
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

FLORIAN SCHINTKE, ALEXANDER REINEFELD, SEIF HARIDI, THORSTEN SCHÜTT

Enhanced Paxos Commit for Transactions on DHTs

ZIB-Report 09-28 (September 2009)

Enhanced Paxos Commit for Transactions on DHTs
Florian Schintke∗,Alexander Reinefeld∗, Seif Haridi† and Thorsten Schütt∗

∗ Zuse Institute Berlin
† Royal Institute of Technology, Sweden

Abstract—Key/value stores which are built on structured
overlay networks often lack support for atomic transac-
tions and strong data consistency among replicas. This is
unfortunate, because consistency guarantees and transac-
tions would allow a wide range of additional application
domains to benefit from the inherent scalability and fault-
tolerance of DHTs.

The Scalaris key/value store supports strong data con-
sistency and atomic transactions. It uses an enhanced
Paxos Commit protocol with only four communication
steps rather than six. This improvement was possible by
exploiting information from the replica distribution in the
DHT. Scalaris enables implementation of more reliable
and scalable infrastructure for collaborative Web services
that require strong consistency and atomic changes across
multiple items.

I. INTRODUCTION

Distributed hash tables (DHTs) and other structured
overlay networks (SONs) were developed to provide an
efficient key based location of nodes and associated data
in the presence of node joins, leaves and crashes (churn).
Due to churn, two challenges arise in such systems: (1)
When a node crashes, all data stored on this node is
lost. (2) When a node is suspected to be crashed, lookup
inconsistencies and responsibility inconsistencies may
occur, which may lead to wrong query results or loss
of update requests. Responsibility inconsistency occurs
when multiple nodes believe they are responsible for an
overlapping range of items.

The first issue can be addressed by data replication.
The second issue can only be relieved but not overcome:
It was shown that in an asynchronous network atomic
overlay maintenance is impossible [7] and thus respon-
sibility inconsistency is unavoidable. Clearly, data con-
sistency cannot be achieved if responsibility consistency
is violated. But as shown in [19], the probability of in-
consistent data accesses can be reduced by increasing the
replication degree, and performing reads on a majority of
replicas. In typical Internet scenarios, for example, only
three replicas give a consistency probability of five nines.
It can be further improved by adding more replicas or

by increasing the share of nodes required for a quorum,
but it can never be made 100%1.

Scalaris [16] is a transactional key/value store which
uses symmetric key replication [8] to ensure data avail-
ability in the face of churn. Data consistency is enforced
by performing all data operations on a majority of
replicas.

In this paper, we present improved algorithms for
concurrency control and transaction processing, that are
based on approaches presented in [14], [16]:
• We show how Paxos Commit can be efficiently

embedded into a DHT to perform a low latency
non-blocking atomic commit on replicated items.
Our commit protocol including the commit phase
and the validation phase requires just four message
delays in the failure-free case (Sect. V-B).

• We discuss failure scenarios and explain how they
are dealt with (Sect. V-B).

• We illustrate how transactions are executed and
validated in Scalaris and how concurrency control
is performed using readers-writer locks (Sect. V-C
and Sect. V-D).

• We evaluate the latency-critical path of our commit
protocol by checking each step for its earliest start
time (Sect. VI).

Before going into the details in Sect. V and VI, we dis-
cuss related work in the following, describe our general
overlay structure and replication scheme in Sect. III and
provide the fundamentals of Paxos Consensus and Paxos
Commit in Sect. IV.

II. RELATED WORK

There are several production systems that use Paxos
Consensus [12], like Google’s distributed lock service
Chubby [3]. The closest to our work is Etna [13] which
provides replicated atomic registers. Etna uses consensus
to agree on the replica membership set. It does not
provide transactional semantics on multiple data items.

1Inconsistencies might still happen if multiple nodes join between
two existing nodes [19].

Dynamo [5] is a large-scale key/value store. In contrast
to Scalaris [16], Dynamo favours availability instead of
strong consistency. It provides eventual consistency and
no transactions.

We describe an improved transaction commit proto-
col which reduces the number of message delays in
the failure-free case by two compared to our previous
protocol [14].

III. SCALARIS: REPLICATED DATA ON STRUCTURED

OVERLAYS

Scalaris [16] is a distributed, transactional key/value
store with replicated items. It uses symmetric data repli-
cation [8] on top of a structured overlay like Chord [20]
or Chord# [17]. In contrast to many other key/value
stores, Scalaris provides strong data consistency. It uses
the same transaction mechanism for providing replica
synchronization as well as transactional semantics on
multiple data items.

In the following, we describe the DHT layer and
replication layer.

A. Structured Overlay Networks

Distributed hash tables (DHTs) provide a scalable
means for storing and retrieving data items in decen-
tralized systems. They are usually implemented on top
of structured overlay networks which provide robustness
in dynamic environments with unreliable hosts. A DHT
has a simple API for storing, retrieving and deleting
key/value pairs: put(key,value), get(key), and delete(key).

We use the structured overlay protocol Chord# [17]
for storing and retrieving key/value pairs in nodes that
are arranged in a virtual ring. This ring defines a key
space where all values can be stored according to the
associated key. Nodes can be placed at arbitrary places
on the ring and are responsible for all data between
their predecessor and themselves. The placement policy
ensures even distribution of load over the nodes.

In each of the N nodes, Chord# maintains a routing
table with O(logN) entries (fingers). In contrast to other
DHTs like Chord [20], Kademlia and Pastry, Chord#

stores the keys in lexicographical order. This enables
range queries and it gives control over the placement
of data on the ring structure, which is necessary when
deploying a Chord# ring over datacenters to have better
control over latencies. To ensure logarithmic routing per-
formance, the fingers in the routing table are computed
in such a way [17] that successive fingers in the routing
table jump over an exponentially increasing number of
nodes in the ring.

To access the node responsible for a given key k, a
DHT lookup with an average of 0.5logb N routing hops
is performed. The base b can be chosen according to the
application requirements, e.g. faster lookup versus lower
space requirements [1].

Due to churn, nodes can join and leave at any time,
and the ring must be repaired. Stabilization routines
run periodically, check the ring healthiness and repair
the routing tables according to the finger placement
algorithm. If the ring becomes partitioned, a bad pointer
list keeps information on nodes on the other part of the
ring and a merge algorithm [18], [11] can be used to
rejoin them again.

B. Data Replication

To prevent loss of data in the case of failing nodes,
the key/value pairs are replicated over r nodes. Several
schemes like successor list replication or symmetric
replication [8] exist. Symmetric replication stores each
item under r keys. A globally known function places the
keys {k1, . . . ,kr} symmetrically in the key space. Read
and write operations are performed on a majority of
replicas, thereby tolerating the unavailability of up to
b(r−1)/2c nodes. This scheme is shown to ensure key
consistency for data lookups under realistic networking
conditions [19].

IV. PAXOS CONSENSUS AND PAXOS COMMIT

To provide strong consistency over all replicas, trans-
actions are implemented on top of our structured overlay
where symmetric replication is employed. We use opti-
mistic concurrency control with a backward validation
scheme. Our Scalaris system uses an adapted Paxos
Commit for non-blocking atomic commit, which in turn
uses Paxos Consensus for each individual data replica
to fault-tolerantly agree on prepared or abort for each
replica.

We first describe the Paxos Consensus protocol and
then discuss the non-blocking atomic commit protocol.

A. Paxos Consensus

In a distributed consensus protocol, all correct (i.e.
non-failing) processes eventually choose a single value
from a set of proposed values. A process may perform
many communication operations during the protocol exe-
cution, but it must eventually decide a value by passing it
to the client process that invoked the consensus protocol.

Throughout this paper, we assume a fail-stop model
where failing processes do not recover. To simulate this
behaviour, returning nodes will rejoin with a new identity
and empty state.

Algorithm 1 Paxos Consensus: Proposer
1: initialize
2: r = any round number greater than all r seen before
3: multicast prepare(r) to all acceptors
4: ack received = /0

5: on receipt of ack(r,vi,rlasti) from acceptor acci
6: ack received = ack received ∪ (r,vi,rlasti)
7: if |ack received|> n

2 . get index of newest round
8: j = max(rlastk: for all k such that {r,vk,rlastk}∈

ack received)
9: . end of information gathering phase

10: if v j = ⊥ . no value agreed yet?
11: v j = any value . we propose a value
12: multicast accept(r, v j) to all acceptors

Algorithm 2 Paxos Consensus: Acceptor
1: initialize
2: rack = 0,raccepted = 0,v =⊥ . no round acknowledged

or accepted yet, no value

3: on receipt of prepare(r) from proposer
4: if r > rack ∧ r > raccepted . new round?
5: rack = r . memorize that we saw round r
6: send ack(r, v, raccepted) to proposer

7: on receipt of accept(r, w) from proposer
8: if r ≥ rack ∧ r > raccepted . latest round?
9: raccepted = r . memorize that we accepted in round r

10: v = w
11: send accepted(raccepted , v) to learners

12: on receipt of decided(v) from learner
13: cleanup()

Algorithm 3 Paxos Consensus: Learner
1: on receipt of accepted(r,v) from a majority of acceptors
2: multicast decided(v) . v is consensus

Lamport’s Paxos Consensus [12], [15] is a non-
blocking consensus protocol for asynchronous dis-
tributed systems. Alternative algorithms were proposed
by Chandra and Toueg [4] and by Dwork [6]. Paxos im-
plements a uniform consensus which achieves agreement
even when a minority of processes should fail. Uniform
consensus has the following properties [10]:

• Termination: Every correct process eventually de-
cides some value.

• Validity: If a process decides v, then v was proposed
by some process.

• Integrity: No process decides twice.
• Agreement: No two processes decide differently.

1) Outline of the algorithm: Each process may take
the role of a proposer, an acceptor, or a learner, or
any combination thereof. A proposer attempts to get
a consensus on a value. This value is either its own
proposal or the resulting value of a previously achieved
consensus. The acceptors altogether act as a collective
memory on the consensus status achieved so far. The
number of acceptors must be known in advance and
must not increase during runtime, as it defines the size
of the majority set m required to be able to achieve
consensus. The decision, whether a consensus is reached,
is announced by a learner.

Proposers trigger the protocol by initiating a new
round. Acceptors react on requests from proposers. By
holding the current state of accepted proposals, the
acceptors collectively provide a distributed, fault-tolerant
memory for the consensus. In essence, a majority of ac-
ceptors together ’know’ whether an agreement is already
achieved, while the proposers are necessary to trigger the
consensus process and to ’read’ the distributed memory.

Each round is marked by a distinct round number r.
Round numbers are used as a mean of decentralized
tokens. The protocol does not limit the number of
concurrent proposers: There may be multiple proposers
at the same time with different round numbers r. The
proposer with the highest r holds the token for achiev-
ing consensus. Only messages with the highest round
number ever seen by each acceptor, will be processed
by that acceptor. All others will be ignored. If at any
round, a majority of the acceptors accepted a proposal
with value v, it will again be chosen by all subsequent
rounds. This ensures the validity and integrity properties.

Alg. 1, 2, and 3 depict the protocols of the proposer,
acceptor, and learner, respectively. The algorithm can
be split into two phases: (1) an information gathering
phase to check whether there was already an agreement
in previous rounds, and (2) a consolidation phase to
distribute the consensus to a majority of acceptors and
thereby to agree on the decision. In the best case,
consensus may be achieved in a single round. In the
worst case, the decision may be arbitrarily long delayed
by interleaving proposers with successively increasing
round numbers (token stealing by each other).

2) Information gathering phase: A proposer starts a
new round (lines 1–3 of Alg. 1) by selecting a round
number r greater than any round number seen before. At
start time, an arbitrary round number is chosen. The only
restriction on round numbers is that they must be unique
across all possible proposers. This can be achieved, for
example, by appending the proposer’s identifier. If any

new round number happens to be smaller than an earlier
one, the round will be detected as outdated and will be
ignored.

The proposer sends its round number with a prepare(r)
message to the acceptors and starts a timeout (timeouts
are not shown in the algorithms). If it does not get an
ack message from a majority of the acceptors within the
timeout, it starts from the beginning with a higher round
number and retries with a slightly increased timeout. The
timeout implements an eventually perfect failure detector
�P on an arbitrary majority of acceptors.

When an acceptor receives a prepare(r) message (lines
3–6 of Alg. 2), it checks whether the given round r is
newer than any previously seen round. If the received
r is greater, the acceptor memorizes the round and
acknowledges with ack(r, v, raccepted) where v is the value
accepted previously in round raccepted .

Note that a proposed value v may be accepted several
times by an acceptor in different rounds. If the round
number r is outdated, the acceptor does nothing. Alter-
natively, the acceptor may send nack(r, raccepted) to help
the proposer to quickly find a higher number for a new
round (this improvement is not shown in the algorithms).

3) Consolidation phase: After collecting a majority
of ack messages, the proposer checks for the latest value
that was accepted by an acceptor (lines 4–9 of Alg. 1).
If it is still the initial ⊥, the proposer chooses a value
by itself, otherwise it takes the latest accepted value v j.
The proposer then sends an accept(r, v j) request to the
acceptors.

An acceptor receiving an accept(r, v j) request checks
the round. If it is the latest one, it updates its local state
and confirms the accept request with accepted(r, v) to the
learners (lines 7–11 of Alg. 2). Otherwise the acceptor
does nothing or sends naccepted() to the proposer.

When a learner receives accepted(r, v) messages from
a majority of the acceptors, the consensus is finished with
value v.

4) Discussion: When a proposer crashes, any other
process (or even multiple processes) may take the role
of a proposer. The new proposer(s) may retrieve the so
far achieved consensus (if any) from the acceptors by
triggering a new round.

Since the acceptors have no indication on whether
a consensus has been achieved already, they must run
forever, always being prepared to take new accept(r,w)
messages from other proposers. When a new accept(r,w)
with a higher round number r comes in, they are obliged
to accept and store the new value w. As an improve-
ment, the application may decide that a consensus was

achieved and consumed and hence the acceptors may be
terminated.

B. Paxos Commit

Gray and Lamport [9] describe a commit protocol
based on Paxos Consensus. Instead of using a simple
version with a single Paxos Consensus as a stable stor-
age, they propose a variant that needs more messages but
one less message delay. It performs a Paxos Consensus
for each item (TP) involved in the transaction.

In the simple variant, the transaction manager (TM)
is responsible to make the decision. It works as follows:
The TM asks all TPs whether they are prepared to
commit the requested transaction and TPs answer with
either prepared or abort. If all TPs are prepared, the
TM initiates a Paxos Consensus and takes the role of
a proposer by sending accept(prepared) to the accep-
tors, otherwise by sending accept(abort). The acceptors
answer accepted and on a majority of such answers the
TM sends the final decision (commit or abort) to all TPs
for execution. This procedure involves 5 message delays.

The Paxos Commit proposed in [9] needs one fewer
message delay. It does so with a separate Paxos Con-
sensus instance for each TP. As before, the TM asks all
TPs whether they are prepared to commit the requested
transaction. This time, however, the TPs do not reply to
the TM directly, but initiate a Paxos Consensus for their
decision by taking the role of a proposer and sending
their proposal accept(prepared) or accept(abort) to the
acceptors for stable storage. After consensus is achieved,
they reply with the outcome to the TM in its role as a
learner, which then combines the results and sends the
final decision to all TPs for execution. This requires 4
message delays and N(2F +3)−1 messages for N TPs,
and 2F +1 acceptors.

If the TM or a TP fails in the decision process,
any replicated transaction manager (RTM) may read the
decision from the acceptors, or propose to abort if there
was no consensus yet.

V. TRANSACTIONS IN SCALARIS

Scalaris supports transactional semantics. A client
connected to the system can issue a sequence of oper-
ations including reads and writes within a transactional
context, i.e. begin trans . . . end trans. This sequence of
operations is executed by a local transaction manager
TM associated with the overlay node to which the client
is connected. The transaction will appear to be executed
atomically if successful, or not executed at all if the
transaction aborts.

A. System Architecture

Transactions in Scalaris are executed optimistically.
This implies that each transaction is executed completely
locally at the client in a read-phase. If the read phase
is successful the TM tries to commit the transaction
permanently in a commit phase, and permanently stores
the modified data at the responsible overlay nodes. Con-
currency control is performed as part of this latter phase.
A transaction t will abort only if: (1) other transactions
hold the majority of locks of some overlapping data
items (simultaneous validation); or (2) other successful
transactions have already modified data that is accessed
in transaction t (version conflict).

Each item is assigned a version number. Read/write
operations work on a majority of replicas to obtain the
highest version number and thereby the latest value. A
read operation selects the data value with highest version
number, and a write operation increments the highest
version number of the item.

The commit phase employs an adapted version of
the Paxos atomic commit protocol [9], which is non-
blocking. In contrast to the 3-Phase-Commit protocol
used in distributed database systems, the Paxos Commit
protocol still works in the majority part of a network that
became partitioned due to some network failure. It em-
ploys a group of replicated transaction managers (RTMs)
rather than a single transaction manager. Together they
form a set of acceptors with the TM acting as the leader.

B. Transaction Validation with Paxos Commit

Scalaris executes the following four steps in the
failure-free case (Fig. 1).

1) Prerequisites: For a fast transaction validation,
each node in the overlay permanently maintains a list
of r− 1 other nodes, that can be used as Replicated
Transaction Managers (RTMs). The location of these
nodes could be according to the scheme of symmetric
replication. Once these nodes are located, they are main-
tained through the use of failure detection.

Step 1.The client contacts an arbitrary node in the
Scalaris ring with a transaction log (translog)
of read and write operations for the valida-
tion phase. This node becomes the Transaction
Manager (TM). The TM chooses a transaction
identifier (Tid) and a Paxos Consensus identifier
(Pi) for each replica of each item. It sends
an init RTM message with the translog, the
Tid, all Pi, and the addresses of all RTMs
to each RTM. Additionally, the TM sends to
all Transaction Participants (TP) an init TP

message with the translog, Tid, RTMs, and the
individual Pi for each TP.

Step 2.Each TP initiates a Fast Paxos Consensus with
the received Pi. Each TP proposes either pre-
pared or abort with an accept message to
the acceptors according to its local validation
strategy (see later).
As the TP is the only initial proposer, it uses
the lowest round number by default and thereby
skips the information gathering phase (’Fast
Paxos Consensus’). The proposal is sent to the
TM and RTMs.
If the TP decided prepared it locks its replica.
When a TM or RTM receives an accept mes-
sage from a TP, it also learns the address of the
TP to be used later in the protocol.

Step 3.The TM will take the role of a learner in
each consensus instance. To allow the TM to
calculate each consensus instance, each RTM
sends a list of accepted messages to the TM. As
soon as the TM received a majority of accepted
messages for a given consensus instance Pi it
decides on i.

Step 4.The TM will decide the transaction to commit
if for each item a majority of the consensus
instances have decided prepared, otherwise it
will decide abort. After having received the
decision from the TM, the TPs execute the
changes, release the locks and finish.

2) Discussion: As a precondition, we assume that a
majority of RTMs plus TM and a majority of replicas
for each item are correct. The following failures may
happen:

When the TM fails, any RTM may take its role
by initiating a new round for every Paxos Consensus
involved. In Scalaris, the RTMs’ failure detectors have
different timeouts, so that multiple RTMs will never
compete for leadership and no explicit leader election
algorithm is necessary. The new TM is able to continue
with the protocol, because the current status on the
consensus is safely stored at the RTMs (acceptors).

When an RTM fails, the protocol continues with the
rest of the RTMs.

When a TP fails in step 2, the TM or some RTM does
not receive an accept message from the TP within the
specified timeout. The TM or RTM then takes the role
of a proposer and proposes abort for the corresponding
consensus instance with a round number > 1, if no
consensus was already achieved before the TP crashed.
Until only a minority of the Paxos Consensus for the

TM

RTM1, …, RTMr-1

TPs for k items * r replicas

initRTM

(r-1 msg)

initTP

(k*r msg)

registerTP +

accept(prepared/abort)
(k*r2 msg)

list of

accepted(prepared/abort)
(r-1 msg)

for each replica

wait for a majority

of acceptors

start consensus

for each replica

commit/abort
(r-1 msg)

commit/abort
(k*r msg)

majority of replicas

for each key ‘prepared‘?

� commit, else abort

time

Step 1 Step 2 Step 3 Step 4

registerTP +

accept(prepared/abort)
(k*r msg)

acceptor, learner

acceptors

proposers

Fig. 1. Timeline diagram of a Scalaris commit.

replicas of a given item votes abort and a majority
of them votes prepared the transaction still can be
committed. This can be safely done, as in contrast to
Paxos Commit, we operate on replicated items.

C. Working Phase: Building a Translog in Scalaris

We now describe the working phase in which Scalaris
builds a translog with all items that are to be updated
in an atomic operation. Alg. 4 shows an example of a
client code for a money transfer from bank account A
to account B. The money transfer should be executed
atomically—if the balance in account A allows to. In
the example, each account is replicated over three keys
keyA1 , . . . ,keyA3 and keyB1 , . . . ,keyB3 . Fig. 2 shows the
corresponding Scalaris ring with the replicas.

The client code shown in Alg. 4 is formulated in the
functional programming language Erlang [2]. It works as
follows. First, it defines a function F, that will perform
the working phase of the transaction (lines 2-12). It
then executes this function to retrieve a transaction log
(line 13) and thereafter attempts to validate it by calling
scalaris:commit() on the outcome of the working phase
(line 14).

The working phase is ’read only’ and does not modify
any values or locks. It stores only the relevant data
for each accessed key in the transaction log translog.
Each translog entry is a 5-tuple consisting of: (1) the
performed operation, (2) the key involved, (3) a status
flag indicating success or failure, (4) the corresponding
value, and (5) the corresponding version.

A read request for a key k triggers a quorum read
on the replicas, if k is not yet included in the translog.

Algorithm 4 Example of a Scalaris transaction in Erlang.
1: my transaction() –>

2: F = fun (TransLog) –>
3: {X, TL1} = scalaris:read(TransLog, ”Acc A”),
4: {Y, TL2} = scalaris:read(TL1, ”Acc B”),
5: if X > 100 –>
6: TL3 = scalaris:write(TL2, ”Acc A”, X - 100),
7: TL4 = scalaris:write(TL3, ”Acc B”, Y + 100),
8: {ok, TL4};
9: true –>

10: {ok, TL2};
11: end
12: end,

13: MyTransLog = F(EmptyTransLog),

14: Result = scalaris:commit(MyTransLog) .

It returns the read value and the accordingly updated
translog as a tuple.

A write request for a key k first triggers a quorum read
on the replicas, if k is not yet included in the transaction
log. Then a new translog entry with the incremented
version number and the new value is created or updated
accordingly.

The quorum reads for read and write operations re-
quire DHT lookups with O(logn) hops. If a quorum read
fails, this is recorded in the corresponding status flag in
the translog. If any status flag in the translog is failed,
the whole transaction will be aborted.

keyA1: (150, v5)

keyA2: (200, v7)

keyA3: (200, v7)

keyB1: (20, v4)

keyB2: (20, v4)

keyB3: (20, v3)

keyA

keyB

Scalaris ring

Fig. 2. Scalaris ring with two items keyA and keyB.

D. Using the Translog in the Validation Phase

Based on the commit protocol presented in Sec. V-B
we now describe the validation strategy in more detail.
We show how Scalaris places locks and decides accord-
ing to the translog.

A TP receives in step 1 of Fig. 1 the corresponding
translog entry. To choose between the proposals prepared
and abort it checks the following constraints:
• Is the version number still valid?

For reads: Is the local version number in the data
store the same as the one listed in the translog entry?
For writes: Is the local version number in the data
store one less than the version number stored in the
translog?

• Is the lock of the key available?
For reads: Is no write lock set?
For writes: Is neither a read lock, nor a write lock
set?

If both checks are successful, the TP proposes pre-
pared and increments for reads the read lock counter and
for writes it sets the write lock. Otherwise it proposes
abort.

When a TP receives a write commit in step 4 of Fig. 1,
it writes the value and version number from the translog
into the key.

For read and write operations, independent of commit
or abort, the TP releases the locks.

VI. EVALUATION

For globally distributed structured overlay systems,
latency is an important issue. To reduce the latency in our
majority based system, we may assign a majority of the
replicas of an item to nodes near the main popularity
of that item. This is possible using Chord# [17] as an
overlay, as it allows to arbitrarily assign nodes to ranges

of keys and as it does not use hashing but keeps the keys
in lexicographical order in the ring.

1) The latency-critical path: In step 1 of our commit
protocol, an initialization message is send to each RTM
and TP (see Fig. 1). Each TP immediately responds
with its accept message to the TM and RTMs. So,
some accept message may arrive at an RTM earlier
than the corresponding initialization message. This is
not a problem, as the RTM will record it and assign it
later via the given transaction and consensus identifiers.
Similarly in the case of accepted messages from RTMs
(step 3) that may arrive earlier at the TM than the accept
messages from the TPs sent in step 2.

In step 3, each RTM collects an accept message for
each consensus (each TP) and sends a list of accepted
in a single message to the TP. While this protocol is
optimal with respect to the number of messages sent, the
overall latency can be reduced by sending each accepted
message immediately after receipt of the corresponding
accept. Then the TM must await a consensus for a
majority of the Pi for each item, independent from which
RTMs it came. Progress between step 2 and 4 depends
on the m lowest latency paths from TPs (via RTMs) to
the TM for each item, where m = r/2+1 is the size of
the majority set.

2) Empirical Results: We compared the performance
of simple quorums reads with full transactions on an
Intel cluster with 16 nodes. Each node has two Dual-
Core Intel Xeons (4 cores in total) running at 2.66 GHz
and 8 GB of main memory. The nodes are connected via
GigE. On each server we ran s Scalaris nodes distributed
over v Erlang virtual machine. We used a replication
degree of four, i.e. there are four copies of each key-value
pair. For generating load, we started c clients in each
Erlang VM and each client performed the function under
test i times. We ran the tests with various combinations

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 2 4 6 8 10 12 14 16

re
ad

s/
s

server

Reads/s

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14 16

in
cr

em
en

ts
/s

server

Increments/s

Fig. 3. Performance of quorum reads (left) and transactions with Paxos (right).

for (s,v,c, i). The graphs in Fig. 3 show the aggregated
performance over all clients and the number of clients
per VM of the best parameter combinations. The best
parameter settings usually used 1 VM per server with
16 or 32 Scalaris nodes.

The left graph in Fig. 3 shows the throughput for
quorum reads. The maximum of 73,000 lookups is
achieved with 15 servers. As the quorum reads are
dominated by the lookup, which scales with logN, the
curve does not scale linearly. Two servers achieve a lower
read performance than one because of the additional TCP
overhead.

The right graph in Fig. 3 shows the performance of
read-modify-write transactions with Paxos. 15 servers
are capable of handling almost 14,000 transactions per
second. More importantly, the curve scales almost lin-
early with an increasing number of servers.

