Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum-size effects in the thermodynamic properties of metallic nanoparticles

Abstract

THE properties of nanometre-scale metallic particles differ from those of the same material1,2 in bulk. Conduction electrons, because of their wave-like nature, can have only certain discrete values of kinetic energy or wavelength. Such 'quantum-size' effects have been observed in two-dimensional electron gases in semiconductors3,4, and in atomic-scale metallic point contacts5. Also present are 'Coulomb-charging' effects: these are purely classical in origin, and occur when the energy required to add one electron to a conducting sphere exceeds the mean thermal energy kBT. Thermal fluctuations in the total charge on the particle are then suppressed6. In theory, the combination of quantum-size and Coulomb-charging effects should cause the properties of small metallic particles to depend sensitively on whether they have an odd or even number of electrons7. Odd–even effects have been observed in experiments on tunnelling between discrete electronic levels of single metal particles8, but their influence on thermodynamic properties remains to be demonstrated. Here we report measurements of the heat capacity and electronic magnetic susceptibility of small metallic clusters. Our results show definitive evidence for odd–even effects, thus confirming that quantum and classical size effects strongly influence the thermodynamic properties of small particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Perenboom, J. A. A., Wyder, P. & Meier, F. Phys. Rep. 78, 173–292 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Halperin, W. P. Rev. Mod. Phys. 58, 533–606 (1986).

    Article  ADS  CAS  Google Scholar 

  3. van Wees, B. J. et al. Phys. Rev. Lett. 60, 848–850 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Wharam, D. A. et al. J. Phys. C 21, L209–L214 (1988).

    Article  Google Scholar 

  5. Krans, J. V., van Ruitenbeek, J. M., Fisun, V. V., Yanson, I. K. & de Jongh, L. J. Nature 375, 767–769 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Gorter, C. J., Physica 17, 777–780 (1951).

    Article  ADS  Google Scholar 

  7. Kubo, R. J. Phys. Soc. J. 17, 975–986 (1962).

    Article  ADS  CAS  Google Scholar 

  8. Ralph, D. C., Black, C. T. & Tinkham, M. Phys. Rev. Lett. 74, 3241–3244 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Gor'kov, L. P. & Eliashberg, G. M. Sov. Phys. JETP 21, 940–947 (1965).

    ADS  Google Scholar 

  10. Denton, R., Mühlschlegel, B. & Scalapino, D. J. Phys. Rev. B 7, 3589–3607 (1973).

    Article  ADS  CAS  Google Scholar 

  11. Schmid, G. (ed.) Clusters and Colloids. From Theory to Applications (VCH, Weinheim, 1994).

  12. de Jongh, L. J. (ed.) Physics and Chemistry of Metal Cluster Compounds (Kluwer, Dordrecht, 1994).

  13. Schmid, G., Morun, B. & Malm, J.-O. Angew. Chem. Int. Edn Engl. 28, 778–780 (1989).

    Article  Google Scholar 

  14. Schmid, G. Polyhedron 7, 2321–2329 (1988).

    Article  CAS  Google Scholar 

  15. Schmid, G. et al. J. Am. Chem. Soc. 115, 2046–2048 (1993).

    Article  CAS  Google Scholar 

  16. Vargaftik, M. N. et al. J. Chem. Soc. Chem. Commun. 937–939 (1985).

  17. van Leeuwen, D. A. Phys. Rev. Lett. 73, 1432–1435 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Mulder, F. M., Stegink, T. A., Thiel, R. C., de Jongh, L J. & Schmid, G. Nature 367, 716–718 (1994).

    Article  ADS  CAS  Google Scholar 

  19. van Leeuwen, D. A., van Ruitenbeek, J. M., Schmid, G. & de Jongh, L. J. Phys. Lett. A 170, 325–333 (1992).

    Article  ADS  CAS  Google Scholar 

  20. Foner, S., Doclo, R. & McNiff, E. J. Jr J. Appl. Phys. 39, 551–552 (1968).

    Article  ADS  Google Scholar 

  21. de Jongh, L. J. & Sinzig J. in Localized and Itinerant Molecular Magnetism: From Molecular Assemblies to the Devices (eds Coronado, E., Delhaes, P., Gatteschi, D. & Miller, J. S.) (Kluwer, Dordrecht, in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volokitin, Y., Sinzig, J., de Jongh, L. et al. Quantum-size effects in the thermodynamic properties of metallic nanoparticles. Nature 384, 621–623 (1996). https://doi.org/10.1038/384621a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/384621a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing