Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family

Abstract

Regulation of cellular levels of ADP-ribose is important in preventing nonenzymatic ADP-ribosylation of proteins. The Escherichia coli ADP-ribose pyrophosphatase, a Nudix enzyme, catalyzes the hydrolysis of ADP-ribose to ribose-5-P and AMP, compounds that can be recycled as part of nucleotide metabolism. The structures of the apo enzyme, the active enzyme and the complex with ADP-ribose were determined to 1.9Å, 2.7Å and 2.3Å, respectively. The structures reveal a symmetric homodimer with two equivalent catalytic sites, each formed by residues of both monomers, requiring dimerization through domain swapping for substrate recognition and catalytic activity. The structures also suggest a role for the residues conserved in each Nudix subfamily. The Nudix motif residues, folded as a loop-helix-loop tailored for pyrophosphate hydrolysis, compose the catalytic center; residues conferring substrate specificity occur in regions of the sequence removed from the Nudix motif. This segregation of catalytic and recognition roles provides versatility to the Nudix family.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the apo ADPRase dimer.
Figure 2: Structure of the Nudix motif and the complete Nudix fold.
Figure 3: Coordination of the Gd3+ in ADPRase.
Figure 4: Substrate binding to ADPRase.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Just, I., Wollenberg, P., Moss, J. & Aktories, K. Cysteine-specific ADP-ribosylation of actin. Eur. J. Biochem. 221, 1047–1054 (1994).

    Article  CAS  Google Scholar 

  2. Ueda, K., Kawaichi, M., Okayama, H. & Hayaishi, O. Poly(ADP-ribosy)ation of nuclear proteins. Enzymatic elongation of chemically synthesized ADP-ribose-histone adducts. J. Biol. Chem. 254, 679–687 (1979).

    CAS  PubMed  Google Scholar 

  3. Han, M.K., Cho, Y.S., Kim, Y.S., Yim, C.Y. & Kim, U.H. Interaction of two classes of ADP-ribose transfer reactions in immune signaling. J. Biol. Chem. 275, 20799–20805 (2000).

    Article  CAS  Google Scholar 

  4. Moss, J. & Zahradka, P. (guest editors) ADP-ribosylation: metabolic effects and regulatory function. Mol. Cell. Biochem. 138, 1–253 (1994).

    Google Scholar 

  5. McDonald, L.J. & Moss, J. Enzymatic and nonenzymatic ADP-ribosylation of cysteines. Mol. Cell. Biochem. 138, 221–226 (1994).

    Article  CAS  Google Scholar 

  6. Fernandez, A. et al. Specific ADP-ribose pyrophosphatase from Artemia cysts and rat liver: effects of nitroprusside, fluoride and ionic strength. Biochim. Biophys. Acta 1290, 121–127 (1996).

    Article  Google Scholar 

  7. Ribeiro J.M., Costas, M.J. & Cameselle J.C. ADP-ribose Pyrophosphatase-I partially purified from livers of rats overdosed with acetaminophen reveals enzyme inhibition in vivo reverted in vitro by dithiothreitol. J. Biochem. Mol. Tox. 13, 171–177 (1999).

    Article  CAS  Google Scholar 

  8. Kim, J. et al. Purification and characterization of adenosine diphosphate ribose pyrophosphatase from human erythrocytes. Int. J. Biochem. Cell Biol. 30, 629–638 (1998).

    Article  CAS  Google Scholar 

  9. Dunn, C.A., O'Handley, S.F., Frick, D.N. & Bessman, M.J. Studies on the ADP-ribose pyrophosphatase subfamily of the nudix hydrolases and tentative identification of trgB, a gene associated with tellurite resistance. J. Biol. Chem. 274, 32318–32324 (1999).

    Article  CAS  Google Scholar 

  10. Gasmi, L., Cartwright, J.L. & McLennan, A.G. Cloning, expression and characterization of YSA1H, a human adenosine 5′-diphosphosugar pyrophosphatase possesing a MutT motif. Biochem. J. 344, 331–337 (1999).

    Article  CAS  Google Scholar 

  11. O'Handley, S.F., Frick, D.N., Dunn, C.A. & Bessman, M.J. Orf186 represents a new member of the Nudix hydrolases, active on adenosine(5′)triphospho(5′) adenosine, ADP-ribose and NADH. J. Biol. Chem. 273, 3192–3197 (1998).

    Article  CAS  Google Scholar 

  12. Raffaelli, N. et al. Synechocystis sp. s1r0787 protein is a novel bifunctional enzyme endowed with both nicotinamide mononucleotide adenylyltransferase and Nudix hydrolase activityies. FEBS Lett. 444, 222–226 (1999).

    Article  CAS  Google Scholar 

  13. Sheikh, S., O'Handley, S.F., Dunn, C.A. & Bessman, M.J. Identification and characterization of the Nudix hydrolase from the Archaeon, Methanococcus jannaschii, as a highly specific ADP-ribose pyrophosphatase. J. Biol. Chem. 273, 20924–20928 (1998).

    Article  CAS  Google Scholar 

  14. Yang, H. et al. Cloning and characterization of a new member of the nudix hydrolases from human and mouse. J. Biol. Chem. 275, 8844–8853 (2000).

    Article  CAS  Google Scholar 

  15. Bessman, M.J., Frick, D.N. & O'Handley, S.F. The MutT proteins or 'Nudix' hydrolases, a family of versatile, widely distributed, 'housecleaning' enzymes. J. Biol. Chem. 271, 25059–25062 (1996).

    Article  CAS  Google Scholar 

  16. Abeygunawardana, C. et al. Solution structure of the MutT enzyme, a nucleoside triphosphate pyrophosphohydrolase. Biochemistry 34, 14997–15005 (1995).

    Article  CAS  Google Scholar 

  17. Swarbrick, J. et al. The three dimensional structure of the Nudix enzyme diadenosine tetraphosphate hydrolase from Lupinus angustifolius L. J. Mol. Biol. 302, 1165–1177 (2000).

    Article  CAS  Google Scholar 

  18. Favas, M.C., Kepert, D.L. & Skel, B.W. Crystal structure of gadolinium (III) acetate tetrahydrate. Sterochemistry of the nine-coordinate [M(bidentate ligand)3(unidentated ligand)3] system. J. Chem. Soc. 454–458 (1980).

  19. Allen, F.H. & Kennard, O. 3D search and research using the Cambridge Structural Database. Chemical Design Automation News 8, 31–37 (1993).

    Google Scholar 

  20. Cotton, F. & Wilkinson, G. In Advanced inorganic chemistry, 986–987 (John Wiley & Sons, London; 1980).

    Google Scholar 

  21. Navia, M.A. et al. Three dimensional structure of aspartyl protease from human imnunodeficiency virus HIV-1. Nature 16, 615–620 (1989).

    Article  Google Scholar 

  22. Denessiouk, K.A. & Johnson, M.S. When fold is not important: a common structural framework for adenine and AMP binding in 12 unrelated protein families. Proteins 38, 310–326 (2000).

    Article  CAS  Google Scholar 

  23. Han, S., Craig, J.A., Putnam, C.D., Carozzi, N.B. & Tainer, J.A. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nature Struct. Biol. 6, 932–936 (1999).

    Article  CAS  Google Scholar 

  24. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  Google Scholar 

  25. Lin, J., Abeygunawardana, C., Frick, D.N., Bessman, M.J. & Mildvan, A.S. Solution structure of the quaternary MutT-M2+–AMPCPP-M2+ complex and mechanism of its pyrophosphohydrolase action. Biochemistry 36, 1199–1211 (1997).

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymol. 277, 307–326 (1997).

    Article  Google Scholar 

  27. Terwilliger, T.C. & Berendzen, J. Automated structure solution for Mir and Mad. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  28. Cowtan, K.D. An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newslett. Protein Crystallogr. 31, 34–38 (1994).

    Google Scholar 

  29. Kleywegt, G.J. & Jones, T.A. Software for handling macromolecular envelopes. Acta Crystallogr. D 55, 941–944 (1999).

    Article  CAS  Google Scholar 

  30. Kleywegt, G.J. & Jones, T.A. Halloween...Masks and Bones. in From first map to final model (eds Bailey, S., Hubbard, R. & Waller, D.) 59–66 (SERC, Daresbury Laboratory, Warrington; 1994).

    Google Scholar 

  31. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjelgaard, M. Improved methods for binding protein models to electron density maps and the location of errors in these models. Acta Crystallogr. A 42, 110–119 (1991).

    Article  Google Scholar 

  32. Jones. T.A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol. 277, 173–208 (1997).

    Article  CAS  Google Scholar 

  33. Brunger, A.T. et al. Crystallography,NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  34. Brunger, A.T. Free R value: Cross-validation in crystallography. Methods Enzymol. 277, 366–396 (1997).

    Article  CAS  Google Scholar 

  35. Laskowski, R., MacArthur, M., Moss, D. & Thornton, J. PROCHECK: a program to check the sterochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  36. Kraulis, J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structure. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  37. Esnouf, R.M. Further additions to MOLSCRIPT version 1.4, including reading and countouring of electron density maps. Acta Crystallogr. D 55, 938–940 (1999).

  38. Merrit, E. & Bacon, D. Raster3D: Photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

Support was provided by NIGMS grants to L.M.A. and M.J.B. S.B.G was supported by an NSF graduate fellowship. Beamlines X25, X8C and X9B of National Synchrotron Light Source, Brookhaven National Laboratory are gratefully acknowledged. We thank D. Leahy for carefully reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mario Amzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabelli, S., Bianchet, M., Bessman, M. et al. The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family. Nat Struct Mol Biol 8, 467–472 (2001). https://doi.org/10.1038/87647

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87647

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing