Skip to main content

Advertisement

Log in

Three-dimensional topographic analysis of spinal accessory motoneurons under chronic mechanical compression: an experimental study in the mouse

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

We investigated the effect of chronic mechanical compression of the cervical spinal cord on the number of spinal accessory motoneurons in 25 tiptoe-walking Yoshimura mice. The animals had calcified deposits in the atlantoaxial membrane at the C1-C2 vertebral level, compressing the spinal cord posterolaterally. Motoneurons of the spinal accessory nerve between C1 and C5 segments were labelled using wheat germ agglutinin-horseradish peroxidase (WGA-HRP) injected into the sternocleidomastoid muscles. The counted cells were processed into a three-dimensional computer display to analyse the cytoarchitectonic changes caused by external cord compression. The number of WGA-HRP-labelled spinal accessory motoneurons was significantly reduced on the affected side. The number of motoneurons in compromised C2 and C3 cord segments correlated linearly with the extent of mechanical compression, but no such relationship was present on the contralateral side. There was an increase in the number of WGA-HRP-labelled spinal accessory motoneurons in the medial cell pools of the anterior grey horn at a level most rostral to the compression, and in the ventrolateral cell pools at levels immediately rostral to the compression. Our findings suggest that the spinal accessory motoneurons translocate rostral to the area of external compression in order to avoid mechanical injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Mefty O, Harkey HL, Marawi I, Haines DE, Peeler DF, Wilner HI, Smith RR, Haladay HR, Haining JL, Russel WF, Harrison B, Middleton TY (1993) Experimental chronic compressive myelopathy. J Neurosurg 79: 550–561

    Article  CAS  Google Scholar 

  2. Baba H, Kawahara N (1995) Spinal cord evoked potential monitoring in orthopaedic spinal surgery. In: Dimitrijevic MR, Halter JA (eds) Atlas of human spinal cord evoked potentials. Butterworth Heinemann, Boston, pp 123–131

    Google Scholar 

  3. Baba H, Maezawa Y, Kawahara N, Tomita K, Furusawa N, Imura S (1993) Calcium crystal deposition in the ligamentum flavum of the cervical spine. Spine 18: 2174–2181

    Article  CAS  Google Scholar 

  4. Baba H, Furusawa N, Tanaka Y, Wada M, Imura S, Tomita K (1994) Anterior decompression and fusion for cervical myeloradiculopathy secondary to ossification of the posterior longitudinal ligament. Int Orthop 18: 204–209

    CAS  PubMed  Google Scholar 

  5. Baba H, Furusawa N, Chen Q, Imura S, Tomita K (1995) Anterior decompressive surgery for cervical ossified posterior longitudinal ligament causing myeloradiculopathy. Paraplegia 33: 18–24

    CAS  PubMed  Google Scholar 

  6. Baba H, Furusawa N, Chen Q, Imura S (1995) Cervical laminoplasty in patients with ossification of the posterior longitudinal ligaments. Paraplegia 33: 25–29

    CAS  PubMed  Google Scholar 

  7. Baba H, Imura S, Kawahara N, Nagata S, Tomita K (1995) Osteoplastic laminoplasty for cervical myeloradiculopathy secondary to ossification of the posterior longitudinal ligament. Int Orthop 19: 40–45

    CAS  PubMed  Google Scholar 

  8. Baba H, Chen Q, Uchida K, Imura S, Morikawa S, Tomita K (1996) Laminoplasty with foraminotomy for coexisting cervical myelopathy and unilateral radiculopathy: a preliminary report. Spine 21: 196–202

    Article  CAS  Google Scholar 

  9. Baba H, Maezawa Y, Imura S, Kawahara N, Nakahashi K, Tomita K (1996) Quantitative analysis of the spinal cord motoneuron under chronic compression: an experimental observation in the mouse. J Neurol 243: 109–116

    Article  CAS  Google Scholar 

  10. Baba H, Maezawa Y, Imura S, Kawahara N, Tomita K (1996) Spinal cord evoked potential monitoring for cervical and thoracic compressive myelopathy. Paraplegia 34: 100–106

    CAS  PubMed  Google Scholar 

  11. Barber RP, Phelps PE, Houser CR, Crawford GD, Salvaterra RP, Vaughn JE (1984) The morphology and distribution of neurons containing choline acetyltransferase in the adult rat spinal cord: an immunohistochemical study. J Comp Neurol 229: 329–346

    Article  CAS  Google Scholar 

  12. Benzel EC, Lancon JA, Thomas MM, Beal JA, Hoffpauir GM, Kesterson L (1990) A new rat spinal cord injury model: a ventral compression technique. J Spinal Disord 3: 334–338

    CAS  PubMed  Google Scholar 

  13. Berghausen EJ, Balogh K, Landis WJ, Lee DD, Wright AM (1987) Cervical myelopathy attributable to pseudogout. Case report with radiologic, histologic, and crystallographic observations. Clin Orthop 214: 217–221

    Google Scholar 

  14. Brichta AM, Callister BJ, Peterson EH (1987) Quantitative analysis of cervical musculature in rats: histochemical composition and motor pool organization. I. Muscles and the spinal accessory complex. J Comp Neurol 255: 351–368

    Article  CAS  Google Scholar 

  15. Fujiwara K, Yonenobu K, Hiroshima K, Ebara S, Yamashita K, Ono K (1988) Morphometry of the cervical spinal cord and its relation to pathology in cases with compression myelopathy. Spine 13: 1212–1216

    Article  CAS  Google Scholar 

  16. Fukushima T, Ikata T, Taoka Y, Takata S (1991) Magnetic resonance imaging study on spinal cord plasticity in patients with cervical compression myelopathy. Spine 16 [Suppl]: S534-S538

    Article  CAS  Google Scholar 

  17. Hankey G, Khangure MS (1988) Cervical myelopathy due to calcification of the ligamentum flavum. Aust N Z J Surg 58: 247–249

    Article  CAS  Google Scholar 

  18. Harkey HL, Al-Mefty O, Marawi I, Peeler DF, Haines DE, Alexander LF (1995) Experimental chronic compressive cervical myelopathy: effect of decompression. J Neurosurg 83: 336–341

    Article  CAS  Google Scholar 

  19. Hashizume Y, Iijima S, Hirano A (1983) Pencil-shaped softening of the spinal cord. Acta Neuropathol (Berl) 61: 219–224

    Article  CAS  Google Scholar 

  20. Hashizume Y, Iijima S, Kishimoto H, Yanagi T (1984) Pathology of spinal cord lesions caused by ossification of the posterior longitudinal ligament. Acta Neuropathol (Berl) 63: 123–130

    Article  CAS  Google Scholar 

  21. Hosoda Y, Yoshimura Y, Higaki S (1981) A new breed mouse showing multiple osteochondral lesions: the twy mouse. Ryumachi (Tokyo) 21: 157–164

    Google Scholar 

  22. Hukuda S, Wilson CB (1972) Experimental cervical myelopathy: effect of compression and ischemia on the canine cervical cord. J Neurosurg 37: 631–652

    Article  CAS  Google Scholar 

  23. Imai S, Hukuda S (1994) Cervical radiculomyelopathy due to deposition of calcium pyrophosphate dihydrate crystals in the ligamentum flavum: historical and histological evaluation of attendant inflammation. J Spinal Disord 7: 513–517

    Article  CAS  Google Scholar 

  24. Kameyama T, Hashizume Y, Ando T, Takahashi A (1994) Morphometry of the normal cadaveric cervical spinal cord. Spine 19: 2077–2081

    Article  CAS  Google Scholar 

  25. Kameyama T, Hashizume Y, Ando T, Takahashi A, Yanagi T, Mizuno J (1995) Spinal cord morphology and pathology in ossification of the posterior longitudinal ligament. Brain 118: 263–278

    Article  Google Scholar 

  26. Kitamura S, Sakai A (1982) A study on the localization of the sternocleidomastoid and trapezius motoneurons in the rat by means of the HRP method. Anat Rec 202: 527–536

    Article  CAS  Google Scholar 

  27. Kitamura S, Sakai A, Nishiguchi T (1980) A cytoarchitectonic study of the calcification of the ventral horn cell groups in the rat cervical spinal cord. J Osaka Univ Dent Sch 25: 186–202

    CAS  Google Scholar 

  28. Kojimahara K, Sugiura H, Kanai Y, Kameyama K, Hosoda Y, Shibata T, Ogawa Y (1992) Vertebral and spinal cord lesions of twy mice with genetic osteochondral abnormalities. In: Kurokawa T (ed) Investigation Committee Report on the Ossification of the Spinal Ligaments. Ministry of Health and Welfare of Japan, Tokyo, pp 46–50

    Google Scholar 

  29. Martin D, Schoenen J, Delrée P, Gilson V, Rogister B, Leprince P, Stevenaert A, Moonen G (1992) Experimental acute traumatic injury of adult rat spinal cord by a subdural inflatable balloon: methodology, behavioral analysis, and histopathology. J Neurosci Res 32: 539–550

    Article  CAS  Google Scholar 

  30. McAfee PC, Regan JJ, Bohlman HH (1987) Cervical cord compression from ossification of the posterior longitudinal ligament in non-orientals. J Bone Joint Surg [Br] 69: 569–575

    Article  CAS  Google Scholar 

  31. McClung JR, Castro AJ (1978) Rexed’s laminar scheme as it applies to the rat cervical spinal cord. Exp Neurol 58: 145–148

    Article  CAS  Google Scholar 

  32. Mesulam MM (1978) Tetramethylben zidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction-product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26: 106–117

    Article  CAS  Google Scholar 

  33. Miyasaka K, Kaneda K, Sato S (1983) Myelopathy due to ossification or calcification of the ligamentum flavum: radiologic and histologic evaluation. Am J Neuroradiol 4: 629–632

    CAS  PubMed  Google Scholar 

  34. Mizuno J, Nakagawa H, Iwata K, Hashizume Y (1992) Pathology of spinal cord lesions caused by ossification of the posterior longitudinal ligament, with special reference to reversibility of the spinal cord lesion. Neurol Res 14: 312–314

    Article  CAS  Google Scholar 

  35. Nishiguchi T, Kitamura S, Okubo J, Ogata K, Sakai A (1986) Location of rabbit spinal accessory nucleus: a study by means of the HRP method. J Osaka Univ Dent Sch 26: 51–58

    CAS  PubMed  Google Scholar 

  36. Okada Y, Ikata K, Katoh S, Yamada H (1994) Morphologic analysis of the cervical spinal cord, durai tube and spinal canal by magnetic resonance imaging in normal adults and patients with cervical spondylotic myelopathy. Spine 19:2331–2335

    Article  CAS  Google Scholar 

  37. Prestor B, Zgur T, Dolenc VV (1993) Incomplete spinal cord evoked injury potential in man. Spine 18: 252–256

    Article  CAS  Google Scholar 

  38. Rapoport S (1978) Location of sternocleidomastoid and trapezius motoneurons in the rat. Brain Res 156: 339–344

    Article  CAS  Google Scholar 

  39. Saito H, Mimatsu K, Sato K, Hashizume Y (1992) Histopathologic and morphometric study of spinal cord lesion in a chronic cord compression model using bone morphogenetic protein in rabbits. Spine 17: 1368–1374

    Article  CAS  Google Scholar 

  40. Schramm J, Krause R, Shigeno T, Brock M (1983) Experimental investigation on the spinal cord evoked injury potential. J Neurosurg 59: 485–492

    Article  CAS  Google Scholar 

  41. Sherman JL, Nassaux PY, Citrin CM (1990) Measurements of the normal cervical spinal cord on MR imaging. Am J Neuroradiol 11: 369–372

    CAS  PubMed  Google Scholar 

  42. Shinomiya K, Mutoh N, Furuya K (1992) Study of experimental cervical spondylotic myelopathy. Spine 17 [Suppl]: S383-S387

    Article  CAS  Google Scholar 

  43. Steiner TJ, Turner LM (1972) Cytoarchitecture of the rat spinal cord. J Physiol (Lond) 222: 123–124

    Google Scholar 

  44. Sypert GW, Arpin-Sypert EJ (1993) Ossification of the posterior longitudinal ligament. In: Whitecloud TS III, Dunsker SB (eds) Anterior cervical spine surgery. Raven Press, New York, pp 105–118

    Google Scholar 

  45. Terakado A, Tagawa M, Goto S, Yamazaki M, Moriya H, Fujimura S (1995) Elevation of alkaline phosphatase activity induced by parathyroid hormone in osteoblast-like cells from the spinal hyperostotic mouse TWY (twy/twy). Calcif Tissue Int 56: 135–139

    Article  CAS  Google Scholar 

  46. Thijssen HOM, Keyser A, Horstink MWM, Meijer E (1979) Morphology of the cervical spinal cord on computed myelography. Neuroradiology 18: 57–62

    Article  CAS  Google Scholar 

  47. Tomita K, Nomura S, Umeda S, Baba H (1988) Cervical laminoplasty to enlarge the spinal canal in multilevel ossification of the posterior longitudinal ligament with myelopathy. Arch Orthop Trauma Surg 107: 148–153

    Article  CAS  Google Scholar 

  48. Yamada M, Yoshizawa H, Kobayashi S, Shibayama T, Ukai T, Nakagawa M, Fujiwara Y, Morita C (1992) Fine structure of the twy mouse spinal cord. In: Kurokawa T (ed) Investigation Committee Report on the Ossification of the Spinal Ligaments. Ministry of Health and Welfare of Japan, Tokyo, pp 46–50

    Google Scholar 

  49. Yamazaki M, Moriya H, Goto S, Saito S, Arai K, Nagai Y (1991) Increased type XI collagen expression in the spinal hyperostotic mouse (twy/twy). Calcif Tissue Int 48: 182–189

    Article  Google Scholar 

  50. Yato Y, Fujimura Y, Nakamura M, Watanabe M, Hirabayashi K, Hosoda Y (1995) Immunohistochemical study on changes of anterior horn cell in twy mouse. In: Sakou T (ed) Investigation Committee Report on the Ossification of the Spinal Ligaments. Ministry of Health and Welfare of Japan, Tokyo, pp 105–106

    Google Scholar 

  51. Zheng C, Heintz N, Hatten ME (1996) CNS gene encoding astrotactin, which supports neuronal migration along glial fibers. Science 272: 417–419

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisatoshi Baba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baba, H., Maezawa, Y., Uchida, K. et al. Three-dimensional topographic analysis of spinal accessory motoneurons under chronic mechanical compression: an experimental study in the mouse. J Neurol 244, 222–229 (1997). https://doi.org/10.1007/s004150050076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004150050076

Key words

Navigation