Skip to main content
Log in

Thermodynamics of adsorption of acetone on active carbon supported metal adsorbents

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Adsorption of acetone on active carbon and active carbon supported metals (Ni, Cu, Zn and Cd) have been studied as a function of temperature. Thermodynamic parameters such as ΔG 0, ΔH 0, and ΔS 0 are calculated from virial and Langmuir isotherm expressions. It is observed that active carbon supported metals have more adsorption affinity for acetone as compared to active carbon. Results show that the increase in adsorption affinity for active carbon supported metals is not due to configurational factors affecting the entropy of adsorption, but because of enhanced enthalpy of adsorption. XRD spectra show that active carbon supported metals adsorbents are amorphous and metal residues are present on the surface of active carbon in its reduced form. From adsorption data, isosteric heats and molar entropies of adsorption were calculated as a function of coverages and temperature. The values of isosteric heats of adsorption were found to be higher for active carbon supported metals, which may be due to the chemisorption of adsorbate molecules with metal sites present on the surface of active carbon. The extent of coordination of adsorbate molecules with metal sites is discussed on the basis of the acidic character of metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suda Y, Morimoto T, Nagao M (1987) Langmuir 3:99

    Google Scholar 

  2. Ruthven DM, Raghavan NS, Hassan MM (1986) Chem Eng Sci 41:1325

    Google Scholar 

  3. Koresh JE, Sofer A (1983) Sep Sci Technol 18:723

    Google Scholar 

  4. Hassan MM, Raghavan NS, Ruthven DM (1987) Chem Eng Sci 42:2037

    Google Scholar 

  5. Grunewald GC, Drago RS (1990) J Mol Catal 58:227

    Google Scholar 

  6. Song G, Jiang Z (1987), Sepu 5:58

    Google Scholar 

  7. Surinova SI, Kostomarova MA, Petokhov SS (1987) Zh Prikl Khim (Leningrad) 60:640

    Google Scholar 

  8. Gerald GC, Russel SD (1991) J Am Chem Soc 113:1639

    Google Scholar 

  9. Arai H, Uehara K, Kinoshita S, Kunug T (1972) Ind Eng Chem Prod Res Develop 11:308

    Google Scholar 

  10. Cilense M, Banedetti AV, Jafelicci JM, Varela JA, Varela JA, DaCosta RA (1984) Electrca Quim 9:23

    Google Scholar 

  11. Berg R, Gulfrandsen AH, Neefjes GA (1977) Rev Port Quim 19 (1–4):378

    Google Scholar 

  12. Hammerstorm JL, Sacco A (1986) J Catal 110(2):293

    Google Scholar 

  13. Hirai H, Wada K, Komiyama M (1986) Bull Chem Soc Jpn 59:1043

    Google Scholar 

  14. Dollimore D, Heal GR (1964) J Appl Chem (London) 14:109

    Google Scholar 

  15. Anderson MW, Klinowski J (1986) J Chem Soc Faraday Trans I 82:3569

    Google Scholar 

  16. Barrer RM, Gibbons RM (1963) Trans Faraday Soc 59:2875

    Google Scholar 

  17. Barrer RM, Davis JA (1980) Proc R Soc London Ser A 320:289

    Google Scholar 

  18. Bezus AG, Kiselev AV, Sedlacek Z, Pham Quang Du (1971) Trans Faraday Soc 67:468

    Google Scholar 

  19. Barrer RM, Davis JA (1971) Proc Roy Soc Ser A 322:1

    Google Scholar 

  20. Bye GC, McEnvoy M, Malati MA (1982) J Chem Biotechnol 32:781

    Google Scholar 

  21. Mustafa S, Hussain SY, Rehana N, Alamzeb (1989) Solven Extract Ion Exch 7(4):705

    Google Scholar 

  22. Jaroneic M, Patrykiejew A, Borowko M (1979) Z Phys Chem 260(2):221

    Google Scholar 

  23. Harai H, Wada K, Komiyama M (1986) Bull Chem Soc Jpn 59:2217

    Google Scholar 

  24. Siedlewski J, Rychliki G (1975) Prezern Chem 54(6):334

    Google Scholar 

  25. Davies JA, Hartley FR (1981) Chem Rev 81:79

    Google Scholar 

  26. Denuth JE, Ibach H (1979) Chem Phys Letters 60:395

    Google Scholar 

  27. Johnson S, Madix RJ (1981) Surface Sci 103:361

    Google Scholar 

  28. Bare SR, Stroscio JA (1985) Surface Sci 150:399

    Google Scholar 

  29. Wach IH, Madix RJ (1978) J Catalysis 53:208

    Google Scholar 

  30. Sexton BA (1979) Surface Sci 88:299

    Google Scholar 

  31. Wach IH, Madix RJ (1978) Surface Sci 76:531

    Google Scholar 

  32. Kojima I, Sugihera H, Miyazak, Yasumoi I (1981) J Chem Soc Faraday Trans I 77:1315

    Google Scholar 

  33. Avery Neil A (1983) Surface Sci 125:771

    Google Scholar 

  34. Sexton BA, Hughes AE (1984) Surface Sci 140:227

    Google Scholar 

  35. Afzal M, Jaffar M, Yasmin S (1977) Colloid Polym Sci 255:252

    Google Scholar 

  36. Afzal M (1971) Kolloid ZUR Polymere 248:1026

    Google Scholar 

  37. Afzal M, Ahmed J (1975) Colloid Polym Sci 253:635

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afzal, M., Mahmood, F. & Saleem, M. Thermodynamics of adsorption of acetone on active carbon supported metal adsorbents. Colloid Polym Sci 270, 917–926 (1992). https://doi.org/10.1007/BF00657737

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00657737

Key words

Navigation