Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New Programs for Protein Tertiary Structure Prediction

Abstract

Prediction of protein tertiary structure remains an unsolved problem in molecular biology, but a solution to this problem is extremely important for protein engineering and rational drug design. Recent developments in motif recognition and side chain modeling present the prospect of nearly automatic model building for a large fraction of newly determined protein sequences. We review some of these new algorithms and present preliminary results of their application to the prediction of a structure for fasciclin III, a neural adhesion molecule from Drosophila.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lau, K.F. and Dill, K.A. 1990. Theory for protein mutability and biogenesis. Proc. Natl. Acad. Sci. 87: 638–642.

    Article  CAS  Google Scholar 

  2. Green, P., Lipman, D., Hillier, L., Waterston, R., States, D. and Claverie, J.M. 1993. Ancient conserved regions of new gene sequences and the protein databases. Science, In press

  3. Chothia, C. 1992. One thousand families for the molecular biologist. Nature 357: 543–544.

    Article  CAS  Google Scholar 

  4. Chothia, C. and Lesk, A.M. 1986. The relation between the divergence of sequence and structure in proteins. EMBO J. 5: 823–826.

    Article  CAS  Google Scholar 

  5. Blundell, T.L., Sibanda, B.L., Steinberg, M.J. and Thornton, J.M. 1987. Knowledge-based prediction of protein structures and the design of novel molecules. Nature 326: 347–52.

    Article  CAS  Google Scholar 

  6. Greer, J. 1991. Comparative modeling of homologous proteins. Methods Enzymol. 202: 239–252.

    Article  CAS  Google Scholar 

  7. Novotny, J., Bruccoleri, R.E. and Karplus, M. 1984. An analysis of incorrectly folded protein models. Implications for structure predictions. J. Mol. Biol. 177: 787–818.

    Article  CAS  Google Scholar 

  8. Novotny, J., Rashin, A.A. and Bruccoleri, R.E. 1988. Criteria that discriminate between native proteins and incorrectly folded models. Proteins 4: 19–30.

    Article  CAS  Google Scholar 

  9. Eisenberg, D. and McLachlan, A.D. 1986. Solvation energy in protein folding and binding. Nature 319: 199–203.

    Article  CAS  Google Scholar 

  10. Baumann, G., Frommel, C. and Sander, C. 1989. Polarity as a criterion in protein design. Protein Engineering 2: 329–334.

    Article  CAS  Google Scholar 

  11. Sander, C. and Holm, L. 1992. Evaluation of protein models by atomic solvation preference. J. Mol. Biol. 225: 93–105.

    Article  Google Scholar 

  12. Chiche, L., Gregoret, L.M., Cohen, F.E. and Kollman, P.A. 1990. Protein model structure evaluation using the solvation free energy of folding. Proc. Natl. Acad. Sci. USA 87: 3240–3243.

    Article  CAS  Google Scholar 

  13. Vila, J., Williams, R.L., Vazquez, M. and Scheraga, H.A. 1991. Empirical solvation models can be used to differentiate native from near native conformation of bovine pancreatic trypsin inhibitor. Proteins 10: 199–218.

    Article  CAS  Google Scholar 

  14. Luthy, R., Bowie, J.U. and Eisenberg, D. 1992. Assessment of protein models with three-dimensional profiles. Nature 356 83–85.

    Article  CAS  Google Scholar 

  15. Bryant, S.H. and Amzel, L.M. 1987. Correctly folded proteins make twice as many hydrophobic contacts. Int. J. Peptide Protein Res. 29: 46–52.

    Article  CAS  Google Scholar 

  16. Gregoret, L.M. and Cohen, F.E. 1990. Novel method for the rapid evaluation of packing in protein structures. J. Mol. Biol. 211: 959–974.

    Article  CAS  Google Scholar 

  17. Bowie, J.U., Clarke, N.D., Pabo, C.O. and Sauer, R.T. 1990. Identification of protein folds: Matching hydrophobicity patterns of sequence sets with solvent accessibility patterns of known structures. Proteins 7: 275–264.

    Article  Google Scholar 

  18. Bowie, J.U., Luthy, R. and Eisenberg, D. 1991. A method to identify protein sequences that fold into a known three-dimensional structure. Science 253: 164–170.

    Article  CAS  Google Scholar 

  19. Luthy, R., McLachlan, A.D. and Eisenberg, D. 1991. Secondary structure-based profiles: Use of structure-conserving scoring tables in searching protein sequence databases for structural similarities. Proteins 10: 229–239.

    Article  CAS  Google Scholar 

  20. Overington, J., Donnelly, D., Johnson, M.S., Sali, A. and Blundell, T. 1992. Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds. Protein Science 1: 216–226.

    Article  CAS  Google Scholar 

  21. Schwartz, R.M. and Dayhoff, M.O. Matrices for detecting distant relationships,. 353–358. 1978. In: Atlas of Protein Sequence and Structure, Volume 5 Supplement 3. Dayhoff, M. O. (Ed. ). National Biomedical Research Foundation, Silver Springs, MD.

    Google Scholar 

  22. Karlin, S., Bucher, P., Brendel, V. and Altschul, S.F. 1991. Statistical methods and insights for protein and DNA sequences. Annu. Rev. Biophys. Biophys. Chem. 20: 175–203.

    Article  CAS  Google Scholar 

  23. Sippl, M.J. 1990. Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures inglobular proteins. J. Mol. Biol. 213: 859–883.

    Article  CAS  Google Scholar 

  24. Hendlich, M., Lackner, P., Weitckus, S., Floeckner, H., Froschauer, R., Gotts-bacher, K., Casari, G. and Sippl, M.J. 1990. Identification of native protein folds amongst a large number of incorrect models. The calculation of low energy conformations from potentials of mean force. J. Mol. Biol. 216: 167–180.

    Article  CAS  Google Scholar 

  25. Sippl, M.J. and Weitckus, S. 1992. Detection of native-like models for amino acid sequences of unknown three-dimensional structure in a data base of known protein conformations. Proteins 13: 258–271.

    Article  CAS  Google Scholar 

  26. Maiorov, V.N. and Crippen, G.M. 1992. Contact potential that recognizes the correct folding of globular proteins. J. Mol. Bio. 227: 876–88.

    Article  CAS  Google Scholar 

  27. Crippen, G.M. 1991. Prediction of protein folding from amino acid sequence over discrete conformational spaces. Biochemistry 30: 4232–4237.

    Article  CAS  Google Scholar 

  28. Jones, D.T., Taylor, W.R. and Thornton, J.M. 1992. A new approach to protein fold recognition. Nature 358: 86–89.

    Article  CAS  Google Scholar 

  29. Godzik, A., Kolinski, A. and Skolnick, J. 1992. Topology fingerprint approach to the inverse folding problem. J. Mol. Biol. 227: 227–38.

    Article  CAS  Google Scholar 

  30. Godzik, A. and Skolnick, J. 1993. Sequence-structure matching in globular proteins: Applications to supersecondary and tertiary structure determination. Proc. Natl. Acad. Sci. USA, In press

  31. Bryant, S.H. and Lawrence, C.E. 1993. An empirical energy function for threading protein sequence through folding motif. Proteins: Structure, Function and Genetics, In press

    Google Scholar 

  32. Leszczynski (Fetrow), J.S. and Rose, G.D. 1986. Loops in globular proteins: a novel category of protein secondary structure. Science 234: 849–855.

    Article  Google Scholar 

  33. Chothia, C. and Lesk, A.M. 1987. Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196: 901–918.

    Article  CAS  Google Scholar 

  34. Wilmot, C.M. and Thornton, J.M. 1988. Analysis and prediction of the different types of β-turns in proteins. J. Mol. Biol. 203: 221–232.

    Article  CAS  Google Scholar 

  35. Ring, C.S., Kneller, D.G., Langridge, R. and Cohen, F.E. 1992. Taxonomy and conformational analysis of loops in proteins. J. Mol. Biol. 224: 685–699.

    Article  CAS  Google Scholar 

  36. Go, N. and Scheraga, H.A. 1970. Ring closure and local conformational deformation of chain molecules. Macromolecules 3: 178–187.

    Article  CAS  Google Scholar 

  37. Bruccoleri, R.E. and Karplus, M. 1987. Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers 26: 137–196.

    Article  CAS  Google Scholar 

  38. Palmer, K.A. and Scheraga, H.A. 1992. Standard-geometry chains fitted to x-ray derived structures: validation of the rigid-geometry approximation. II. systematic searches for short loops in proteins: applications to bovine pancreatic ribonuclease A and human lysozyme. J. Comp. Chem. 13: 329–350.

    Article  CAS  Google Scholar 

  39. Moult, J. and James, M.N.G. 1986. An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins: Structure, Function, and Genetics 1: 146–163.

    Article  CAS  Google Scholar 

  40. Shenkin, P.S., Yarmush, D.L., Fine, R.M., Wang, H. and Levinthal, C. 1987. Predicting antibody hypervariable loop conformation. I. ensembles of random conformations for ringlike structures. Biopolymers 26: 2053–2085.

    Article  CAS  Google Scholar 

  41. Fine, R.M., Wang, H., Shenkin, P.S., Yarmush, D.L. and Levinthal, C. 1986. Predicting antibody hypervariable loop conformations II: minimization and molecular dynamics studies of MCPC603 from many randomly generated loop conformations. Proteins: Structure, Function, and Genetics 1: 342–362.

    Article  CAS  Google Scholar 

  42. Jones, T.A. and Thirup, S. 1986. Using known substructures in protein model building and crystallography. EMBO J. 5: 819–822.

    Article  CAS  Google Scholar 

  43. Richards, F.M. 1977. Areas, volumes, packing, and protein structure. Ann. Rev. Biophys. Bioeng. 6: 151–176.

    Article  CAS  Google Scholar 

  44. Ponder, J.W. and Richards, F.M. 1987. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol. 193: 775–791.

    Article  CAS  Google Scholar 

  45. Lee, C. and Subbiah, S. 1991. Prediction of protein side-chain conformation by packing optimization. J. Mol. Biol. 217: 373–388.

    Article  CAS  Google Scholar 

  46. Holm, L. and Sander, C. 1991. Database algorithm for generating protein backbone and side-chain coordinates for a Cα trace. Application to model building and detection of coordinate errors. J. Mol. Biol. 218: 183–194.

    Article  CAS  Google Scholar 

  47. Holm, L. and Sander, C. 1992. Fast and simple Monte Carlo algorithm for side chain optimization in proteins: application to model building by homology. Proteins: Structure, Function, and Genetics 14: 213–223.

    Article  CAS  Google Scholar 

  48. Desmet, J., DeMaeyer, M., Hazes, B. and Lasters, I. 1992. The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356: 539–542.

    Article  CAS  Google Scholar 

  49. Shenkin, P.S., Farid, H. and Fetrow, J.S. 1993. In preparation

  50. Castonguay, L.A., Bryant, S.H., Snow, P.S. and Fetrow, J.S. In preparation

  51. Patel, N.H., Snow, P.M. and Goodman, C.S. 1987. Characterization and cloning of fasciclin III: A glycoprotein expressed on a subset of neurons and axon pathways in Drosophila. Cell 48: 975–988.

    Article  CAS  Google Scholar 

  52. Snow, P.M., Bieber, A.J. and Goodman, C.S. 1989. Fasciclin III: A novel homophilic adhesion molecule in Drosophila. Cell 59: 313–323.

    Article  CAS  Google Scholar 

  53. Grenningloh, G., Bieber, A.J., Rehm, E.J., Snow, P.M., Traquina, Z.R., Hortsch, M., Patel, H.H. and Goodman, C.S. 1990. Molecular genetics of neuronal recognition in Drosophila: evolution and function of immunoglobulin superfamily cell adhesion molecules. Cold Spring Harb. Symp. Quant. Biol. 55: 327–340.

    Article  CAS  Google Scholar 

  54. Satow, W., Cohen, G.H., Padlan, E.A. and Davies, D.R. 1987. Phosphocholine binding immunoglobulin FAB McPC603. An x-ray diffraction study at 2.7 Angstroms. J. Mol. Biol. 190: 593–604.

    Article  Google Scholar 

  55. Nicholls, A., Sharp, K.A. and Honig, B. 1991. Protein folding and association: insights from the thermodynamic properties of hydrocarbons. Proteins: Structure, Function, and Genetics 11: 281–296.

    Article  CAS  Google Scholar 

  56. Abola, E.E., Bernstein, F.C., Bryant, S.H., Koetzle, T.F. and Weng, J.C. 1987. Protein data bank, p. 107–132. In: Crystallographic Databases: Information Content, Software Systems, Scientific Applications. Allen, F. H., Bergerhoff, T., Sievers, R. (Eds. ). Int. Union of Crystallography, Bonn, Chester, Cambridge, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fetrow, J., Bryant, S. New Programs for Protein Tertiary Structure Prediction. Nat Biotechnol 11, 479–484 (1993). https://doi.org/10.1038/nbt0493-479

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0493-479

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing