial system is under investigation, pressure-volume work will serve as a useful numerator. If, on the other hand, external and internal work together, i.e. the total mechanical work, is of interest, the pressure-volume area might be employed.

Total myocardial oxygen consumption (MVO2) will be a useful denominator in the case of aerobic energy production. The MVO2 for the unloaded contraction must be assessed if, as in other energy transfer systems, net efficiency is to be addressed. If even smaller steps in the chain of energy transfer are to be investigated MVO2 for the arrested heart must be assessed.

With an appropriate therapy, hemodynamic determinants can be varied, to improve cardiac efficiency. Nonetheless, measurement of all variables necessary for the calculation of efficiency remains a challenge, in particular in the clinical setting. Separation of the direct effects of drugs on efficiency is even more difficult, since hemodynamic conditions can hardly be controlled throughout the observation period, and changes in efficiency might be secondary to changes in hemodynamics.

Whether the heart by itself employs mechanisms to improve its efficiency is still a matter of discussion: there is evidence that when oxygen supply decreases, the heart can switch from one substrate to a less costly one, or possibly can improve efficiency through better use of oxygen. Moreover, the heart seems to “sense” an even more decreased oxygen supply and reduce function in response. Myocardial stunning could be regarded as a protective mechanism as well, with function remaining depressed and the oxygen supply being normal or close to normal. One may conclude from the decreased efficiency that the excess oxygen consumption is used up for repair processes. The improved efficiency found in hypertrophied hearts represents another adaptive process. The underlying mechanism is unclear: a shift towards isomyosin V3 or some undefined shift in metabolic pathway is discussed.

It is also still a moot question towards which objective the efficiency of the heart is adjusted. It has been described that under physiologic conditions, the efficiency of both the left and the right ventricle ought to be maximized. The alternative finding that the heart and the arterial system are adjusted to maximize stroke work is only a serious contrast if both maxima are narrow and clearly separated from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen BS, Rosenkranz EP, Buckberg GD, Vinten-Johansen J, Okamoto F, Leaf J (1986) Studies of controlled reperfusion after ischemia VII. High oxygen requirements of dyskinetic cardiac muscle. J Thorac Cardiovasc Surg 92:543–552

    Google Scholar 

  2. Allen DG, Orchard CH (1987) Myocardial contractile function during ischemia and hypoxia. Circ Res 60:153–168

    Google Scholar 

  3. Alpert NA, Mulieri LA, Litten RZ (1979) Functional significance or altered myosin adenosine triphosphatase activity in enlarged hearts. Am J Cardiol 44:947–953

    Google Scholar 

  4. Alpert NR and Mulieri LA (1982) Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit. Circ Res 50:491–500

    Google Scholar 

  5. Alpert NR and Mulieri LA (1986) Intrinsic determinants of myocardial energetics in normal and hypertrophied hearts. In: Rupp H (ed) Regulation of Heart Function-Basic Concepts and Clinical Applications; Thieme Inc, New York, pp 292–304

    Google Scholar 

  6. Auffermann W, Wu ST, Derugin N, Parmley W, Higgins C, Kapelko V, and Wikman-Coffelt J (1990) 3IP magnetic resonance spectroscopy of pressure overload hypertrophy in rats: effect of reduced perfusion pressure. Cardiovase Res 24:57–64

    Google Scholar 

  7. Baller D, Bretschneider HJ, and Hellige G (1979) Validity of myocardial oxygen consumption parameters. Clin Cardiol 2:317–327

    Google Scholar 

  8. Baller D, Bretschneider HJ, and Hellige G (1981) A critical look at currently used indirect indices of myocardial oxygen consumption. Basic Res Cardiol 76:163–181

    Google Scholar 

  9. Baxley WA, Dodge HT, Rackley CE, Sandler H, and Pugh D (1972) Left ventricular mechanical efficiency in man with heart disease. Circ Res 55:564–568

    Google Scholar 

  10. Bing RJ (1965) Cardiac metabolism. Physiol Rev 45(2): 171–213

    Google Scholar 

  11. Bing RJ, Hammond MM, Handelsmann JC, Powers SR, Spencer FC, Eckenhoff JE Goodale WT, Hafkenschiel JH, and Kety SS (1949) The measurement of coronary blood flow, oxygen consumption, and efficiency of the left ventricle in man. Am Heart J 38:1–24

    Google Scholar 

  12. Bing RJ, Michael G (1959) Myocardial efficiency. Ann NY Acad Sci 72:555–558

    Google Scholar 

  13. Bittl JA, Ingwall JS (1985) Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. J Biol Chem 260 (6): 3512–3517

    Google Scholar 

  14. Bittl JA and Ingwall JS (1986) The energetics of myocardial stretch. Circ Res 58:378–383

    Google Scholar 

  15. Borow KM, Spann JF, and Coulson RL (1981) The direct myocardial energetic response to nitroglycerin in the rabbit heart. J Pharmacol Exp Ther 217:566–571

    Google Scholar 

  16. Boyle III. and Segel LD (1990) Attenuation of vasopressin-mediated coronary constriction and myocardial depression in the hypoxic heart. Circ Res 66:710–721

    Google Scholar 

  17. Braunwald E and Kloner RA (1982) The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66(6):1146–1149

    Google Scholar 

  18. Braunwald E and Ross Jr J. (1979) Control of cardiac performance. In: Berne RM and Sperelakis N (eds) Handbook of Physiology; Am Physiol Soc, Bethesda, pp 533–580

    Google Scholar 

  19. Braunwald E, Ross Jr J, and Sonnenblick EH. Mechanisms of contraction of the normal and failing heart. Boston: Little, Brown and Company, 1976

    Google Scholar 

  20. Braunwald E, Sarnoff SJ, Case RB, Stainsby WN, and Welch GH (1958) Hemodynamic determinants of coronary flow: effect of changes in aortic pressure and cardiac output on the relationship between myocardial oxygen consumption and coronary flow. Am J Physiol 192: 157–163

    Google Scholar 

  21. Britman N and Levine HJ (1964) Contractile element work: a major determinant of myocardial oxygen consumption. J Clin Invest 43(7):1397–1408

    Google Scholar 

  22. Brutsaert DL (1987) Nonuniformity: a physiologic modulator of contraction and relaxation of normal heart. J Am Coll Cardiol 9:341–348

    Google Scholar 

  23. Burkhoff D (1990) Myocardial energetics and the postischemic heart. Ann Thorac Surg 49:525–527

    Google Scholar 

  24. Burkhoff D, De Tombe PP, Hunter WC, Kass DA (1991) Contractile strength and mechanical efficiency of left ventricle are enhanced by physiological afterload. Am J Physiol 260:H569-H578

    Google Scholar 

  25. Burkhoff D, Oikawa RY, Sagawa K (1986) Influence of pacing site on canine left ventricular contraction Am J Physiol 251:H428-H435

    Google Scholar 

  26. Burkhoff D and Sagawa K (1986) Ventricular efficiency predicted by an analytical model. Am J Physiol 250:R1021-R1027

    Google Scholar 

  27. Burkhoff D, Weiss RG, Schulman SP, Kalil-filho R, Wannenburg T, and Gerstenblith G (1991) Influence of metabolic substrate on rat heart function and metabolism at different coronary flows. Am J Physiol 261:741–750

    Google Scholar 

  28. Camici PG, Marraccini P, Lorenzoni R, Buzzigoli G, Pecori N, Perissinotto A, Ferrannini E, L;Abbate A et al. (1991) Coronary hemodynamics and myocardial metabolism in patients with syndrome X: Response to pacing stress. J Am Coll Cardiol 17:1461–1470

    Google Scholar 

  29. Campbell KB, Ringo JA, Klavano PA, Robinette JD, and Alexander JE (1985) Aortic bulb-aortic orifice hemodynamics in left ventricle-systemic arterial interaction. Am J Physiol 248:132–142

    Google Scholar 

  30. Chemnitius JM, Burger W, and Bing RJ (1985) Crystalloid and perfluorochemical perfusates in an isolated working rabbit heart preparation. Am J Physiol 249:H285-H292

    Google Scholar 

  31. Chung N, Wu X, and Ritman EL (1991) LV oxygen consumption and pressure-volume area: role of norepinephrine and verapamil. Am J Physiol 261:H77-H82

    Google Scholar 

  32. Cimini CM and Weiss HR (1990) Hypertension-induced cardiac hypertrophy. Hypertension 16:35–42

    Google Scholar 

  33. Coleman HN, Sonnenblick EH, and Braunwald E (1969) Myocardial oxygen consumption associated with external work: the Fenn effect. Am J Physiol 217:291–296

    Google Scholar 

  34. David D, Land RM, Borow KM (1988) Clinical utility of exercise, pacing, and pharmacologic stress testing for the noninvasive determination of myocardial contractility and reserve. Am Heart J 116:235–247

    Google Scholar 

  35. Drake AJ (1982) Substrate utilization in the myocardium. Basic Res Cardiol 77:1–11

    Google Scholar 

  36. Eckenhoff JE, Hafkenschiel JH, Foltz EL, Driver RL (1948) Influence of hypotension on coronary blood flow, cardiac work and cardic efficiency. Am J Physiol 152:545–553

    Google Scholar 

  37. Eichhorn EJ, Bedotto JB, Malloy CR Hatfield BA, Deitchman D, Brown M, Willard JE, and Grayburn PA (1990) Effect of β-adrenergic blockade on myocardial function and energetics in congestive heart failure. Circulation 82:473–483

    Google Scholar 

  38. Evans CL and Matsuoka Y (1915) Effect of various mechanical conditions on gaseous metabolism and efficiency of mammalian hearts. J Physiol 49:378–405

    Google Scholar 

  39. Fahim M, del Valle G, and Pressman BC (1986) Comparison of effects of the ionophore salinomycin and adrenaline on the haemodynamics and work efficiency of the dog heart. Cardiovases Res 20:145–152

    Google Scholar 

  40. Finckh M, Furtwängler A, Allgeier J, Boltz M, and Holtz J (1990) Increased myocardial efficiency in a load-and ischemia-independent heart failure model in rats. Eur Heart J 11(Suppl):P1483 (Abstract)

    Google Scholar 

  41. Forrester JS, Tyberg JV, Wyatt HL, Goldner S, Parmley WW, and Swan HJC (1974) Pressure-length loop: a new method for simultaneous measurement of segmental and total cardiac function. J Appl Physiol 37:771–775

    Google Scholar 

  42. Fozzard HA (1977) Heart: excitation-contraction coupling. Ann Rev Physiol 39:201–220

    Google Scholar 

  43. Frank O (1895) Zur Dynamik des Herzmuskels. Z Biol 32:370–447

    Google Scholar 

  44. Furukawa S, Bavaria JE, Kreiner G, and Edmunds Jr. (1990) Relationship between total mechanical energy and oxygen consumption in the stunned myocardium. Ann Thorac Surg 49:543–549

    Google Scholar 

  45. Gallagher KP, Matsuzaki M, Koziol JA, Kemper WS, Ross Jr J (1984) Regional myocardial perfusion and wall thickening during ischemia in conscious dogs. Am J Physiol 247:H727-H738

    Google Scholar 

  46. Gayheart PA, Vinten-Johansen J, Johnston WE, Hester TO, Cordell AR (1989) Oxygen requirements of the dyskinetic myocardial segment. Am J Physiol 257:H1184-H1191

    Google Scholar 

  47. Gibbs CL (1978) Cardiac energetics. Physiol Rev 58: 174–254

    Google Scholar 

  48. Gibbs CL and Chapman JB (1979) Cardiac Energetics. In: Berne RM (ed) Handbook of Physiology; American Physiological Society, Bethesda, pp 775–804

    Google Scholar 

  49. Gibbs CL, Mommaerts WFHM, and Ricchiuti NV (1967) Energetics of cardiac contractions. J Physiol 191:25–46

    Google Scholar 

  50. Gibbs CL, Papadoyannis DE, Drake AJ, and Noble MIM (1980) Oxygen consumption of the nonworking and potassium chloride-arrested dog heart. Circ Res 47:408–417

    Google Scholar 

  51. Goto Y, Igarashi Y, Nozawa T, Futaki S, Hiramori K, and Suga H (1988) Integrated regional work equals total left ventricular work in regionally ischemic canine heart. Am J Physiol 254:H894-H904

    Google Scholar 

  52. Goto Y, Slinker BK, and LeWinter MM (1988) Similar normalized Emax and O2 consumption-pressure-volume area relation in rabbit and dog. Am J Physiol 255:H366-H374

    Google Scholar 

  53. Goto Y, Slinker BK, and LeWinter MM (1990) Decreased contractile efficiency and increased nonmechanical energy cost in hyperthyroid rabbit heart. Circ Res 66:999–1011

    Google Scholar 

  54. Goto Y, Suga H, Yamada O, Igarashi Y, Saito M, and Hiramori K (1986) Left ventricular regional work from wall tension-area loop in canine heart. Am J Physiol 250:H151-H158

    Google Scholar 

  55. Gould KL, Mullani N, and Kirkeeide R. (1986) Coronary circulation. In: Phelps M, Mazziotta J, and Schelbert H (eds) Positron Emmission Tomography and Autoradiography: Principles and Applications for the Brain and Heart; Raven Press, New York, pp 113–148

    Google Scholar 

  56. Greenberg S, Touhey B, and Paul J (1990) Effect of flosequinan (BTS 49465) on myocardial oxygen consumption. Am Heart J 119:1355–1366

    Google Scholar 

  57. Hasenfuss G, Holubarsch C, Blanchard EM, Mulieri LA, Alpert NR, Just H (1989) Influence of isoproterenol on myocardial energetics. Experimental and clinical investigations. Basic Res Cardiol 84 (suppl 1):147–155

    Google Scholar 

  58. Hasenfuss G, Holubarsch C, Heiss HW, Meinertz T, Bonzel T, Wais U, Lehmann M, Just H (1989) Myocardial energetics in patients with dilated cardiomyopathy. Influence of nitroprusside and enomimone. Circulation 80:51–64

    Google Scholar 

  59. Heusch G (1992) Hibernation, Stunning, Ischemic Preconditioning-neue Paradigmen der koronaren Herzkrankheit? Z Kardiol 81:596–609

    Google Scholar 

  60. Hill AV (1958) The relation between force developed and energy liberated in an isometric twitch. Proc Roy Soc B 149:58–62

    Google Scholar 

  61. Hoeft A, Korb H, Hellige G, Sonntag H, and Kettler D (1991) Zur Energie und Ökonomie der kardialen Pumpfunktion. Anaesthesist 40:465–478

    Google Scholar 

  62. Hoeft A, Korb H, Wolpers HG, and Hellige G (1984) Determinants of cardiac pump efficiency, comparison of a theoretical model with experimental data of normo- and hypotermic dogs. In: Mohl et al. (ed) The coronary sinus; Dr. D. Steinkopff Verlag, Darmstadt, pp 92–99

    Google Scholar 

  63. Hoffman JIE (1987) Transmural myocardial perfusion. Prog Cardiovasc Dis 29: 429–464

    Google Scholar 

  64. Hoh JFY, McGrath PA, and Hale PT (1978) Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol 10:1053–1076

    Google Scholar 

  65. Hütter JF, Schweickhardt C, Piper HM, and Spieckermann PG (1984) Inhibition of fatty acid oxidation and decrease of oxygen consumption of working rat heart by 4-bromocrotonic acid. J Mol Cell Cardiol 16:105–108

    Google Scholar 

  66. Illes RW, Silverman NA, Krukenkamp IB, Yusen RD, Chausow DD, and Levitsky S (1989) The efficacy of blood cardioplegia is not due to oxygen delivery. J Thorac Cardiovasc Surg 98: 1051–1056

    Google Scholar 

  67. Izzi G, Zile MR, Gaasch WH (1991) Myocardial oxygen consumption and the left ventricular pressure volume area in normal and hypertrophic canine hearts. Circulation 84:1384–1392

    Google Scholar 

  68. Jacob R, Kissling G, Ebrecht G, Jörg E, Rupp H, Takeda N (1984) Cardiac alternations at the myofibrillar level: is the redistribution of the isoenzyme pattern decisive for cardiac failure in haemodynamic overload? Eur Heart J 5 (Suppl F):13–26

    Google Scholar 

  69. Jacobus WE, Pores IH, Lucas SK, Kaliman CH, Weisfeldt ML, Flaherty JT (1982) The role of intracellular pH in the control of normal and ischemic myocardial contractility: A 31P nuclear magnetic resonance and mass spectrometry study. Alan R. Liss, New York, pp 537–565

    Google Scholar 

  70. Jensen AE, Reikvam Å, and Åsberg A (1990) Diagnostic efficiency of lactate dehydrogenase isoenzymes in serum after acute myocardial infarction. Scand J Clin Lab Invest 50:285–289

    Google Scholar 

  71. Kahles H, Dreyling M, Kaposciok J, Riegger AJG, Schanzenbächer P, Kromer EP, Maisch B, and Kochsiek K (1989) Validisierung indirekter myokardialer Sauerstoffverbrauchsparameter bei Patienten mit normaler und pathologisch veränderter Ventrikelfunktion. Z Kardiol 78:285–293

    Google Scholar 

  72. Kammermeier H (1993) Efficiency of energy conversion from metabolic substrates to ATP and mechanical and chemiosmotic energy. Basic Res Cardiol 88, Suppl. 2:15–20

    Google Scholar 

  73. Katz LN, Katz AM, and Williams FL (1955) Metabolic adjustments to alterations of cardiac work in hypoxemia. Am J Physiol 181:539–542

    Google Scholar 

  74. Kedem J, Scholz PM, and Weiss HR (1990) Ouabain augments regional myocardial work more than regional oxygen consumption. Faseb J 4:A403 (Abstract)

    Google Scholar 

  75. Keul J, Doll E, Steim H, Fleer U, and Reindell H (1965) Über den Stoffwechsel des menschlichen Herzens unter verschiedenen Arbeitsbedingungen. Pfluegers Arch 43:282–287

    Google Scholar 

  76. Kissling G and Rupp H (1986) The influence of myosin isoenzyme pattern on increase in myocardial oxygen consumption induced by catecholamines. Basic Res Cardiol 81 Suppl 1:103–115

    Google Scholar 

  77. Kissling G, Rupp H, Malloy L, Jacob R (1982) Alterations in cardiac oxygen consumption under chronic pressure overload. Significance of the isoenzyme pattern of myosin. Basic Res Cardiol 77:255–269

    Google Scholar 

  78. Kjekshus JK, Mjos OD (1972) Effect of free fatty acids on myocardial function and metabolism in the ischemic dog heart. J Clin Invest 51:1767–1776

    Google Scholar 

  79. Kowallik P, Schulz R, Guth BD, Schade A, Paffhausen W, Gross R, Heusch G (1991) Measurements of regional myocardial blood flow with multiple colored microspheres. Circulation 83: 974–982

    Google Scholar 

  80. Krasnow N, Rolett EL, Yurchak PM, Hood WB, and Gorlin R (1964) Isoproterenol and cardiovascular performance. Am J Med 37:514–525

    Google Scholar 

  81. Krause SM, Jacobus WE, and Becker LC (1989) Alterations in cardiac sarcoplasmic reticulum calcium transport in the postischemic “stunned” myocardium. Circ Res 65:526–530

    Google Scholar 

  82. Krukenkamp IB, Silverman NA, and Levitsky S (1987) The effect of cardioplegic oxygenation on the correlation between the linearized Frank-Starling relationship and myocardial energetics in the ejecting postischemic heart. Circulation 76 (suppl V):V-122–V-128

    Google Scholar 

  83. Krukenkamp IB, Silverman NA, Sorlie D, Pridjian A, Feinberg H, and Levitsky S (1986) Characterization of postischemic myocardial oxygen utilization. Circulation 74 (suppl III): III125-III129

    Google Scholar 

  84. Kusuoka H, Koretsune Y, Chacko VP, Weisfeldt ML, and Marban E (1990) Excitation-contraction coupling in postischemic myocardium: Does failure of activator Ca2+ transients underlie stunning? Circ Res 66:1268–1276

    Google Scholar 

  85. Lange R, Ware J, and Kloner RA (1984) Absence of a cumulative deterioration of regional function during three repeated 5 or 15 minute coronary occlusions. Circulation 69:400–408

    Google Scholar 

  86. Langer GA (1994) Heart: excitation contraction coupling. Ann Rev Physiol 35:55–86

    Google Scholar 

  87. Laster SB, Becker LC, Ambrosio G, and Jacobus WE (1989) Reduced aerobic metabolic efficiency in globally “stunned” myocardium. J Mol Cell Cardiol 21:419–426

    Google Scholar 

  88. Laxson DD, Homans DC, Dai X-Z, Sublett E, Bache RJ (1989) Oxygen consumption and coronary reactivity in postischemic myocardium. Circ Res 64:9–20

    Google Scholar 

  89. Liedtke AJ, De Maison L, Eggleston AM, Cohen LM, Nellis SA (1988) Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 62:535–542

    Google Scholar 

  90. Linzbach AJ (1960) Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382

    Google Scholar 

  91. Lochner W, Arnold G, and Müller-Ruchholtz ER (1968) Metabolism in the arteficially arrested heart and of the gas-perfused heart. Am J Cardiol 22:299–311

    Google Scholar 

  92. Loiselle DS and Gibbs CL (1979) Species differences in cardiac energetics. Am J Physiol 237:H90-H98

    Google Scholar 

  93. Marshall RC, Nash WN, Bersohn MN, and Wong GA (1987) Myocardial energy production and consumption remain balanced during positive inotropic stimulation when coronary flow is restricted to basal rates in rabbit heart. J Clin Invest 80:1165–1171

    Google Scholar 

  94. Masataka S, Sugiura S, Yamashita H, Momomura S, and Serizawa T (1993) Dynamic interaction between cardiac myosin isoforms modifies velocity of actomyosin sliding in vitro. Circ Res 73:696–703

    Google Scholar 

  95. Massie BM, Conway M, Rajagopalan B, Yonge R, Frostick S, Ledingham J, Sleight P, and Radda G (1988) Skeletal muscle metabolism during exercise under ischemic conditions in congestive heart failure. Circulation 78:320–326

    Google Scholar 

  96. McDonald RH (1966) Developed tension: a major determinant of myocardial oxygen consumption. Am J Physiol 210:351–356

    Google Scholar 

  97. McDonald RH (1971) Myocardial heat production: its relationship to tension development. Am J Physiol 220:894–900

    Google Scholar 

  98. McFalls EO, Pantely GA, Ophuis TO, Anselone CG, Bristow JD (1987) Relation of lactate production to postischemic reduction in function and myocardial oxygen consumption after partial coronary occlusion in swine. Cardiovasc Res 21:856–862

    Google Scholar 

  99. Mjos OD (1971) Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs. J Clin Invest 50:1386–1389

    Google Scholar 

  100. Moe GK, Visscher MB (1939) The mechanism of failure in the completely isolated mammalian heart. Am J Physiol 125:461–473

    Google Scholar 

  101. Mommaerts WFHM and Langer GA (1963) Fundamental concepts of cardiac dynamics and energetics. Ann Rev Med 14:261–296

    Google Scholar 

  102. Momomura S, Ingwall JS, Parker A, Sahagian P, Ferguson JJ, and Grossman W (1985) The relationships of high energy phosphates, tissue pH, and regional blood flow to diastolic distensibility in the ischemic dog myocardium. Circ Res 57:822–835

    Google Scholar 

  103. Murashita T, Kempsford RD, and Hearse DJ (1991) Oxygen supply and oxygen demand in the isolated working rabbit heart perfused with asanguineous crystalloid solution. Cardiovasc Res 25:198–206

    Google Scholar 

  104. Murry CE, Jennings RB, and Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Google Scholar 

  105. Nakamura T, Kimura T, Motomiya M, Suzuki N, and Arai S (1987) Myocardial oxygen consumption and mechanical efficiency in the pressure-overloaded hypertrophied canine left ventricle. Aumdc 9:188 (Abstract)

    Google Scholar 

  106. Nakano K, Sugawara M, Kato T, Sasayama S, Carabello BA, Asanoi H, Umemura J, and Koyanagi H (1988) Regional work of the human left ventricle calculated by wall stress and the natural logarithm of reciprocal of wall thickness. J Am Coll Cardiol 12:1442–1448

    Google Scholar 

  107. Nakano K, Sugawara M, Tamiya K, Satomi G, and Koyanage H (1986) A new approach to defining regional work for the ventricle and evaluating regional cardiac function: mean wall stress-natural logarithm of reciprocal of wall thickness relationship. Heart Vessels 2:74–80

    Google Scholar 

  108. Needleman P, Greenwald JE (1986) Atriopeptin: a cardiac hormone intimately involved in fluid, electrolyte, and blood-pressure homeostasis. New Engl J Med 314:828–834

    Google Scholar 

  109. Neely JR, Liebermeister H, Battersby EJ, Morgan HE (1967) Effect of pressure development of oxygen consumption by isolated rat heart. Am J Physiol 212:804–814

    Google Scholar 

  110. Neely JR, Whitmer JT, Rovetto MJ (1975) Effect of coronary blood flow on glycolytic flux and intracellular pH in isolated rat hearts. Circ Res 37:733–741

    Google Scholar 

  111. Neill WA, Krasnow N, Levine HJ, and Gorlin R (1963) Myocardial anaerobic metabolism in intact dogs. Am J Physiol 204:427–432

    Google Scholar 

  112. Nichols AB, Pearson MH, Sciacca RR, and Cannon PJ (1986) Left ventricular mechanical efficiency in coronary artery disease. J Am Coll Cardiol 7:270–279

    Google Scholar 

  113. Nicolosi AC, Weng Z-C, Detwiler PW, and Spotnitz HM (1990) Simulated left ventricular aneurysm and aneurysm repair in swine. J Thorac Cardiovasc Surg 100:745–755

    Google Scholar 

  114. Nizolek JA, Jacob R, and Gilmore JP (1971) Insignificance of activation pathway on myocardial oxygen consumption. Cardiovasc Res 5:343–346

    Google Scholar 

  115. Nozawa T, Yasumura Y, Futaki S, Tanaka N, Uenishi M, and Suga H (1988) Efficiency of energy transfer from pressure-volume area to external mechanical work increases with contractile state and decreases with afterload in the left ventricle of the anesthetized closed-chest dog. Circulation 77:1116–1124

    Google Scholar 

  116. Ohgoshi Y, Goto Y, Futaki S, Yaku H, Kawaguchi O, and Suga H (1991) Increased oxygen cost of contractility in stunned myocardium of dog. Circ Res 69:975–988

    Google Scholar 

  117. Opie LH (1976) Effects of regional ischemia on metabolism of glucose and fatty acids. Circ Res 38 Suppl I:I-52–I-68

    Google Scholar 

  118. Parrish MD, Payne A, and Fixler DE (1987) Global myocardial ischemia in the newborn, juvenile, and adult isolated isovolumic rabbit heart. Age-related differences in systolic function, diastolic stiffness, coronary resistance, myocardial oxygen consumption, and extracellular pH. Circ Res 61:609–615

    Google Scholar 

  119. Piene H, Sund T (1982) Does normal pulmonary impedance constitute the optimum load for the right ventricle? Am J Physiol 242:H154-H160

    Google Scholar 

  120. Pool BE, Chandler BM, Seagren SE, Sonnenblick EH (1968) Mechanochemistry of cardiac muscle II. The isotonic contraction. Circ Res 22:465–472

    Google Scholar 

  121. Pope B, Hoh JFY, Weeds A (1980) The ATPase activities of the rat cardiac myosin isoenzymes. FEBS Lett 118:205–208

    Google Scholar 

  122. Pouleur H, van Eyll C, van Mechelen H, Vuylsteke A, and Rousseau MF (1989) Effects of long-term xamoterol therapy on the left ventricular mechanical efficiency in patients with ischemic heart disease. Basic Res Cardiol 84 (suppl 1):158–162

    Google Scholar 

  123. Powell WJ, Powers ER, and Vlahakes GJ (1976) Observations on myocardial oxygen consumption in the hypoxic and ischemic canine heart. Circulation 53:173–175

    Google Scholar 

  124. Pozen RG, DiBianco R, Katz RJ, Bortz R, Meyerburg RJ, and Fletcher RD (1981) Myocardial metabolic and hemodynamic effects of dobutamine in heart failure complicating coronary artery disease. Circulation 63:1279–1285

    Google Scholar 

  125. Raab W, Van Lith P, Lepeschkin E, Herrlich HC, and Louis DA (1962) Catecholamine-induced myocardial hypoxia in the presence of impaired coronary dilatability independent of external cardiac work. Am J Cardiol 9:455–470

    Google Scholar 

  126. Rahimtoola SH (1985) A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 72 Suppl. V:V 123-V 135

    Google Scholar 

  127. Reissman KR and Van Citters RL (1956) Oxygen consumption and mechanical efficiency of the hypothermic heart. J Appl Physiol 9:427–430

    Google Scholar 

  128. Renstrom B, Nellis SH, and Liedtke AJ (1989) Metabolic oxidation of glucose during early myocardial reperfusion. Circ Res 65:1094–1101

    Google Scholar 

  129. Rodbard S, Williams F, and Williams C (1959) The spherical dynamics of the heart (myocardial tension, oxygen consumption, coronary blood flow and efficiency). Am Heart J 57:348–360

    Google Scholar 

  130. Rooke GA, Feigl EO (1982) Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res 50:273–286

    Google Scholar 

  131. Ross Jr J (1986) Cardiac efficiency and coronary heart disease. J Am Coll Cardiol 7:280–281

    Google Scholar 

  132. Ross Jr J (1991) Myocardial perfusion-contraction matching. Implications for coronary heart disease and hibernation. Circulation 83:1076–1083

    Google Scholar 

  133. Rovetto MJ, Whitmer JT, Neely JR (1973) Comparison of the effects of anoxia and whole heart ischemia on carbohydrate utilization in isolated working rat hearts. Circ Res 32:699–711

    Google Scholar 

  134. Rupp H (1983) The determinants of the calcium-dependent activation of myofibrils from rat heart as judged by myofibrillar adenosine triphosphatase and superprecipitation of natural actomyosin. Mol Physiol 3:249–263

    Google Scholar 

  135. Rupp H and Jacob R (1986) Correlation between total catecholamine content and redistribution of myosin isoenzymes in pressure loaded ventricular myocardium of the spontaneously hypertensive rat. Basic Res Cardiol 81 Suppl 1:147–155

    Google Scholar 

  136. Sako EY, Kingsley-Hickman PB, Robitaille PML et al. (1987) Adenosine triphosphate synthesis rates in the postischemic myocardium. Soc Magn Reson Med 1: 280 (Abstract)

    Google Scholar 

  137. Sarnoff SJ, Braunwald E, Welch GH, Case RB, Stainsby WN, and Macruz R (1958) Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension time index. Am J Physiol 192:148–156

    Google Scholar 

  138. Schaper W and Ito B. The energetics of “stunned” myocardium. Myocardial energy metabolism. Boston, Lancaster: Martinus Nijhoff Publishers Dordrecht, 1988:pp. 203–213

    Google Scholar 

  139. Scheuer J and Stezoski SW (1972) Effect of physical training on the mechanical and metabolic response of the rat heart to hypoxia. Circ Res 30:418–429

    Google Scholar 

  140. Schipke JD (1991) Down-Regulation und hibernierendes Myokard. Z Kardiol 80:703–711

    Google Scholar 

  141. Schipke JD, Burkhoff D, Kass A, Alexander Jr J, Schaefer J, and Sagawa K (1990) Hemodynamic dependence of myocardial oxygen consumption indexes. Am J Physiol 258:H1281-H1291

    Google Scholar 

  142. Schipke JD, Korbmacher B, Schwanke U, Sunderdiek U (1993) O2-utilization of the contractile apparatus is disturbed during reperfusion of postischemic myocardium. Faseb J 7:93 (Abstract)

    Google Scholar 

  143. Schott RJ, Rohmann S, Braun ER, Schaper W (1990) Ischemic preconditioning reduces infarct size in swine myocardium. Circ Res 66: 1133–1142

    Google Scholar 

  144. Schütz E (1958) Physiologie des Herzens Springer, Berlin, Göttingen, Heidelberg

    Google Scholar 

  145. Smith RE, Callicott C, Stewart JT, and Camm AJ (1991) Measurement of left ventricular heat production in man. Med Biol Eng Comput 29:149–154

    Google Scholar 

  146. Spitzer JJ, Bechtel AA, Archer LT, Black MR, Greenfield LJ, And Hinshaw LB (1975) Effects of coronary hypotension on myocardial substrate utilization. Am J Physiol 228:365–368

    Google Scholar 

  147. Starling EH and Visscher MB (1926) The regulation of the energy output of the heart. J Physiol 62:243–261

    Google Scholar 

  148. Stewart JT, Gray HH, Calicott C, Smith RE, and Camm AJ (1990) Heat production by the human left ventricle: measurement by a thermodilution technique. Cardiovasc Res 24:418–422

    Google Scholar 

  149. Suga H (1979) Total mechanical energy of a ventricle model and cardiac oxygen consumption. Am J Physiol 236:H498-H505

    Google Scholar 

  150. Suga H (1990) Ventricular energetics. Physiol Rev 70(2):247–277

    Google Scholar 

  151. Suga H, Goto Y, Igarashi Y, Yasumura Y, Nozawa T, Futaki S, and Tamaka N (1988) Cardiac cooling increases Emax without affecting relation between O2 consumption and systolic pressure-volume area in dog left ventricle. Circ Res 63:61–71

    Google Scholar 

  152. Suga H, Goto Y, Yasamura Y, Nozawa T, Futaki S, Tanaka N, and Uenishi M (1988) O2 consumption of dog heart under decreased coronary perfusion and propranolol. Am J Physiol 254:292–303

    Google Scholar 

  153. Suga H, Hisano R, Goto Y, Yamada O, and Igarashi Y (1983) Effect of positive inotropic agents on the relation between oxygen consumption and systolic pressure-volume area in canine left ventricle. Circ Res 53:306–318

    Google Scholar 

  154. Suga H, Hisano R, Hirata S, Hayashi T, Yamada O, Ninomiya I (1983) Heart rate-independent energetics and systolic pressure-volume area in dog heart. Am J Physiol 244:H206-H214

    Google Scholar 

  155. Suga H, Yamada O, Goto Y, Igarashi Y, Ishiguri H (1984) Constant mechanical efficiency of contractile machinery of canine left ventricle under different loading and inotropic conditions. Jap J Physiol 34:679–698

    Google Scholar 

  156. Suga H, Yamada O, Goto Y, Igarashi Y, Yasumura Y, Nozawa T, Futaki S (1987) Left ventricular O2 consumption and pressure-volume area in puppies. Am J Physiol 253:770-H776

    Google Scholar 

  157. Sugawara M, Tamiya K, and Nakano K (1985) Regional work of the ventricle: wall tension-area relation. Heart Vessels 1: 133–144

    Google Scholar 

  158. Sunagawa K, Maughan WL, Burkhoff D, and Sagawa K (1983) Left ventricular interaction with arterial load studied in isolated canine ventricle. Am J Physiol 245:H773-H780

    Google Scholar 

  159. Sunagawa K, Maughan WL, and Sagawa K (1985) Optimal arterial resistance for the maximal stroke work studied in isolated canine left ventricle. Circ Res 56:586–595

    Google Scholar 

  160. Sunderdiek U, Bergfeld I, Schwenen M, Arnold G, and Schipke JD (1992) Myocardial function and energy balance during reduced myocardial perfusion. Eur Heart J 13:438 (Abstract)

    Google Scholar 

  161. Sunderdiek U, Kantartzis M, Schipke JD, Schulte HD, Arnold G, and Bircks W (1992) Acute coronary occlusion: validity of different cardioprotective techniques for subsequent global ischemia studied in anesthetized pigs. J Cardiovasc Surg 33:42 (Abstract)

    Google Scholar 

  162. Sundram P, Reddy HK, McElroy PA, Janicki JS, and Weber KT (1990) Myocardial energetics and efficiency in patients with idiopathic cardiomyopathy: Response to dobutamine and amrinone. Am Heart J 119:891–898

    Google Scholar 

  163. Swynghedauw B, Schwartz K, and Léger JJ (1977) Cardiac myosin: Phylogenic and pathological changes. Basic Res Cardiol 72:254–260

    Google Scholar 

  164. Tada M and Katz AM (1982) Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Ann Rev Physiol 44:401–423

    Google Scholar 

  165. Tada M, Yamamoto T, Tonomura Y (1978) Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol Rev 58:1–79

    Google Scholar 

  166. Takaoka H, Takeuchi M, Odake M, Yokoyama M (1992) Assessment of myocardial oxygen consumption (VO2) and systolic pressure-volume area (PVA) in human hearts. Eur Heart J 13 (Suppl E):85–90

    Google Scholar 

  167. Takayasu T, Toyo-oka T, Hosoda S (1990) Waste of ATP for tension development in myocardial acidosis: chemomechanical uncoupling at myofibrillar level. J Mol Cell Cardiol 22:127–130

    Google Scholar 

  168. Takeda N, Dominiak P, Türck D, Rupp H, and Jacob R (1985) The influence of endurance training on mechanical catecholamine responsiveness, β-adrenergic density and myosin isoenzyme pattern of rat ventricular myocardium. Basic Res Cardiol 80:88–99

    Google Scholar 

  169. Taylor RR, Cingolani HE, Graham TP and Clancy RL (1967) Myocardial oxygen consumption, left ventricular fibre shortening and wall tension. Cardiovasc Res 1:219–228

    Google Scholar 

  170. ten Velden GHM, Elzinga G, and Westerhof N (1982) Left ventricular energetics: heat loss and temperature distribution of canine myocardium. Circ Res 50:63–73

    Google Scholar 

  171. Thierfelder L, Holubarsch C, Hasenfuss G, Heiß HW, and Just H (1991) The effect of the partial beta-I-adrenoceptor agonist xamoterol on hemodynamics and myocardial energetics in patients with idiopathic dilated cardiomyopathy. J Cardiovasc Pharmacol 17:593–599

    Google Scholar 

  172. Tompson DS, Naqvi N, Juul SM, Swanton RH, Wilmshurst P, Coltart DJ, Jenkins BS, and WebbPeploe MM (1982) Cardiac work and myocardial substrate extraction in congestive cardiomyopathy. Br Heart J 47:130–136

    Google Scholar 

  173. Toorop GP, van den Horn GJ, Elzinga G, and Westerhof N (1988) Matching between feline left ventricle and arterial load: optimal external power or efficiency? Am J Physiol 254:H279-H285

    Google Scholar 

  174. Walley KR, Becker CJ, Hogan RA, Teplinsky K, and Wood LDH (1988) Progressive hypoxemia limits left ventricular oxygen consumption and contractility. Circ Res 63:849–859

    Google Scholar 

  175. Wang W, Chen J-S, Zucker IH (1990) Carotid sinus baroreceptor sensitivity in experimental heart failure. Circulation 81:1959–1966

    Google Scholar 

  176. Wannenburg T, Schulman SP, Burkhoff D (1992) End-systolic pressure-volume and MVO2-pressurevolume area relations of isolated rat hearts. Am J Physiol 262:1287–1293

    Google Scholar 

  177. Weber KT, Janicki JS, Sundram P (1989) Myocardial energetics: experimental and clinical studies to address its determinants and aerobic limit. Basic Res Cardiol 84 (suppl 1):237–246

    Google Scholar 

  178. Weiss HR, Neubauer JA, Lipp JA, and Sinha AK (1978) Quantitative determination of regional oxygen consumption in the dog heart. Circ Res 42:394–401

    Google Scholar 

  179. Welch GH, Braunwald E, Case RB, and Sarnoff SJ (1958) The effect of mephentermine sulfate on myocardial oxygen consumption, myocardial efficiency, and peripheral vascular resistance. Am J Med 25:871–881

    Google Scholar 

  180. Willebrands AF and van der Veen KJ (1967) Influence of substrate on oxygen consumption of isolated perfused rat heart. Am J Physiol 212:1529–1535

    Google Scholar 

  181. Winegrad S, Weisberg A, Er Lin L, and Mc Clellan G (1986) Adrenergic regulation of myosin adenosine triphosphatase activity. Circ Res 58:83–95

    Google Scholar 

  182. Wolff MR, deTombe PP, Harasawa Y, Burkhoff D, Bier S, Hunter WC, Gerstenblith G, and Kass DA (1992) Alterations in left ventricular mechanics, energetics, and contractile reserve in experimental heart failure. Circ Res 70:516–529

    Google Scholar 

  183. Yonekura Y, Brill AB, Som P, Yamamoto K, Srivastava SC, Iwai J, Elmaleh DR, Livni E et al. (1985) Regional myocardial substrate uptake in hypertensive rats: a quantitative autoradiographic measurement. Science 227:1494–1496

    Google Scholar 

  184. Yun KL, Niczyporuk MA, Sarris GE, Fann JI, and Miller DC (1991) Importance of mitral subvalvular apparatus in terms of cardiac energetics and systolic mechanics in the ejecting canine heart. J Clin Invest 87:247–254

    Google Scholar 

  185. Zweier JL and Jacobus WE (1987) Substrate-induced alterations of high energy phosphate metabolism and contractile function in the perfused heart. J Biol Chem 262:8015–8021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schipke, J.D. Cardiac efficiency. Basic Res Cardiol 89, 207–240 (1994). https://doi.org/10.1007/BF00795615

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00795615

Key words

Navigation