Skip to main content
Log in

Particle adhesion in coagulation and bridging flocculation

  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The adhesive forces between solid particles mutually attached during coagulation or bridging flocculation are important for modelling floc stability. Results are presented in this study which are obtained from experiments on the adhesion of glass or quartz particles to a flat glass substrate (centrifugal method) or to the wall of a glass capillary through which an aqueous electrolyte solution was passed. Coagulation experiments carried out in 10−2 mole/1 MgCl2 showed the action of hydration layers on hydrophilic surfaces, whereas surface methylation is associated with adhesion in the inner potential minimum. In addition essential ageing effects interpreted as interparticle gelation were observed, especially on the interaction of alkali glass surfaces. Adhesive strength in the case of flocculation with hydrolysed polyacrylamide and a cationic Praestol mainly depends on the polymer concentration and on the preadsorption conditions before the particle-substrate attachment. A significant strengthening of adhesion due to reconformation of the bridging agents was not observed for a contact time greater than 3 min. The effect of steric stabilization with polymer overdosing could be proved by a special preparation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parker DS, Kaufman WJ, Jenkins D (1971) J Water Pollut Control Fed 43:1817

    Google Scholar 

  2. Tambo N, Hozumi H (1979) Water Resarch 13:421

    Google Scholar 

  3. Glasgow LA, Luecke RH (1980) Ind Eng Chem Fund 19:148

    Google Scholar 

  4. Pandya JD, Spielman LA (1982) J Coll & Interf Sci 90:517

    Google Scholar 

  5. Rumpf H (ed) (1962) Knepper WA, Agglomeration, Interscience, New York, p 379

    Google Scholar 

  6. Firth BA, Hunter RJ (1976) J Coll & Interf Sci 57:248, 266

    Google Scholar 

  7. Mühle K, Schulze HJ, Stechemesser H, Ivanauskas A (1982) Transactions Instn Min Metall, Sect C: Mineral Process Extr Metall 91:C112

    Google Scholar 

  8. Mühle K, Ivanauskas A, Neeße Th (1983) Chem Ing Tech 55:788

    Google Scholar 

  9. Czarnecki J, Dabroś T (1980) J Coll & Interf Sci 78:25

    Google Scholar 

  10. van Blokland PHGM, Overbeck JThG (1979) J Coll & Interf Sci 68:96

    Google Scholar 

  11. Pashley RM (1981) J Coll & Interf Sci 80:153, 83:531

    Google Scholar 

  12. Peschel G, Belouschek P, Müller MM et al (1982) Coll & Polym Sci 260:444

    Google Scholar 

  13. Rabinovich YaI, Derjaguin BV, Churaev NV (1982) Advances in Coll & Interf Sci 16:63

    Google Scholar 

  14. Ruehrwein RA, Ward DW (1952) Soil Sci 73:485

    Google Scholar 

  15. La Mer VK, Smellie RH (1956) J Coll Sci 11:710

    Google Scholar 

  16. Healy TW, La Mer VK (1962) J Phys Chem 66:1835

    Google Scholar 

  17. La Mer VK, Healy TW (1963) Reviews of Pure Applied Chemistry 13:112

    Google Scholar 

  18. Fleer GJ, Koopal LK, Lyklema AJ (1972) Koll Z & 2 Polym 250:689

    Google Scholar 

  19. Hesselink FTh (1971) J Phys Chem 75:65

    Google Scholar 

  20. Di Marzio EA, Rubin RJ (1971) J Chem Phys 55:4318

    Google Scholar 

  21. Clark AT, Lal M (1978) J Chem Soc Farad Trans II 74:1857

    Google Scholar 

  22. Clark AT, Lal M (ed) (1981) Tadros TF, The effect of polymers on dispersion properties, Papers of Int Symposium of Soc Chem Ind, Sept 21–23, Academic Press, London, p 131

    Google Scholar 

  23. Smith DKW, Kitchener JA (1978) Chem Engineering Sci 33:1631

    Google Scholar 

  24. Pelton RH (1982) Colloid and Surfaces 4:397

    Google Scholar 

  25. Mühle K, Domasch K (1980) Coll & Polym Sci 258:1391

    Google Scholar 

  26. Domasch K, Mühle K (1982) Chemische Technik 34:360

    Google Scholar 

  27. van Voorst Vader F, Dekker H (1976) Proc VIIth Int Congr on Surface Active Substances, Sept 12–18, Moscow, Paper nr 147, group B/4

  28. van Voorst Vader F, Dekker H (1981) J Coll & Interf Sci 83:377

    Google Scholar 

  29. Hesselink FTh (1977) J Coll & Interf Sci 60:448

    Google Scholar 

  30. Fleer GJ, Scheutjens JMHM (1982) Advances in Coll & Interf Sci 16:341

    Google Scholar 

  31. Scheutjens JMHM, Fleer GJ (1979) J Phys Chem 83:1619, (1980) 84:178

    Google Scholar 

  32. Hoeve CAJ (1971) J Polym Sci, Part C, London 34:1

    Google Scholar 

  33. Lal M, Stepto RFT (1977) J Polym Sci, Polym Symp 61:401

    Google Scholar 

  34. Eirich RF (1977) J Coll & Interf Sci 58:423

    Google Scholar 

  35. Di Marzio EA, Mc Crackin FL (1965) J Chem Phys 43:539

    Google Scholar 

  36. Hamaker HC (1937) Physica 4:1058

    Google Scholar 

  37. Derjaguin BV (1934) Kolloid Zhurn 69:155

    Google Scholar 

  38. Böhme G, Kling W, Krupp H (1964) Z Angew Physik 16:486, (1965) 19:259

    Google Scholar 

  39. Visser J (1973) Ph D thesis, Council for National Academic Awards, London

    Google Scholar 

  40. Yoshimura Y, Ueda K, Mori F et al (1979) Kagaku Kogaku Ronbunshu 5:205

    Google Scholar 

  41. van den Tempel M (1972) Advances in Coll & Interf Sci 3:137

    Google Scholar 

  42. Mühle K, Domasch K, Neeße Th (1982) Chemische Technik 34:14

    Google Scholar 

  43. Goldman AJ, Cox RG, Brenner H (1967) Chem Engineering Sci 22:653

    Google Scholar 

  44. Visser J (1968) Progr Appl Chem 53:714

    Google Scholar 

  45. Visser J (1970) J Coll & Interf Sci 34:26

    Google Scholar 

  46. Visser J (1976) J Coll & Interf Sci 55:664

    Google Scholar 

  47. O'Neill ME (1968) Chem Engineering Sci 23:1293

    Google Scholar 

  48. Bender F (1969) Chem Ing Tech 32:682

    Google Scholar 

  49. van Diemen AJG, Stein HN (1982) J Coll & Interf Sci 86:318

    Google Scholar 

  50. Mühle K, Domasch K (1980) Coll & Polym Sci 258:1296

    Google Scholar 

  51. Dunken HH et al (1980) Physikalische Chemie der Glasoberfläche, VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, p 303

    Google Scholar 

  52. Stein HN (1979) Advances in Coll & Interf Sci 11:67

    Google Scholar 

  53. Derjaguin BV, Rabinovich YaI, Churaev NV (1978) Nature 272:313

    Google Scholar 

  54. Grauer Z, Daniel H, Avnir D (1983) J Coll & Interf Sci 96:411

    Google Scholar 

  55. Clark SW, Cooke SRB (1968) Trans Soc Min Eng AIME 241:334

    Google Scholar 

  56. Foissy A, El Attar A, La Marche JM (1983) J Coll & Interf Sci 96:275

    Google Scholar 

  57. Gebhardt JE, Fuerstenau DW (1983) Colloid and Surfaces 7:221

    Google Scholar 

  58. Gregory J (1973) J Coll & Interf Sci 42:448

    Google Scholar 

  59. Klute R (1977) Thesis, Fakultät für Bauingenieur- und Vermessungswesen der Universität Karlsruhe

  60. Levich VG (1962) Physicochemical hydrodynamics, Prentice-Hall, Inc Englewood Cliffs, New Jersey, p 112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publication no. 922 from the Research Institute of Mineral Processing of the Academy of Sciences of German Democratic Republic, Freiberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühle, K. Particle adhesion in coagulation and bridging flocculation. Colloid & Polymer Sci 263, 660–672 (1985). https://doi.org/10.1007/BF01419891

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01419891

Key words

Navigation