VII. CONCLUSION

We presented an atomic transaction protocol that has
been efficiently embedded into a DHT and uses four
communication steps only. It makes progress as long as
a majority of TPs for each item and a majority of RTMs
(including the TM) are correct (non-failing).

The transaction protocol was used to implement
Scalaris [16], a fault-tolerant key/value store with repli-
cated items on a DHT. The DHT ensures scalability
while the enhanced Paxos commit protocol provides data
consistency. The implementation comprises a total of
9,700 lines of Erlang code: 7,000 for the P2P layer with
replication and basic system infrastructure and 2,700
lines for the transaction layer.

ACKNOWLEDGEMENTS

This work would not have been possible without the
great help of the Scalaris team. Funding was provided

by the EU projects SELFMAN and XtreemOS.

REFERENCES

[1] L. Alima, S. El-Ansary, P. Brand and S. Haridi.
DKS(N,k,f): A family of low-communication, scal-
able and fault-tolerant infrastructures for P2P appli-
cations. Workshop on Global and P2P Computing,
CCGRID 2003, May 2003.

[2] J. Armstrong. Programming Erlang: Software for a
Concurrent World. Pragmatic Programmers, ISBN:
978-1-9343560-0-5, July 2007

[3] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. 7th USENIX Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI), 2006.

[4] T.D. Chandra, S. Toueg. Unreliable failure detector
for reliable distributed systems. J. ACM, 43(2):225–
267, 1996.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, W. Vogels. Dynamo: Amazon’s highly
available key-value store. SOSP, Oct. 2007.

[6] C. Dwork, N. Lynch, L. Stockmeyer. Consensus
in the presence of partial synchrony. J. ACM,
35(2):288–323, 1988.

[7] A. Ghodsi. Distributed k-ary system: Algorithms for
distributed hash tables. PhD Thesis, Royal Institute
of Technology, 2006.

[8] A. Ghodsi, L. Alima, S. Haridi. Symmetric replica-
tion for structured Peer-to-Peer systems. DBISP2P,
Aug. 2005.

[9] J. Gray, L. Lamport. Consensus on transaction
commit. ACM Trans. Database Syst., 31(1):133–
160, 2006.

[10] R. Guerraoui, L. Rodrigues. Introduction to reliable
distributed programming. Springer-Verlag, 2006.

[11] M. Jelasity and O. Babaoglu. T-Man: Gossip-based
overlay topology management. ESOA, 2005.

[12] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, 1998.

[13] A. Muthitacharoen, S. Gilbert, R. Morris. Etna:
A fault-tolerant algorithm for atomic mutable DHT
data. Technical Report MIT-LCS-TR-993, 2005.

[14] M. Moser, S. Haridi. Atomic commitment in
transactional DHTs. 1st CoreGRID Symposium,
Aug. 2007.

[15] R. D. Prisco, B. W. Lampson, N. A. Lynch. Re-
visiting the PAXOS algorithm. Theor. Comput. Sci.,
243(1-2):35–91, 2000.

[16] T. Schütt, F. Schintke, A. Reinefeld. Scalaris:
Reliable transactional P2P key/value store. ACM
SIGPLAN Erlang Workshop. 2008.

[17] T. Schütt, F. Schintke, A. Reinefeld. Structured
overlay without consistent hashing: Empirical re-
sults. GP2PC’06, May. 2006.

[18] T. M. Shafaat, A. Ghodsi, S. Haridi. Handling Net-
work Partitions and Mergers in Structured Overlay
Networks. P2P 2007.

[19] T.M. Shafaat, M. Moser, T. Schütt, A. Reinefeld,
A. Ghodsi, S. Haridi. Key-based consistency and
availability in structured overlay networks. Infos-
cale, June 2008.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
H. Balakrishnan. Chord: A scalable Peer-to-Peer
lookup service for Internet applications. ACM
SIGCOMM 2001.

