Skip to main content
Log in

Dopamine D2 receptor binding and cerebral glucose metabolism recover afterd-penicillamine-therapy in Wilson's disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Regional cerebral glucose metabolism (rCMRGlc) and dopamine D2 receptor binding were measured in a 31-year-old, severely affected, untreated patient with Wilson's disease of 3 years' duration using positron emission tomography and18F-deoxyglucose and18F-methylspiperone ([18F]MSP), respectively. There was a severe reduction of striatal and extrastriatal rCMRGlc as well as of striatal [18F]MSP accumulation rate. After 1 year of treatment withd-penicillamine, striatal and extrastriatal rCMRGlc and striatal [18F]MSP accumulation rate reached almost normal levels. It is hypothesized that recovery of motor functions due to copper trapping therapy was associated with an increase in basal ganglia activity and a re-expression or upregulation of dopamine D2 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Horoupian DS, Sternlieb I, Scheinberg IH (1988) Neuropathological findings in penicillamine-treated patients with Wilson's disease. Clin Neuropathol 7:62–67

    Google Scholar 

  2. Scheinberg IH, Sternlieb I (1984) Wilson's disease. In: Smith LH (ed) Major problems in internal medicine, vol 23. Saunders, Philadelphia

    Google Scholar 

  3. Walshe JM, Gibbs KR (1987) Brain copper in Wilson's disease. Lancet II:1030

    Google Scholar 

  4. Hawkins RA, Mazziotta JC, Phelps ME (1987) Wilson's disease studied with FDG and PET. Neurology 37:1707–1711

    Google Scholar 

  5. De Volder A, Sindic CJ, Goffinet AM (1988) Effect ofd-penicillamine treatment on brain metabolism in Wilson's disease: a case study. J Neurol Neurosurg Psychiatry 51:947–949

    Google Scholar 

  6. Kuwert T, Hefter H, Scholz D, Milz M, Weiss P, Arendt G, Herzog H, Loken M, Hennerici M, Feinendegen LE (1992) Regional cerebral glucose consumption measured by positron emission tomography in patients with Wilson's disease. Eur J Nucl Med 19:96–101

    Google Scholar 

  7. Baron JC, Mazière B, Loc'h C et al (1986) Loss of striatal [76Br]bromospiperone binding sites demonstrated by positron emission tomography in progressive supranuclear palsy. J Cereb Blood Flow Metab 6:131–136

    Google Scholar 

  8. Pascual J, Berciano J, Grijalba B, Olmo E del, Gonzales AM, Figols J, Pazos A (1992) Dopamine D1 and D2 receptors in progressive supranuclear palsy: an autoradiographic study. Ann Neurol 32:703–707

    Google Scholar 

  9. Brooks DJ, Ibanez V, Playford ED, Sawle GV, Leigh PN, Kocen RS, Harding AE, Marsden CD (1991) Presynaptic and postsynaptic striatal dopaminergic function in neuroacanthocytosis: a positron emission tomographic study. Ann Neurol 30:166–171

    Google Scholar 

  10. Brooks DJ, Ibanez V, Sawle GV, Playford ED, Quinn N, Mathias CJ, Lees AJ, Marsden CD, Bannister R, Frackowiak RSJ (1992) Striatal D2 receptor status in patients with Parkinson's disease, striatonigral degeneration, and progressive supranuclear palsy, measured with11C-raclopride and positron emission tomography. Ann Neurol 31:184–192

    Google Scholar 

  11. Nagatsu T, Kato T, Nagatsu I, et al (1979) Catecholamine-related enzymes in the brain of patients with parkinsonism and Wilson's disease. In: Poirer LJ, Sourkes TL, Bedard PJ (eds) Advances in neurology, vol 24. Raven Press, New York, pp 283–292

    Google Scholar 

  12. Nyberg P, Gottfries CTG, Homgreen G, Perrson S, Roos BE, Winblad B (1982) Advanced catecholaminergic disturbances in the brain in a case of Wilson's disease. Acta Neurol Scand 65:71–75

    Google Scholar 

  13. Walshe JM (1956) Penicillamine: a new oral therapy for Wilson's disease. Am J Med 21:487–495

    Google Scholar 

  14. Walshe JM (1982) Treatment of Wilson's disease with trientine (triethylene tetramine) dihydrochloride. Lancet I:643–647

