Skip to main content
Log in

Mobile phase effects in reversed-phase chromatography VI. Thermodynamic models for retention and its dependence on mobile phase composition and temperature

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

The physico-chemical framework is examined by comparing the predictions of three models for the combined effects of the composition of the hydroorganic mobile phase and the column temperature on the retention ofn-alkylbenzenes on hydrocarbonaceous bonded stationary phases. The “well-mixed” model leads to expressions for the dependence of retention on three factors which are equivalent to those derived previously from linear extrathermodynamic relationships. The “diachoric” model stems from the assumption that the mobile phase is microscopically heterogeneous and the “displacement” model is identical to the retention model most widely used in chromatography with polar sorbents and less polar solvents. Over limited ranges of mobile phase composition and temperature, each model does describe retention behavior. However, only the wellmixed model describes retention well over the entire range of mobile phase composition and temperature studied here. The success of the well-mixed model, and its limits, give insight into the role of the organic solvent in determining the magnitude of chromatographic retention on non-polar stationary phases with hydro-organic eluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Melander, B.-K. Chen, Cs. Horváth, J. Chromatogr.,185, 99–109 (1979).

    Google Scholar 

  2. W. R. Melander, A. Nahum, Cs. Horváth, J. Chromatogr.,185, 129–152 (1979).

    Google Scholar 

  3. W. R. Melander, Cs. Horváth, J. Jacobson, J. Chromatogr.,234, 269–276 (1982).

    Google Scholar 

  4. A. Nahum, Cs. Horváth, J. Chromatogr.,203, 53–63 (1981).

    Google Scholar 

  5. K. E. Bij, Cs. Horváth, W. R. Melander, A. Nahum, J. Chromatogr.,203, 65–84 (1981).

    Google Scholar 

  6. Cs. Horváth, W. Melander, I. Molnár, J. Chromatogr.,125, 129 (1976).

    Google Scholar 

  7. B. L. Karger, J. R. Gant, A. Hartkopf, P. Weiner, J. Chromatogr.,128, 65 (1976).

    Google Scholar 

  8. L. R. Snyder, J. W. Dolan, J. R. Gant, J. Chromatogr.,165, 3 (1979).

    Google Scholar 

  9. W. R. Melander, Cs. Horváth, in: High Performance Liquid Chromatography, Vol. 2,Cs. Horváth, ed., Academic Press, New York, 1980, pp. 114–319.

    Google Scholar 

  10. W. Melander, D. E. Campbell, Cs. Horváth, J. Chromatogr.,158, 215–225 (1978).

    Google Scholar 

  11. H. Colin, J. C. Diez-Masa, G. Guiochon, T. Czajkowska, I. Miedziak, J. Chromatogr.,167, 41 (1978).

    Google Scholar 

  12. L. R. Snyder, J. Chromatogr.,179, 167 (1979).

    Google Scholar 

  13. C. M. Riley, E. Tomlinson, T. M. Jefferies, J. Chromatogr.,185, 197 (1979).

    Google Scholar 

  14. P. J. Schoenmakers, H. A. H. Billiet, L. de Galan, J. Chromatogr.,185, 179 (1979).

    Google Scholar 

  15. D. C. Locke, J. Chromatogr. Sci.,12, 433 (1974).

    Google Scholar 

  16. D. C. Locke, in: Advances in Chromatography, Vol. 14,J. C. Giddings, E. Grushka, J. Cazes andP. R. Brown, eds., Marcel Dekker, 1976, pp. 87–198.

  17. N. L. Ha, J. Ungvarai, E. sz. Kováts, Anal. Chem.,54, 2410 (1982).

    Google Scholar 

  18. W. R. Melander, J.-X. Huang, Cs. Horváth, in preparation.

  19. J. F. K. Huber, E. Kendler, H. Markens, J. Chromatogr.,167, 291 (1978).

    Google Scholar 

  20. J. H. Hildebrand, J. M. Prausnitz, R. L. Scott, Regular and Related Solution, Van Nostrand Reinhold, New York, 1970.

    Google Scholar 

  21. J. H. Purnell, J. M. Vargas de Andrnde, J. Amer. Chem. Soc.,97, 3585 (1975).

    Google Scholar 

  22. R. J. Laub, J. H. Purnell, J. Amer. Chem. Soc.,98, 30 (1975).

    Google Scholar 

  23. L. R. Snyder, Principles of Adsorption Chromatography, Marcel Dekker, New York, 1968.

    Google Scholar 

  24. L. R. Snyder, in: Chromatography, 3rd ed.,E. Heftmann, ed., van Nostrand Reinhold, New York, 1975, pp. 46–76.

    Google Scholar 

  25. M. McCann, H. Purnell, C. A. Wellington, Faraday Society Symposium,15, 83 (1980).

    Google Scholar 

  26. I. Langmuir, J. Amer. Chem. Soc.,38, 2221 (1916).

    Google Scholar 

  27. W. R. Melander, C. A. Mannan, Cs. Horváth, Chromatographia,15, 611 (1982).

    Google Scholar 

  28. R. M. McCormick, B. L. Karger, J. Chromatogr.,199, 259 (1980).

    Google Scholar 

  29. E. H. Slaats, W. Markovski, J. Fekete, H. Poppe, J. Chromatogr.,207, 299 (1980).

    Google Scholar 

  30. O. Sinanoǵlu, in: Molecular Associations in Biology,B. Pullman, ed., Academic Press, New York, 1968, pp. 427–445.

    Google Scholar 

  31. O. Sinanoǵlu, in: Molecular Interactions, Vol. 3,H. Ratajczak andW. J. Orville-Thomas, eds., Wiley, New York, 1982, pp. 281–342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor S. R. Lipsky on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melander, W.R., Horváth, C. Mobile phase effects in reversed-phase chromatography VI. Thermodynamic models for retention and its dependence on mobile phase composition and temperature. Chromatographia 18, 353–361 (1984). https://doi.org/10.1007/BF02262480

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02262480

Key Words

Navigation