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Abstract

The Dynamic Multi-Period Routing Problem (DMPRP) introduced by Angelelli et al. [1] gives
a model for a two-stage online-offline routing problem. At the beginning of each time period a
set of customers becomes known. The customers need to be served either in the current time
period or in the following. Postponed customers have to be served in the next time period. The
decision whether to postpone a customer has to be done online.

At the end of each time period, an optimal tour for the customers assigned to this period
has to be computed and this computation can be done offline. The objective of the problem
is to minimize the distance traveled over all planning periods assuming optimal routes for the
customers selected in each period.

We provide the first randomized online algorithms for the DMPRP which beat the known
lower bounds for deterministic algorithms. For the special case of two planning periods we
provide lower bounds on the competitive ratio of any randomized online algorithm against the
oblivious adversary. We identify a randomized algorithm that achieves the optimal competitive
ratio of HT\@ for two time periods on the real line. For three time periods, we give a randomized
algorithm that is strictly better than any deterministic algorithm.

1 Introduction

Online optimization deals with optimization problems for which the information get known over time,
i.e., the optimization problems are online or dynamic. Classical approaches for online optimization
model this as a sequence of requests, where the decision maker has to make an irrevocable decision
on how to serve a request before the next request becomes known.

In some practical applications the situation is different: Only some part of the decision is irrevo-
cable, whereas some aspects can still be chosen to optimize overall performance [6]. An example is a
company which provides technical service to customers who can require service at a call center. The
company makes an appointment with the customer on which day a technician will arrive, but not the
exact time of day. This flexibility allows the company to come up with good routes for its technicians.
However, the day of service may not be altered any more and is thus an irrevocable decision.

Another example is a transportation company providing a delivery service to its customers. Due
to some service level agreements, delivery has to be within a certain time interval, say two days.
Thus if a customer demands delivery, the company is free to choose whether to serve the customer
the same day or the following. Once this is decided it may not be changed any more. The freedom
to choose the day of service and the possibility to use optimized routes for each day enables the
company to operate efficiently. Note that in both example applications it is rather important to
make the irrevocable decision carefully in order to exploit the freedom left.

To study the last problem, Angelelli et al. [1, 2] introduced the Dynamic Multi-Period Routing
Problem (DMPRP), which we will study in this paper. In this problem, a set of customers becomes
known at beginning of each time period. These customers have to be served either in that time period
or in the following. At the beginning of each time period decisions have to be made based on the
knowledge of the location of the customers that were postponed from the last time period and the
location of the customers that have just arrived. No information about future customers are known.
Therefore decisions have to be made at each time period based on incomplete knowledge.
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Table 1: Overview on known and new results for the DMPRP. Superscripts indicate the original
paper, results without notes are new in this paper.

Following Angelelli et al. [1, 2], we analyze the performance of algorithms for the DMPRP using
competitive analysis [3, 5.

Related work Angelelli et al. [1] introduced the DMPRP, for which they proposed and studied
deterministic algorithms. They considered customers on the nonnegative real line or in the Euclidean
plane and showed that the simple strategies IMMEDIATE and DELAY have a competitive ratio of 2 for
an arbitrary number of periods. Moreover, they proposed a more sophisticated algorithm SMART that
has a competitive ratio of v/2 for two time periods and customers on the nonnegative real line. In a
subsequent paper [2] they showed that SMART is 3/2-competitive on the nonnegative real line for an
arbitrary number of periods.

The DMPRP is closely related to the Online Target Date Assignment Problem (ONLINETDAP)
introduced by Heinz et al. in [6] to model applications similar to the first one of the introduction.
It is a general framework for two stage online-offline problems each of which is characterized by a
so called downstream problem, e.g., the Traveling Salesman Problem (TSP). Each request r; has a
release date t(r;) and must be assigned online and immediately to a target date in the time period
t(r;)+1,...,t(r;) + 9, for some § > 1. All requests assigned to the same date constitute an instance
of the downstream problem, which is assumed to be solved to optimality offline. The goal is to assign
target dates to the requests such that the total cost of the downstream problems over all dates is as
small as possible. In [6] it was already proven that /2 is a lower bound on the competitive ratio for
any deterministic online algorithm. Moreover, a 2-competitive algorithm was proposed. It is easy to
see that the DMPRP is a restricted version of the ONLINETDAP (§ = 2) with downstream problem
TSP, where all requests at one date are given together.

Our results We study the first randomized online algorithms for the DMPRP (and the ONLINET-
DAP). We provide lower bounds for randomized algorithms and for non-splitting algorithms and
propose a family of randomized algorithms for the DMPRP. On the real line, one of these algorithms
is optimal for two time periods and another one is strictly better than any deterministic algorithm
for three time periods. An overview on our results is given in Table 1.

In the next section we formally define the considered problem, provide background on online opti-
mization and give some basic structural results. In Section 3 we provide lower bounds for randomized
algorithms on the real line and the Euclidean plane. In Section 4 we introduce our new algorithm
RSMART and analyze its performance for two and three planning periods.

2 Problem definition and preliminaries

Let M = (X,d) be a metric space where X is a set and d: X x X — R* is a metric satisfying the
triangle inequality. In this paper the space M is induced either by the real line or by the Euclidean
plane.

An instance of the Dynamic Multi-Period Routing Problem DMPRP(M) in the metric space M
consists of a sequence o = (C’l, Cij2,Co35- -+, Cr_qj1, C’T) of customer sets, where a customer is a
point in the metric space. There are T planning periods 1,...,7T. Furthermore, we presume that a
server is located at a depot o € X. In each period, the server serves a set of customers by visiting
the points in the metric space on a shortest tour starting and ending at the depot. The customer set
of the next period is released only after the server has returned to the depot.



At the beginning of time period one, the decision maker gets to know the customer sets C7 and
Cij2- It may choose an arbitrary subset of C|; to be served together with C; in the first period.
The remaining customers from Cyj have to be served in time period 2, together with a subset of
customers from Cyj3. In general, the decision maker chooses a subset of Cy;41 in period ¢, which is
served in that period with the unserved customers from period ¢ — 1. This continues up to period T,
in which all remaining customers have to be served together with Cp. The decision maker does not
know T in advance. Note that the customers released in time period ¢ have to be served in time
period t or t+ 1, with the exception of customers in C'; and C'7 that have to be served in time periods
1 and T, respectively.

The cost of serving a customer set corresponds to the length of an optimal tour traveled in order
to visit the customers of this set. We denote this length by L; and Ly for customer sets C; and Cr,
respectively, and Ly, for customer sets Cy;4q, t=1,...,T — 1.

In this paper we only consider two planning periods, i.e., T = 2, unless otherwise mentioned. For
both the real line and the Euclidean plane we assume that the depot is located at the origin. While
the case of two or three planning periods may seem restricted, it already captures the spirit of “delay
or not-to-delay” inherent in many online problems such as the ski-rental problem, the page-replication
problem or the TCP-acknowledgement problem [4].

We call an online algorithm that serves Cjj;y; entirely in period ¢ or period ¢ + 1 a non-splitting
algorithm and algorithms without this property splitting algorithms. All algorithms for the DMPRP
we are aware of are non-splitting.

2.1 Online algorithms and competitive analysis

We evaluate the considered online algorithms using competitive analysis. An online algorithm ALG
is called c-competitive if the cost of the solution produced by ALG on any input sequence is at
most ¢ times that of an optimal offline solution for the same input. Competitive analysis can be
seen as a game between an online player choosing an online algorithm to process an input sequence
and an offline adversary generating this input sequence such that the ratio between the cost of the
online player and the optimal offline cost is maximized. Note that the offline adversary knows the
deterministic strategy of the online player.

A randomized online algorithm is a probability distribution over a set of deterministic online algo-
rithms, where instead of sticking to one deterministic algorithm the online player chooses randomly
from a set of available online algorithms according to a given probability distribution. The adversary
considered in this paper is known as oblivious adversary and knows the description of the online al-
gorithm (including the probability distribution) but has to construct the request sequence in advance
before any moves are made. A randomized online algorithm is called c-competitive, if the expected
cost of the solution produced by ALG on an input sequence is at most ¢ times that of an optimal
offline solution for that input.

The infimum of all ¢ s. t. an online algorithm is c-competitive is called the competitive ratio of the
algorithm. In order to prove lower bounds for any randomized online algorithm the following result
known as Yao’s Principle is often useful (see e.g., [3]).

Theorem 2.1 (Yao’s Principle) Let {0, | x € X} be the set of all possible input sequences and
{ALGy_| y € Y} denote the set of deterministic online algorithms for an online minimization problem.
If X is a probability distribution over all input sequences and ¢ > 1 is a real number such that

inf E¢[ALGy(0,)] > ¢ Eg[OpPT(0,)],
yey

then ¢ is a lower bound on the competitive ratio of any randomized online algorithm against the
oblivious adversary.

