Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of critical active-site residues in the multifunctional human DNA repair enzyme HAP1

Abstract

All organisms express dedicated repair enzymes for counteracting the cytotoxic and mutagenic potential of apurinic/apyrimidinic (AP) lesions, which would otherwise pose a serious threat to genome integrity. We present the predicted three-dimensional structure of the major human AP site-specific DNA repair endonuclease, HAP1, and show that an aspartate/histidine pair, in conjunction with a metal ion-coordinating glutamate residue, are critical for catalyzing the multiple repair activities of HAP1. We suggest that this catalytic mechanism is conserved in certain reverse transcriptases, but is distinct from the two metal ion-mediated mechanism defined for other hydrolytic nucleases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993).

    Article  CAS  Google Scholar 

  2. Wallace, S. AP Endonucleases and DNA glycosylases that recognise oxidative DNA damage. Environ. molec. Mutagen. 12, 431–477 (1988).

    Article  CAS  Google Scholar 

  3. Doetsch, P. & Cunningham, R. Enzymology of AP endonucleases. Mutation Research 236, 173–201 (1990).

    Article  CAS  Google Scholar 

  4. Demple, B. & Harrison, L. Repair of oxidative damage to DNA: Enzymology and biology. A. Rev. Biochem. 63, 915–948 (1994).

    Article  CAS  Google Scholar 

  5. Loeb, L. & Preston, B. Mutagenesis by AP sites. A. Rev. Genetics 20, 201–230 (1986).

    Article  CAS  Google Scholar 

  6. Barzilay, G. & Hickson, I.D. Structure and function of apurinic/apyrimidinic endonucleases. BioEssays in the press.

  7. Walker, L.J., Craig, R.B., Harris, A.L. & Hickson, I.D. A role for the human DNA repair enzyme HAP1 in cellular protection against DNA damaging agents and hypoxic stress. Nucleic Acids Res. 22, 4884–4889 (1994).

    Article  CAS  Google Scholar 

  8. Ono, Y., Furuta, T., Ohmoto, T., Akiyama, K. & Seki, S. Stable expression in rat glioma cells of sense and antisense nucleic acids to a human multifunctional DNA repair enzyme, APEX nuclease. Mutation. Res. 315, 55–63 (1994).

    Article  CAS  Google Scholar 

  9. Chen, D.S. & Olkowski, Z.L. Biological responses of human apurinic endonuclease to radiation-induced DNA damage. Ann. N.Y. Acad. Sci. 726, 306–308 (1994).

    Article  CAS  Google Scholar 

  10. Cunningham, R.P., Saporito, S.M., Spitzer, S.G. & Weiss, B. Endonuclease IV (nfo) mutant of Escherichia coli. J. Bacteriol. 168, 1120–1127 (1986).

    Article  CAS  Google Scholar 

  11. Saporito, S.M., Smith-White, B.J. & Cunningham, R.P. Nucleotide sequence of the xth gene of Escherichia coli K-12. J. Bacteriol. 170, 4542–4547 (1988).

    Article  CAS  Google Scholar 

  12. Ramotar, D., Popoff, S.C., Gralla, E.B. & Demple, B. Cellular role of yeast Apn1 apurinic endonuclease/3′-diesterase: Repair of oxidative and alkylation DNA damage and control of spontaneous mutation. Molec. cell. Biol. 11, 4537–4544 (1991).

    Article  CAS  Google Scholar 

  13. Robson, C., Milne, A., Pappin, D. & Hickson, I. Isolation of cDNA clones encoding an enzyme from bovine cells that repairs oxidative DNA damage in vitro: homology with bacterial DNA repair enzymes. Nucleic Acids Res. 19, 1087–1092 (1991).

    Article  CAS  Google Scholar 

  14. Demple, B., Herman, T. & Chen, D. Cloning and expression of APE - a cDNA encoding the major human AP endonuclease. Definition of a family of DNA repair enzymes. Proc. natn. Acad. Sci. U.S.A. 88, 11450–11454 (1991).

    Article  CAS  Google Scholar 

  15. Xanthoudakis, S. & Curran, T. Identification and characterisation of Ref-1, a nuclear protein that facilitates AP-1 DNA binding acticity. EMBO J. 11, 653–665 (1992).

    Article  CAS  Google Scholar 

  16. Xanthoudakis, S., Miao, G.G., Wang, F. & Pan, Y.-C.E. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 11, 3323–3335 (1992).

    Article  CAS  Google Scholar 

  17. Walker, L.J., Robson, C.N., Black, E., Gillespie, D. & Hickson, I.D. Identification of residues in the human DNA repair enzyme HAP1 (Ref-1) that are essential for redox regulation of Jun DNA binding. Molec. cell. Biol. 13, 5370–5376 (1993).

    Article  CAS  Google Scholar 

  18. Suck, D. & Oefner, C. Structure of DNase I at 2.0 A resolution suggests a mechanism for binding to and cutting DNA. Nature 321, 620–625 (1986).

    Article  CAS  Google Scholar 

  19. Beeze, L.S. & Steitz, T.A. Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 10, 25–33 (1991).

    Article  Google Scholar 

  20. Mol, C.D., Kuo, C.-F., Thayer, M.M., Cunningham, R.P. & Tainer, J.A. Structure and function of the multifunctinal DNA repair enzyme exonuclease III. Nature 374, 381–386 (1995).

    Article  CAS  Google Scholar 

  21. Barzilay, G., Walker, L.J., Robson, C.N. & Hickson, I.D. Site-directed mutagenesis of the human DNA repair enzyme HAP1: identification of residues important for AP endonuclease and RNase H activity. Nucleic Acids Res. 23, 1544–1550 (1995).

    Article  CAS  Google Scholar 

  22. Volbeda, A., Lahm, A., Sakiyama, F. & Suck, D. Crystal structure of Penicillium citrinum P1 nuclease at 2.8 Å resolution. EMBO J. 10, 1607–1618 (1991).

    Article  CAS  Google Scholar 

  23. Kabsch, W.J. Evaluation of single crystal X-ray diffraction data from a position sensitive detector. J. appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  24. McRee, D.E. A visual protein crystallographic software system for X11/XView. J. molec. Graph. 10, 44–47 (1992).

    Article  Google Scholar 

  25. Tabor, S. Expression using the T7 RNA polymerase/promoter system. in Current Protocols in Molecular Biology (Wiley Interscience, New York; 1990).

    Google Scholar 

  26. Landt, O., Grunert, H. & Hahn, U. A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene 96, 125–128 (1990).

    Article  CAS  Google Scholar 

  27. Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

    Article  CAS  Google Scholar 

  28. Robson, C.N. & Hickson, I.D. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects. Nucleic Acids. Res. 19, 5519–5523 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barzilay, G., Mol, C., Robson, C. et al. Identification of critical active-site residues in the multifunctional human DNA repair enzyme HAP1. Nat Struct Mol Biol 2, 561–568 (1995). https://doi.org/10.1038/nsb0795-561

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0795-561

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing