Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nitrogen isotope abundances in the recent solar wind

Abstract

ALTHOUGH lunar crystalline rocks are essentially devoid of nitrogen, the same is not true of the lunar regolith. The nitrogen contents of individual regolith samples (which can be as high as 0.012% by mass) correlate strongly with abundances of noble gases known to be implanted in the lunar surface by solar radiation, indicating that lunar regolith nitrogen is also predominantly of solar origin1. The large variability in 15N/14N ratios measured in different regolith samples may thus reflect long-term changes in the isotopic composition of the solar radiation1. But attempts to explain these variations have been hampered by the lack of any firm constraint on 15N/14N in the present solar wind. Here we report measurements of nitrogen isotopes from two lunar samples that have had simple (and relatively recent) exposure histories. We find that nitrogen implanted in the lunar surface during the past 105 to 5 x 107 years has a 15N/14N ratio approximately 40%o higher than that in the terrestrial atmosphere, which is substantially lower than most previous estimates2,3. This isotopic signature probably represents the best measure of 15N/14N in the present-day solar wind.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kerridge, J. F. Rev. Geophys. 31, 423–437 (1993).

    Article  ADS  Google Scholar 

  2. Becker, R. H. & Clayton, R. N. Proc. Lunar Sci. Conf. 8th 3685–3704 (Pergamon, New York, 1977).

  3. Kerridge, J. F. in The Ancient Sun (eds Pepin, R. O., Eddy, J. A. & Merrill, R. B.) 475–489 (Pergamon, New York, 1980).

    Google Scholar 

  4. Geiss, J. & Bochsler, P. in The Sun in Time. (eds Sonett, C. P., Giampapa, M. S. & Matthews, M. S. 98–117 (Univ. Arizona, Tucson, 1991).

    Google Scholar 

  5. Geiss, J. & Bochsler, P. Geochim. cosmochim. Acta 46, 529–548 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Ray, J. & Heymann, D. (abstr.) Lunar Planet. Sci. XIII 640 (Lunar and Planetary Inst., Houston, 1982).

    Google Scholar 

  7. Kim, Y., Kim, J. S., Marti, K. & Kerridge, J. F. (abstr.) Lunar Planet. Sci. XXIII 693–694 (Lunar and Planetary Inst., Houston, 1992).

    Google Scholar 

  8. Becker, R. H. & Pepin, R. O. Meteoritics 29, 724–738 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Becker, R. H., Clayton, R. N. & Mayeda, T. K. Proc. Lunar Sci. Conf. 7th 441–458 (Pergamon, New York, 1976).

    Google Scholar 

  10. Marti, K., Lightner, B. D. & Osborne, T. W. Proc. Lunar Sci. Conf. 4th 2037–2048 (Pergamon, New York. 1973).

    Google Scholar 

  11. Heymann, D., Walton, J. R., Jordan, J. L., Lakatos, S. & Yaniv, A. The Moon. 13, 81–110 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Becker, R. H. & Clayton, R. N. Proc. Lunar Sci. Conf. 6th 2131–2149 (Pergamon, New York, 1975).

    Google Scholar 

  13. Behrmann, C. et al. Proc. Lunar Sci. Conf. 4th 1957–1974 (Pergamon, New York, 1973).

    Google Scholar 

  14. Kohl, C. P., Murrell, M. T., Russ, G. P. & Arnold, J. R. Proc. Lunar Planet. Sci. Conf. 9th 2299–2310 (Pergamon, New York, 1978).

    Google Scholar 

  15. Rao, M. N., Garrison, D. H., Bogard, D. D. & Reedy, R. C. Geochim. cosmochim. Acta 58, 4231–4245 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Yaniv, A. & Marti, K. Astrophys. J. 247, L143–L146 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Anders, E. & Grevesse, N. Geochim. cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Frick, U., Becker, R. H. & Pepin, R. O. Proc. Lunar Planet. Sci. Conf. 18th 87–120 (Cambridge Univ. Press, 1988).

    Google Scholar 

  19. Cameron, A. G. W. in Essays in Nuclear Astrophysics (eds Barnes, C. A., Clayton, D. D. & Schramm, D. N.) 23–37 (Cambridge Univ. Press, 1982).

    Google Scholar 

  20. Norris, S. J., Swart, P. K., Wright, I. P., Grady, M. M. & Pillinger, C. T. Proc. Lunar Planet. Sci. Conf. 14th B200–B210 (Am. Geophys. Union, Washington DC, 1983).

    Google Scholar 

  21. Wieler, R. & Baur, H. Astrophys. J. (in the press).

  22. Kerridge, J. F. Proc. Lunar Planet. Sci. Conf. 21st 301–306 (Cambridge Univ. Press, 1991).

    Google Scholar 

  23. Kerridge, J. F. Science 188, 162–164 (1975).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Kim, Y., Marti, K. et al. Nitrogen isotope abundances in the recent solar wind. Nature 375, 383–385 (1995). https://doi.org/10.1038/375383a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/375383a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing