Skip to main content
Log in

An experimental method for testing the solvophobic theory by using graphitized carbon black in GC and LC

  • Short Communications
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

The net solvent effect for several solute-solvent pairs has been calculated by using the solvophobic approach for describing the liquid chromatographic process. For the same solutes and solvents the net solvent effect has been experimentally measured by using graphitized carbon black columns in GC and HPLC. A comparison between the measured and calculated values made in terms of normalized free energy changes, indicates that the solvophobic theory is fairly adequate for predicting the sequence of solvent strength and provides a comprehensive explanation of the various interactions occurring in reversed-phase LC. Aγ critical discussion of the deviations of the theory from the experimental data is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ΔG netsolvent :

Difference of solvent and gas phase free energy change

ΔGvdw-s :

Standard free energy of solute-solvent van der Waals interaction

ΔGel-s :

Standard free energy change of solute-solvent electrostatic interaction

ΔGc :

Standard free energy of cavity formation

ΔG Ct :

Free energy for transferring solute molecule from gas into solvent (free volume reduction or cratic term)

ΔG assocgas :

Standard free energy change for adsorption reaction in gas phase

ΔG assocliquid :

Standard free energy change for association reaction in solvent

Ia, Is :

Ionization potential of solute and solvent respectively

Da, Ds :

Clausius-Mosotti functions: n2−1/n2+2 where n-refraction index

D :

Function of static dielectric contant, Clausius-Mosotti function at high frequency 2(ε−1)/(2ε+1)

Q′, Q″:

Results from integration of interaction over first solvatation layer. They are dimensionless function which can be calculated by knowing acentric factor (ω) and molecular volume (ν) of solute and solvent

μ:

dipole moment of solute

ra :

molecular radius of solute

va, vs :

molar volume of solute and solvent respectively

N:

Avogadro's number

γ:

Surface tension of solute

A, ΔA:

Molecular surface area and its change during the adsorption process respectively

Ke :

Curvature correction fitting parameter for surface tension

R:

Gas contant

P:

Pressure

K:

Equilibrium constant for solute-carbon adsorption process

ε:

Eluotropic strength defined as log (K′s1/K′s2) = A(ε1 - ε2) where ε2 = 0.

K′:

Capacity ratio. The subscripts GC and LC respectively to gas and liquid chromatography

References

  1. L. R. Snyder, Anal. Chem.46, 11 (1974).

    Google Scholar 

  2. C. Horvath, W. Melander, I. Molnar, J. Chromatogr.125, 127 (1976)

    Google Scholar 

  3. P. Jandera, H. Colin, G. Guiochon, Anal. Chem.54, 44 (1982).

    Google Scholar 

  4. T. Haliciôglu, O. Sinanoglu, Ann. N. Y. Acad. Sci.158, 308 (1969).

    Google Scholar 

  5. “Adsorption on carbon: solvent effects on adsorption” a review. Env. Sci. and Technology14, 1013 (1980).

  6. H. Colin, G. Guiochon, P. Jandera, Chromatographia15, 133 (1982).

    Google Scholar 

  7. A. Kiseley, K. D. Sherbakova, D. P. Poshkus, J. Chromatogr. Sci.12, 788 (1974), and reference therein.

    Google Scholar 

  8. F. Bruner, P. Cicciolt, G. Crescentini, M. T. Pistolesi,45, 1851 (1973).

  9. A. Di Corcia, A. Liberti, Advan. Chromatogr.14, 305 (1974).

    Google Scholar 

  10. O. Sinanôglu, Int. Journal of quantum Chemistry18, 381 (1980).

    Google Scholar 

  11. P. Ciccioli, R. Tappa, A. Di Corcia, A. Liberti, J. Chromatogr.206, 35 (1981).

    Google Scholar 

  12. W. Melander, C. Horwath in “High performance liquid Chromatography” Vol. II,C. Horváth, Editor, Academic Press, 1980, p. 200–250.

  13. R. F. Curl, K. S. Pitzer, Ind. Eng. Chem.50, 265 (1958).

    Google Scholar 

  14. R. Hermann, J. Phys. Chem.76, 2754 (1972).

    Google Scholar 

  15. S. C. Valvani, S. H. Yalkowsky, G. L. Amidon, J. Phys. Chem.80, 829 (1976).

    Google Scholar 

  16. S. H. Yalkowsky, S. C. Valvani, J. of Med. Chem.19, 727 (1976).

    Google Scholar 

  17. M. F. Gonnord, C. Vidal-Madjar, G. Guiochon, J. Chromatogr. Sci.12, 839 (1974).

    Google Scholar 

  18. G. Bertoni, F. Bruner, A. Liberti, C. Perrino, J. of Chromatogr.203, 263 (1981).

    Google Scholar 

  19. G. Bertoni, A. Liberti, Ann. 1st. Sup. Sanità17, 385 (1981).

    Google Scholar 

  20. G. L. Amidon, S. T. Anik, J. Phys. Chem.84, 970 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciccioli, P., Tappa, R. & Liberti, A. An experimental method for testing the solvophobic theory by using graphitized carbon black in GC and LC. Chromatographia 16, 330–335 (1982). https://doi.org/10.1007/BF02258932

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02258932

Key Words

Navigation