2.2 The DMPRP on the real line

Most of our results in this paper are for customers sitting on the nonnegative real line. The following
result shows that the real line and the nonnegative real line are essentially equivalent for the Dynamic
Multi-Period Routing Problem. The result generalizes the corresponding one in [1].



Proposition 2.2 If there is a (randomized) c-competitive online algorithm ALG for DMPRP(R™) then
there is a (randomized) online algorithm ALG that is c-competitive for DMPRP(R). In particular, if
ALG has the optimal competitive ratio ¢, then ALG has also competitive ratio ¢ and is optimal, too.

Proof. Suppose ALG is c-competitive for DMPRP(R*). Based on ALG, define algorithm ALG for
the real line as follows. In each time period t, ALG considers the customers postponed from the
last period and the new customers separately for RT and R~, using ALG to decide for each subset
which customers to postpone or not. It then serves the customers that are not postponed by ALG.
Obviously, we have ALG(c) = ALG(cT) + ALG(07).

Let o be an arbitrary input sequence for the real line. Note that ¢ can be decomposed in the
customer subsequences o (customers on the nonnegative real line) and o~ (customers on the negative
real line). Given solutions for " and o, these can be combined to a solution for o with total length
at most the sum of the total lengths of ¢ and o, which implies OPT(c) < OPT(c) + OPT(c7).
On the other hand, a solution for o induces solutions for ™ and o~ with the same total length, since
in each time period, the server needs to return to the depot before serving customers on the other
side. This implies OPT(¢) > OPT(c") + OPT(07), so we have OPT(c) = OPT(c") + OPT(0 7).

From the above observations, we have

ArLa(o) Avrc(o™)+ Anc(c™) < ma ArLg(oc™) ALc(o™)
= X
Opt(c) OpPT(0t)+ OPT(0~) — Opt(ct)” OpPT(07) )’
hence the algorithm ALG is ¢-competitive, too. The second statement follows by observing that a
lower bound for DMPRP(R™) is a lower bound for DMPRP(R), too. O

Consider the DMPRP(R™) and a customer set Cyje41 and let a, b € Cyppqq be two different customers
with b > a. If b is selected to be served in period ¢, then it does not increase the cost if a is served
in period t, too. However, if b is postponed to period t 4+ 1, a can be served in period ¢ + 1 for free.
Thus it is sufficient to consider only the maximum of Cy;4; to decide whether to serve or postpone
all customers of Cy;1;. Note that this implies that on the (nonnegative) real line, non-splitting
algorithms are as powerful as splitting algorithms.

Suppose Cyj;41 is empty. We can then add a customer at the origin to Cyj; 41 without increasing
the cost. Thus we can assume that all customer sets are singleton sets. Moreover, we can assume
Cy = {1} just by scaling all other elements appropriately. This proves the following result and justifies
to consider only specially structured customer sequences when studying online algorithms for R*. We
will use the shorter notation o = (1, ¢y, ..., cr) for them.

Proposition 2.3 If a (randomized) online algorithm ALG for R is c-competitive for customer se-

quences of the form
o= ({1}’ {ca},. .., {CT}),

then it is c-competitive for every customer sequence.

3 Lower bounds for randomized algorithms

We derive our lower bounds already for the case of wo planning periods, i.e., T' = 2. Therefore, there
are only three different sets of customers: The sets C; and C)o of customers are known in period 1
and the set Cs of customers whose positions become known at the beginning of the second time
period. Since set C7 has to be served in period 1, the only decision to be made is which customers of
set ()2 should be served immediately and which should be postponed to period 2.

In this section we give lower bounds on the competitive ratio of randomized algorithms for the
nonnegative real line and the Euclidean plane. To do this, we need to consider different classes
of online algorithms, depending on which customers are selected to be served in the first period.
To simplify language, we will talk of algorithms, but each of those algorithms represents a class of
algorithms which all do the same in the first period.

Theorem 3.1 Any randomized online algorithm for DMPRP(R™) has a competitive ratio greater or

1+V2
2

equal ~ 1.20711 against the oblivious adversary.



Proof. Using Yao’s Principle we can derive a lower bound for the nonnegative real line as follows.
Consider an instance 0 = (1,a,b) with a > 1. There are two possible algorithms. The first algo-
rithms ALG; serves the customers at 1 and a in period 1, whereas the second algorithm ALGs only
serves the customer at 1 in the first period.

With probability p, b is some value greater or equal a, otherwise b is zero (meaning there is no new
customer). This yields a probability distribution over the two input sequences o1 = (1,a,b) (with
a <b) and o3 = (1,a,0).

First we will have a look at input sequence ;. Since b > a it is optimal to postpone the customer
at a, yielding optimal cost OPT (o1) = 2+ 2b. Algorithm ALG; serves the customer at a in period 1,
incuring costs of ALGy (01) = 2a + 2b, whereas ALGs is optimal.

Next we consider input sequence oy, for which it is optimal to serve the customer at a in period 1
and to stay idle in period two, giving optimal cost OPT (02) = 2a. Whereas ALG; is optimal, the
cost of ALGs is ALGy (02) = 2 + 2a.

Therefore we have

E[OPT (0,)] =p(2+2b) + (1 — p) 2a
E[ALGq (02)] =p(2a+2b) + (1 — p) 2a
E[ALC: (0,)] = p(2+2b) + (1 — p) (2 + 2a)

The maximum of the minimum cost for the two algorithms
max min {2a + 2bp, 2 + 2a + 2bp — 2ap}
in the interval p = [0, 1] is attained at p = 1/a yielding

2420+ 2a® - 2a

E[OrT (0] 2020
2b + 2a?
E[ALGy (0,)] = E[ALGs (04)] = %.
Consequently we have for y = 1,2
E[ALGy (04)] a’®+b

E[OPT (0,)] a2—a+b+1
with maximal value at b = a. Since

E[ALGy (04)] a2+a 1++2
W EOr ()]~ N 1= re=1HV2

by Yao’s principle the lower bound for any randomized online algorithm for DMPRP(R™) is greater
than or equal to (1 + /2)/2. Due to Proposition 2.2 this lower bounds extends to the entire real
line. a

Finally we prove a lower bound on randomized online algorithms for DMPRP(R?) with two time
periods. This lower bound construction is a randomized version of the lower bound of 3/2 given by
Angelelli et al. [1] for deterministic online algorithms.

Theorem 3.2 Any randomized online algorithm for DMPRP(R?) has a competitive ratio of at least
5/4 against the oblivious adversary. Moreover, any non-splitting (randomized) online algorithm has
a competitive ratio not better than 3/2.

Proof. We consider an instance in which the depot is at the origin and the customers are located on
three different line segments starting from the depot. The line segments endpoints A, B and C' are
situated on a circle with center O and radius 1/2. The distance between endpoint A and endpoints
B and C is € (see Figure 1).

To construct the customer sets, we distribute customers equidistantly on a line segment. If L is
a line segment, (L), denotes the set of n points distributed equidistantly across L, with one point at
each end of L. The customer set C required to be served in time period ¢t = 1 is given by C; = (OA),,
the set O3 of customers that the algorithm needs to decide upon is Cy; = (OB),, U (OC),,. At the



0

Figure 1: Instance construction for the lower bound in the Euclidean plane.

beginning of time period two, the customer set Cy becomes known, which is (OA), U (OB),, with
probability p and (OA),,U{OC),, with probability 1 —p. Therefore we have a probability distribution
X over the two possible request input sequences o1 = ((OA),, (OB),, U {(OC),,{OA), U{(OB),) and
02 = (<0A>na <OB>n U <Oc>n7 <OA>TL U <Oc>n)

For input sequence o7 the optimal strategy is to serve the customers in C; and those customers
of Cyjp that lie on line segment OC' in time period one, since the remaining n customers of Cy|y can
be served together with the customers of Cs, which are on line segments OA and OB. This leads to
the optimal cost of 2 4+ 2¢. By symmetry, the optimal tour length for o is 2 + 2¢, too.

Note that depending on ¢, if n is large enough it is always favorable to serve all customers of one line
segment before switching to another line segment. It is therefore sufficient to consider the following
four algorithms. The first algorithm ALG; serves only customers of set C; in the first time period
and postpones all others, whereas the second algorithm ALGs serves all customers of the two sets
C1 and ()3 in time period one. Additionally, a third algorithm ALG3 serves only the customers on
line segment OB of the set C); in time period one and postpones all others. Analogously, algorithm
ALG,4 serves the customers on line segment OC' in the first time period and postpones those in the
segment OB.

We observe that in this scenario ALG; and ALGs can never be optimal, since whatever happens
at the beginning of time period two, both algorithms are forced to serve customers on all three
line segments either in time period 1 (ALG2) or in time period 2 (ALG1). Thus they achieve cost
3 + 2¢, which implies a competitive ratio of at least 3/2, establishing the second claim. Therefore we
concentrate on the analysis of the remaining two algorithms.

Consider input sequence ;. Algorithm ALG3 serves customers on line segment OA and OB in the
first time period leaving customers on line segment OC' to be served in time period two. Therefore
this algorithm forces the server to traverse all three line segments in order to reach all customers in
period two yielding ALG3 (01) = (1 +¢€) 4+ (2 + €) = 3+ 2¢. On the other hand, the strategy of ALGy
is optimal for this input sequence. By symmetry, the results for input sequence o9 are the same, with
A1LG3 and ALG4 interchanged.

Putting these results together we have

Ex[OPT (0,)] =p(2+2¢) + (1 —p) (24 2¢) =2 + 2¢
Ex[ALGy (02)]=p(B+e)+(1—p)(B+¢€) =3+¢
Ex[ALG2 (0,)] =p (34 2€) + (1 —p) (3 + 2¢) =3+ 2¢
Ex[ALG3 (0,)] =p(3+2€)+ (1 —p) (2+2¢) =2+ p+ 2
Ex[ALG4 (02)] =p(24+2¢) + (1 —p) (3+2¢) =3 —p+ 2

For € going to 0 we get a ratio of at least

. 332+p3 D 5
min , > -
2’27 2 2 4

for p = 1/2. Therefore, any randomized online algorithm has a competitive ratio greater than or
equal to 5/4 by Yao’s Principle. O
4 Randomized algorithms

In this section we present and analyze randomized online algorithms for the DMPRP. As mentioned
in previous sections, in the special case of two planning periods there is only a decision to be made



for the customer set (), at the beginning of the first time period.
In [1] three deterministic online algorithms are described:

Algorithm IMMEDIATE
Visit all pending customers as soon as possible.

Algorithm DELAY
Delay all customers that can be postponed and only serve those that have to be
served.

Algorithm SMART,

Let Lyust be the length of the optimal tour visiting only customers that have to
be served, L,y the length of the optimal tour visiting all pending customers and
q > 1 a real number. If L,y < qLyust, then apply IMMEDIATE otherwise apply
DELAY.

In this section we will show that randomizing the decision to serve customers of set Cyp or to
postpone them improves upon any deterministic online algorithm. A first simple idea is to choose
randomly between IMMEDIATE and DELAY in each period. It turns out that using any fixed probability
p € [0,1] results in an competitive ratio of at least 3/2. This ratio is still better than IMMEDIATE and
DELAY, which have competitive ratios of 2 [1], but is only as good as SMART.

A more sophisticated strategy is to take the overhead of serving all pending customers into account.
Let Chust be the set of customers that have to be visited in the current time period and Cgec the
set of customers that can either be visited in the current or in the following time period. Moreover,
let Lyust be the length of the optimal tour for Cy.s and L,y be the length of an optimal tour for
Caec and Chyust. If the ratio between L. and L,y is small, the probability of visiting all pending
customers should be higher than if the ratio is big, since a small ratio means that there is little
overhead in serving the customers together. Let « be this ratio, i.e.,

L
o= all_ 1.

Lmust -

The algorithm RSMART; uses a function f: Rt — [0,1] to determine the probability for choosing
between IMMEDIATE and DELAY depending on a. We assume that f(1) = 1, since Lay = Lmust
implies that it is optimal to serve all pending requests at once.

Algorithm RSMART;

If Liust = O then do nothing in this period. Otherwise, let @ = Lai/Lmust-
With probability p = f(«), serve all pending customers, i.e., Cpust U Cdec, and
with probability 1 — p serve only customers of set Chyust-

4.1 Randomized algorithms for the real line

The next result analyzes the performance of RSMART for 7" = 2 and a constant function f. This
allows us to calculate an optimal choice for f(«), showing that this approach actually leads to an
optimal randomized online algorithm hitting the lower bound of Section 3.

Proposition 4.1 Consider an instance of DMPRP(R™) with two planning periods and let o :=
Lan/Liust-  Then, for any real number p € [0,1], the algorithm RSMART; with f(a) = p has a

competitive ratio of ¢ with
-1 1—
c—max{l—i—p(a ),1—|— p}. (1)
a+1 o

Proof. By Proposition 2.3 we can assume that the instance is of the form o = (1, a,b). Since Lyust = 1
and L.y = max{l,a} we have @ = Lay. If a < 1, RSMART; serves the customer at a immediately,
which is optimal. We can thus assume that a = a > 1.

Case 1: b€ [0,1]
The optimal cost OPT (o) for serving this input sequence is 2a + 2b, the randomized online algorithm
on the other hand serves the customer at a in the first time period with probability p and delays it



with probability 1 — p implying expected costs of E[RSMART(0)] = p (2a + 2b) + (1 —p) (2 + 2a) =
2a + 2pb — 2p + 2. The ratio
E[RSMART¢(0)] a+pb—p+1

OprT1(0) N a+b

is a decreasing function in b. Choosing b = 0, therefore, maximizes the ratio.

Case 2: b e [1,d]
Since the customer at b can be served without additional cost if the customer at a is delayed, the
optimal cost is OPT () = 2 + 2a. The expected cost of our randomized online algorithm is again
E[RSMART(0)] = 2a + 2pb — 2p 4+ 2. This time the ratio

E[RSMARTf(0)] a+pb—p+1

ort(s) a+1

is increasing for b yielding a maximal ratio for b = a.

Case 3: b > a:
In this scenario it is optimal to delay the customer at a, since it can be served without addi-
tional cost while traveling to b implying optimal costs of OPT (¢) = 2 4 2b. The randomized on-
line algorithm, however, serves a with probability p yielding expected costs of E[RSMART;(o)] =
p(2a +2b) + (1 — p) (2+ 2b) = 2ap + 2b — 2p + 2. The resulting ratio

E[RSMARTf(0)] ap+b—p+1

orr(c) b+1

shrinks for growing b, therefore the smallest possible value for b, namely b = a, maximizes this ratio.
Putting these results together and using a = « we get the result that the competitive ratio of
algorithm RSMART (o) for DMPRP(R™) is given by (1). O

We will now show that fixing the probability parameter to a real number p € [0,1] gives a 2-
competitive algorithm. The best ratio 3/2 is attained for p = 1/2. Furthermore, we observe that the
worst competitive ratio of 2 is obtained for p fixed at 0 or 1, for which the algorithm coincides with
DELAY and IMMEDIATE, respectively. However, by choosing f appropriately, RSMART is an optimal
randomized online algorithm.

Theorem 4.2 1. For any fized p € [0,1], algorithm RSMART with f(a) = p is 2-competitive for
DMPRP(R™T). The best competitive ratio of 3/2 is attained at p = 1/2.

2. For f(a) = O‘é’;—fl, algorithm RSMART is (#)—competitive for DMPRP(R™T).

Proof. We know from Proposition 4.1 that the competitive ratio of RSMART; with f(a) = p is is given
by (1). The first ratio in (1) is an increasing function in p with value 1 for a = 1. For a going to
infinity the function tends to 1+ p. On the other hand, the second function 14 (1 — p) /a is decreasing
in p with value 2 — p for @ = 1 and tending to 1 as a goes to infinity. Therefore fixing p, RSMART,,
has a competitive ratio of max {1+ p,2 — p} which is maximal for p = 0 or p = 1 with value 2 and
minimal for p = 1/2 with value 3/2.

We now want to determine the value of the probability parameter p = f(a) that minimizes the
maximum of the two ratios. Since the first ratio is an increasing function in p and the second one
a decreasing function in p the maximum is minimal at the intersection of the two functions yielding
p=f(a)= 5‘2111. It is easy to check that o = 1 + /2 is a maximizer of f, giving a competitive ratio
of % m|

The function f identified in Theorem 4.2 is quite involved. It is interesting to see how good
RSMART can be with simpler functions f. We therefore study functions of the type

1 1§O[§O{1,
fla)=9p a1 <a<as, (2)
0 ax<a

for 1 < a; < as and p € [0,1]. Note that this family generalizes the idea for the SMART, algorithms.



Theorem 4.3 Let f be of type (2). RSMARTf has a competitive ratio of

4/3 ap =2,aa =00,p=1/3
for parameters .

1.2808 a1 = 1.7808, avy = 201, p = 1/2

Proof. Tt is again sufficient to consider sequences o = (1, a,b) with a > 1. We analyse the same cases
as in the proof of Proposition 4.1, but now for an arbitrary function f as in (2).

Case 1: b € [0,1]
It is optimal to serve the customer at a immediately, giving OPT(0) = 2a+2b. RSMART is nonoptimal
only if a = a > a1, with ratio

1+a

a+b
Ort(0) P

E[RSMART;(0)] [ BEPl o) < < ay,
g < a.

Both expressions are decreasing in b, hence the competitive ratio is bounded by max{l‘”"f%, %}
Case 2: b€ [1,d]
In this and the following case it is optimal to postpone the customer at a, i.e., OPT(c) = 2 + 2a.

The ratio of RSMART in the nonoptimal cases is

E[RsMARTf(0)] | 452 1<a<a,
OprT1(0) Hﬁ%’:fpb a1 <a<as,

which is bounded by max{ 3%, (le)%lfp

term is increasing in a with limit 1 + p.
Case 3: b>a
We have OpT(0) = 2 + 2b. The competitive ratio of RSMART in the nonoptimal cases is

}, since the expressions increase in b. Note that the second

Elrsmarry(0)] _ [ 45 l<a<a,
Orpt(0) Hl)ﬂ# a1 <a<as.

This time the ratio decreases with b and we get the same bound as in the preceding case.
Assuming as = 0o, we can find optimal parameters «; and p by minimizing

14o01—p 2«
max{—F, %, 1+ p}.

Since the first term is decreasing and the second increasing in o, we can determine a point a; = a (p)
where they are equal and then solve for p, yielding p = 1/3 and «; = 2 and a competitive ratio of 4/3.
Similarly, the optimal parameters for cg < 0o have to minimize

1+oy—p 2a;1 ltas (1+10)012+1—P}
aq Y141’ as ? 14+as :

max{

The mimizer can be found by determining oy = «a1(p) and as = aq(p) from the first and second
pair of terms, respectively. We get a; = (3 + V/17), az = 2a1, p = 1/2 and a competitive ratio of

5417
ST < 1.2808. O

Remark It is easy to see that RSMART; with f as in Theorem 4.2 has worst-case competitive
ratio 2, since it choses to serve C}p immediately with a positive probability no matter how large «
is. Furthermore, for f of type (2), the worst-case competitive ratio of RSMART  is

a1 +1 2a2}
a1 P ag+l17)°

max

Thus RSMARTf with ay = 2(34+V/17), as = 2a1, p = 1/2 has a competitive ratio of 1(v/17—1) ~ 1.56
in the worst case. Thus RSMART; is only slightly worse than SMART,, but significantly better than
IMMEDIATE or DELAY even in the worst case.

The following result shows that RSMART; with a suitable f as in (2) is strictly better than any
deterministic algorithm for 7' = 3, too.



decision sequence cost

ID a + max{b, c}
DI 1+ max{a,b} + ¢
DD 1+ a + max{b, c}
(a) Decision sequences and their cost.
case sequence optimal cost
b<e ID a+c
b > ¢,min{a,b} <c+1 ID a+b

b > ¢,min{a,b} > c+1 DI 1+ max{a,b} + ¢
(b) Optimal cost.

Table 2: Overview on costs of the possible decision sequences.

Theorem 4.4 Consider the DMPRP(R™) with T = 3. RSMARTy is 7/5-competitive for f of type (2)
with parameters ap = 2, ag = 00, and p = 2/5.

Proof. We consider an arbitrary sequence o = (1,a,b,¢) with a > 1. At periods 1 and 2, RSMART
can either serve the new customers immediately (“I”) or delay (“D”) them. Thus there are four
possible decision sequences, namely II, ID, DI, and DD. The first decision sequence does not occur
by construction of RSMART. A result in [2] implies that either ID or DI is optimal. Table 2 gives an
overview on the decision sequences and their cost. We distinguish three cases given by the optimum
solution.
Case 1: b<c¢
If a < 2, RSMART; is optimal. For a > 2, b/a < 2, the decision sequence is DI or DD with ratio

2(a+c) + 2(1 4+ max{a, b} + ¢)
a+c

31+ max{a, min{2q,c}} +¢

2
< Z
_5+5 a+c

If the minium is 2a, i.e., ¢ > 2a > 2, the last fraction can be bounded as

<1+2a+c< 1+20<§
- a+4c %c -3

and if ¢ < 2a by
< 1—|—max{a7c}—|—c< 1+ 4a
- a+c - 3a

In both cases the ratio is at most 7/5.
For a > 2, b/a > 2, the ratio is

<25 < = <

%(a+c)+%(1+b+c)+%(1+a+c)<%a—k%—k%c Jsat e 31 7
a+c - a+c - a+c T 25 5

Case 2: b > ¢, min{a,b} <c+1
If a < 2, RSMART; is optimal again. For a > 2, b/a < 2 the ratio is

2(a+c)+ 2(1 4 max{a,b} + c)
a+b

< ng §1—|—max{a,b}+b.
-5 5 a+b
The last fraction is at most 3/2, since if the maximum is b, it is increasing in b, but b < 2a and a > 2.
Otherwise the fraction is decreasing in (a + b) and is thus maximal for a = 2 and b = 0. The overall
ratio is therefore at most 13/10.

In case of a > 2, b/a > 2 we obtain

Bath)+(+b+o+5(1+a+d) Fa+d+btge Fat+Fb 31
a+b - a+b -~ a+b T 25
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Case 3: b > ¢, min{a,b} > c+1

If a < 2 we have the ratio
a+b 2a

<
1+ max{a,b} +¢c ~ 14+a

(SN

<4<
-3
For a > 2, b/a < 2 we get

2(a+b) + 2(1 4+ max{a, b} + c)
1+ max{a,b} + ¢

< g 2 2max{a, b}

7
—_ < -
5 max{a,b} ~ 5

Finally, in case of @ > 2, b/a > 2 we obtain

flatb) +(+bto+gtath) 6  patgbts

1+b+c =925 1+b
6 a+X 6 57 69 7
<2487 20 o0 L
=% T 7w S350 50 5

4.2 Randomized algorithms for the Euclidean plane

We know from Theorem 3.2 that RSMART cannot be better than 3/2-competitive, since it is a non-
splitting algorithm. The following result shows that there is a version of RSMART that actually attains
this competitive ratio.

Theorem 4.5 Algorithm RSMART; with f(a) = 1/2 is 3/2-competitive against the oblivious adver-
sary for DMPRP(R?) with two planning periods.

Proof. Since we are considering only two planning periods, any solution for an instance of the
DMPRP(R?) partitions all customers into two sets, those that are visited in the first time period
and those that are visited in the second. We denote by Cj5, those customers of set ()5 visited in
time period 1 in an optimal solution and by ('3, those postponed to the second time period in an
optimal solution. In consistency with the introduced notation, Lz, and Lo, are defined as the
optimal tour length for visiting all customers of set Cyj3, and C),, respectively.

We know from the triangle inequality that it is always more favorable to serve all customers of
the sets C7 and C)5 together than serving customers of sets C; together with Cy5, and customers
of set Cyjp, on their own. In particular, we have

L2 < Ly, + L2, < Ly 1j2, +max {La, Lyja, }
L2 < Lo, + Lip, < Lij2,2, + max {L1, Lqp2, },
and
OpT > L171|2a + max {LQ, L1|2b} > L1 + max {LQ, L1|2b} .

Moreover, we know that since the length of the optimal tours is at least the length of the tour serving
all possible requests together, we have

OpT > max {Ll,l\Qu L1|212} .
Taking these observations into account yields

E[RSMART (o)) _p (L1 + L2) + (1 = p) (L1 + Lyja )
or1(0) Lijjz, + Lajz, 2
P (L1,1j2, +2max {La, Lyja, }) + (1 — p) (L1j2,,2 + 2max { L1, Ly, })

- Lyq2, + L2, 2

For p =1/2 we get
E[RSMART;(00)] _ 1 Laaja, + Lajz, 2 | max {Ly,L12,} + max {Ly, Lyj2, }
OpPT1(0) T 2Ly32, + L1z, 2 Lip2, + L1z, 2
max {LQ, L1|2b} + max {Ll, Ll‘ga}
Lij2, + Lyj2, 2

+

IN
W N
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for all input sequences . The last inequality follows from the fact that both tours Ly and Lyjo, (L1
and Lij5,) are by the triangle inequality smaller than Lyjg, o (L1,1j2,)- m|

In order to achieve a better competitive ratio than 3/2, it is necessary to split Cy,1;. However,
the criterion for splitting the customer set needs to be more involved.

Proposition 4.6 Suppose ALG is a splitting (randomized) online algorithm that determines the sub-
set S of Cyji41 to serve in period t using a probability distribution that does not depend on Ly s. Then
ALG is not better than 3/2-competitive.

Proof. Consider T' = 2 and the instance o = ({1}, {a}, {b}) for the real line. Since C}; is a singleton
set, ALG is essentially a non-splitting algorithm on this instance. As its decision does not depend
on a, it behaves as RSMART; with f = p and p is the probability for selecting {a} to serve immediately.
By Theorem 4.2, ALG is at best 3/2-competitive. O

5 Conclusion

In this paper we proposed and analyzed randomized online algorithms for the DMPRP with two and
three planning periods. We showed that there are functions f such that the randomized algorithm
RSMART is optimal for 7" = 2 and strictly better than any deterministic algorithm for 7" = 3 for the
real line. For customers in the Euclidean plane, we established a lower bound of 3/2 on the competitive
ratio of non-splitting randomized algorithms and a lower bound of 5/4 on the competitive ratio of
splitting algorithms. This implies that the only way to improve upon the competitive ratio of 3/2
for known algorithms is to develop randomized splitting algorithms. A very interesting question is
whether this is possible. Another promising research direction is to extend the analysis of algorithms
for the real line to an arbitrary number of planning periods.
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