    Google Scholar 

  15. Walshe JM (1983) Wilson's disease: genetics and biochemistry — their relevance to therapy (Hudson memorial lecture). J Inherited Metab Dis 6 [Suppl 1]:51–58

    Google Scholar 

  16. Hefter H, Arendt G, Stremmel W, Freund H-J (1993) Motor impairment in Wilson's disease. I. Slowness of voluntary limb movements. Acta Neurol Scand 87:133–147

    Google Scholar 

  17. Rota Kops E, Herzog H, Schmid A, Holte S, Feinendegen LE (1990) Performance characteristics of an eightring whole body PET scanner. J Comput Assist Tomogr 14:437–445

    Google Scholar 

  18. Hamacher K, Coenen HH, Stöcklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-[18F]fluoro2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235–238

    Google Scholar 

  19. Huang S-C, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am Physiol Soc E69–E82

  20. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE (1979) Tomographic measurement of local cerebral glucose metabolic rate in humans with [F-18]2-fluoro-2-deoxy-d-glucose: validation of method. Ann Neurol 6:371–388

    Google Scholar 

  21. Reivich M, Alavi A, Wolf A, Fowler J, Russel J, Arnett C, MacGregor RR, Shine C-Y, Atkins H, Anand A, Dann R, Greenberg JH (1985) Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]Fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab 5:179–192

    Google Scholar 

  22. Greitz T, Bohm C, Holte S, Eriksson L (1991) A computerized brain atlas: construction, anatomical content, and some applications. J Comput Assist Tomogr 15:26–38

    Google Scholar 

  23. Hamacher K, Nebeling B, Coenen HH, Stöcklin G (1991) [18F]Methylspiper-one: direct n.c.a. nucleophilic [18F]fluorination of N-methyl-4-nitrospiperone for remote controlled routine production of n.c.a. [18F]MSP. J Labelled Compd Radiopharm 30:353–354

    Google Scholar 

  24. Patlak CS, Blasberg RG, Fenstermacher JD (1983) Graphical evaluation of blood-to-brain transfer constants from multiple time uptake data. J Cereb Blood Flow Metab 3:1–7

    Google Scholar 

  25. Arnett CD, Shine C-Y, Wolf AP, et al (1985) Comparison of three 18F-labeled butyrophenone neuroleptic drugs in the baboon using positron emission tomography. J Neurochem 44:835–844

    Google Scholar 

  26. Arnett CD, Wolf AP, Shine C-Y, Fowler JS, MacGregor RR, Christman DR, Smith MR (1986) Improved delineation of human dopamine receptors using [18F]-N-Methylspiroperidol and PET. J Nucl Med 27:1878–1882

    Google Scholar 

  27. Wienhard K, Coenen HH, Pawlik G, Rudolf J, Laufer P, Jovkar S, Stöcklin G, Heiss W-D (1990) PET studies of dopamine receptor distribution using (18F)fluoroethylspiperone: findings in disorders related to the dopaminergic system. J Neural Transm 81:195–213

    Google Scholar 

  28. Williams FIB, Walshe JM (1981) Wilson's disease: an analysis of the cranial computerized tomography appearances found in 60 patients and the changes in response to treatment with chelating agents. Brain 104:735–752

    Google Scholar 

  29. Starosta-Rubinstein S, Young AB, Kluin K, Hill G, Aisen AM, Gabrielsen T, Brewer GJ (1987) Clinical assessment of 31 patients with Wilson's disease. Correlations with structural changes on magnetic resonance imaging. Arch Neurol 44:365–370

    Google Scholar 

  30. Lingam S, Wilson J, Nazer H, Mowat AP (1987) Neurological abnormalities in Wilson's disease are reversible. Neuropediatrics 18:11–12

    Google Scholar 

  31. Meyer B-U, Britton TC, Benecke R (1991) Wilson's disease: normalisation of cortically evoked motor responses with treatment. J Neurol 238:327–330

    Google Scholar 

  32. Linne T, Agatz I, Saaf J, Wáhlund LO (1990) Cerebral abnormalities in Wilson's disease as evaluated by ultralow-field magnetic resonance imaging and computerized image processing. Magn Reson Imaging 8:819–824

    Google Scholar 

  33. Ikeda K, Sakata C, Nemoto H, Yokoi F, Sunohara N, Iio M (1991) Clinicoradiological correlation of Wilson's disease by magnetic resonance imaging, computed and positron emission tomography. Rinsho Shinkeigaku 31:147–153

    Google Scholar 

  34. Prayer L, Wimberger D, Kramer J, Grimm G, Oder W, Imhof H (1990) Cranial MRI in Wilson's disease. Neuroradiology 32:211–214

    Google Scholar 

  35. Lockwood AH, Yap EWH, Rhoades HM, Wong W-H (1991) Altered cerebral blood flow and glucose metabolism in patients with liver disease and minimal encephalopathy. J Cereb Blood Flow Metab 11:331–336

    Google Scholar 

  36. Thuomas KÅ, Aquilonius SM, Bergström K, Westermark K (1993) Magnetic resonance imaging of the brain in Wilson's disease. Neuroradiology 35:134–141

    Google Scholar 

  37. Brugieres P, Combes C, Ricolfi F, Degos JD, Poirier J, Gaston A (1992) Atypical MR presentation of Wilson disease: a possible consequence of paramagnetic effect of copper? Neuroradiology 34:222–224

    Google Scholar 

  38. Snow BJ, Bhatt M, Martin WRW, Li D, Calne DB (1991) The nigrostriatal dopaminergic pathway in Wilson's disease studied with positron emission tomography. J Neurol Neurosurg Psychiatry 54:12–17

    Google Scholar 

  39. Oertel WH, Tatsch K, Schwarz J, Kraft E, Trenkwalder C, Scherer J, Weinzierl M, Vogl T, Kirsch CM (1992) Decrease of D2 receptors indicated by 1231-iodobenzamide single-photon emission computed tomography relates to neurological deficit in treated Wilson's disease. Ann Neurol 32:743–748

    Google Scholar 

  40. Schlang G, Kleinschmidt A, Hefter H, Kuwert T, Nebeling B, Stöcklin G, Seitz RJ (1993) Dopamine D2-receptor distribution and cerebral glucose metabolism in Wilson's disease. J Cereb Blood Flow Metab 13 [Suppl 1]:S389

    Google Scholar 

  41. Wong DF, Wagner HN, Dannals RF, Links JM, Frost JJ, Ravert HT, Wilson AA, Rosenbaum AE, Gjedde A, Douglass KH, Petronis JD, Folstein MF, Toung JKT, Burns HD, Kuhar MJ (1984) Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 226:1393–1396

    Google Scholar 

  42. Maura G, Giardi A, Raiteri M (1988) Release-regulating D-2 dopamine receptors are located on striatal glutamatergic nerve terminals. J Pharmacol Exp Ther 247:680–684

    Google Scholar 

  43. Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Ann Rev Neurosci 15:285–320

    Google Scholar 

  44. Leenders KL, Aquilonius SM, Bergström K, et al (1988) Unilateral MPTP lesion in a rhesus monkey: effects on the striatal dopaminergic system measured in vivo with PET using various novel tracers. Brain Res 445:61–67

    Google Scholar 

  45. Savasta M, Dubois A, Benavides J, Scatton B (1988) Different plasticity changes in D1 and D2 receptors in the rat striatal subregions following impairment of dopaminergic transmission. Neurosci Lett 85:119

    Google Scholar 

  46. Weihmuller FB, Bruno JP, Neff NH, Hadjiconstantinou M (1990) Dopamine receptor plasticity following MPTP-induced nigrostriatal lesions in the mouse. Eur J Pharmacol 180:369–372

    Google Scholar 

  47. Przedborski S, Jackson-Lewis V, Popilskis S, Kostic V, Levivier M, Fahn S, Cadet JL (1991) Unilateral MPTP-induced parkinsonism in monkeys. A quantitative autoradiographic study of dopamine D1 and D2 receptors and reuptake sites. Neurochirurgie 37:377–382

    Google Scholar 

  48. Walshe JM (1988) Diagnosis and treatment of presymptomatic Wilson's disease. Lancet II:435–437

    Google Scholar 

  49. Brewer GJ, Yuzbasiyan-Gurkan V (1992) Wilson disease. Medicine (Baltimore) 71:139–164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlaug, G., Hefter, H., Nebeling, B. et al. Dopamine D2 receptor binding and cerebral glucose metabolism recover afterd-penicillamine-therapy in Wilson's disease. J Neurol 241, 577–584 (1994). https://doi.org/10.1007/BF00920620

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00920620

Key words

Navigation