Skip to main content
Log in

Preconcentration and LC analysis of chlorophenols, using a styrene-divinyl-benzene copolymeric sorbent and photochemical reaction detection

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

A specific HPLC method has been developed for the trace analysis of lower chlorinated aromatic compounds. The method consists of an on-line preconcentration and a post-column reaction step. On-line preconcentration of mono- and dichlorophenols from aqueous samples has been performed using PRP1, a divinylbenzene-styrene copolymeric sorbent as packing material for both pre-and analytical column. Enrichment factors of over 300 were obtained compared to regular (100 μl) loop injections, even for the highly polar monochlorophenols. After reversed-phase separation, post-column photochemical dechlorination is carried out directly in the eluent stream, using a photochemical reactor. Upon dechlorination, fluorescent products are formed, which can be detected selectively. The resulting fluorescence signal shows a linear response to the quantity of solute present over 2 to 3 orders of magnitude (correlation coefficients: 0.990–0.98). For the mono- and dichlorophenols, the detection limit of the photoconversion method is in the lower nanogram range. The method is especially suitable for the analysis of complex matrices such as effluent water samples or biological fluids containing traces of the polar chloroaromatic compounds together with large amounts of other constituents, which interfere when using more general methods of detection like UV absorption. The potential of this technique for automation has been demonstrated by using a microprocessor-controlled column switching unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Preliminary Environmental Hazard Assessment”, Syracuse Univ. Research Corp. Nov. 1973, p. 253–255.

  2. D. E. Weisshaar, D. E. Tallman, J. L. Anderson, Anal. Chem.53, 1809 (1980).

    Google Scholar 

  3. E. M. Lores, J. R. Edgerton, R. F. Moseman, J. Chromatogr. Sci.19, 466 (1981).

    Google Scholar 

  4. R. C. C. Wegman, A. W. M. Hofstee, Water Research13, 651 (1979).

    Google Scholar 

  5. R. L. Inloes, M. L. McConnell, R. C. Jordan, presented at the Pittsburgh Conference, Atlantic City, March 1980.

  6. T. R. Edgerton, R. F. Moserman, E. M. Lores, L. H. Wright, Anal. Chem.52, 1774 (1980).

    Google Scholar 

  7. K. Ugland, E. Lundanes, T. Greibokk, A. Bjorseth, J. Chromatogr.213, 83 (1981).

    Google Scholar 

  8. C. E. Werkhoven-Goewie, U. A. Th. Brinkman, R. W. Frei Anal. Chem.53, 2072 (1981).

    Google Scholar 

  9. S. Katz, W. W. Pitt Jr., G. Jones Jr., Clin. Chem.19, 817 (1973).

    Google Scholar 

  10. D. N. Armentrout, J. D. McLean, M. W. Long, Anal. Chem.51, 7 1039 (1979).

    Google Scholar 

  11. A. W. Wolkoff, R. H. Larose, J. Chromatogr.99, 731 (1974).

    Google Scholar 

  12. P. A. Realini, J. Chromatogr. Sci.19, 124 (1981).

    Google Scholar 

  13. M. Dressler, J. Chromatogr.165, 167, (1979).

    Google Scholar 

  14. W. Golkiewicz, C. E. Werkhoven-Goewie U.A. Th. Brinkman, R. W. Frei, J. Chromatogr., Sci., in press.

  15. M. Schönman, “Varian Instrument at Work, LC 113”.

  16. H. P. M. van Vliet, Th. C. Bootsman, R. W. Frei, U. A. Th. Brinkman, J. Chromatogr.185, 483 (1979).

    Google Scholar 

  17. K. Aramaki, T. Hanai, H. F. Walton, Anal. Chem.52, 1963 (1980).

    Google Scholar 

  18. D. P. Lee, J. H. Kindsvater, Anal. Chem.52, 2425 (1980).

    Google Scholar 

  19. S. Mori, Anal. Chem.50, 745 (1978).

    Google Scholar 

  20. A. Nakae, G. Muto, J. Chromatogr.120, 47 (1976).

    Google Scholar 

  21. A. H. M. T. Scholten, P. L. M. Welling, U. A. Th. Brinkman, R. W. Frei, J. Chromatogr.199, 239 (1980).

    Google Scholar 

  22. C. E. Werkhoven-Goewie, C. de Ruiter, U. A. Th. Brinkman, R. W. Frei, G. J. de Jong, C. Little, O. Stahel, Submitted for publication to J. Chromatogr.

  23. J. R. Conder, C. L. Young Physicochemical Measurement by Gas Chromatography, J. Wiley & Sons, Chichester, 1979, p. 83.

    Google Scholar 

  24. M. D. Grieser, D. J. Pietrzijk, Anal. Chem.45, 1348 (1973).

    Google Scholar 

  25. B. Zygmunt, J. Visser, C. E. Werkhoven-Goewie, U. A. Th. Brinkman, R. W. Frei, in preparation.

  26. L. R. Snyder, Principles of Adsorption Chromatography, M. Dekker, New York, 1968.

    Google Scholar 

  27. K. K. Unger, Porous Silica, J. Chromatogr. Libary, Elsevier 1981.

  28. H. Colin, J. C. Diez-Masa, G. Guiochon, T. Czajkowska, I. Miedziak, J. Chromatogr.167, 41 (1978).

    Google Scholar 

  29. L. L. Lamparksi, R. H. Stehl, R. L. Johnson, J. Environ. Sci. Technol.14, 2, 196 (1980).

    Google Scholar 

  30. K. Omura, T. Matsuura, Tetrahedron27, 3101 (1971).

    Google Scholar 

  31. H. Parlar, P. G. W. Steven, R. Bauman, F. Korte, Z. Naturforsch,34b, 113 (1979).

    Google Scholar 

  32. K. Ogan, E. Katz, presented at the Pittsburgh Conference, Atlantic City, N. J., March 1980.

  33. W. I. Taylor, A. R. Battersby, Oxidative Coupling of Phenols, M. Dekker, New York, 1967.

    Google Scholar 

  34. A. H. M. T. Scholten, U. A. Th. Brinkman, R. W. Frei, J. Chromatogr.205, 229 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werkhoven-Goewie, C.E., Boon, W.M., Praat, A.J.J. et al. Preconcentration and LC analysis of chlorophenols, using a styrene-divinyl-benzene copolymeric sorbent and photochemical reaction detection. Chromatographia 16, 53–59 (1982). https://doi.org/10.1007/BF02258869

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02258869

Key Words

Navigation