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Introduction

Optical technologies are ubiquitously used in hi-tech devices. Prominent ex-
amples are lasers, glass fibers, optical waveguides in general, optical sensors,
solar cells, and measurement systems for various kinds of applications in-
cluding huge optical metrology systems and consumer products like Blu-ray
players. Optics also plays an important role in the production of semicon-
ductor chips. Here, optical projection systems are used to print the circuit
pattern onto the wafers. As a common feature of such devices one finds struc-
tures with dimensions in the order of the wavelength of the used light. To
design and produce such devices the wave nature of light must be taken into
account. Accordingly, robust simulation tools are required which are based
rigorously on Maxwell’s equations, the governing equations of light propaga-
tion within macroscopic media. This thesis contributes to the modeling and
the numerical computation of light scattering problems.

A light scattering problem is schematically depicted in Figure 1. An inci-
dent field Einc depending harmonically on time enters the region of interest
from above and excites an outgoing field Eout. One could also denote the
outgoing field as “scattered field” but this term is reserved for later purposes
in a more strict mathematical description of the scattering problem. In Fig-
ure 1 the scatterer is embedded into a layered medium. This is a typical
situation for optical devices mounted on a glass substrate coated with layers
of different materials.

The exterior domain may also contain prolonged structures such as optical
waveguides which are best modeled as infinitely extended. In this case so
called waveguide modes are often used as incoming source fields. Waveguide
modes are strongly confined in the waveguide and are used to transfer the
light into the optical device.

For a non–localized illumination, such as a plane wave incident from an
arbitrary direction, we must consider the light scattering off the semi-infinite
structures in the exterior domain. This will requires a non-trivial extension
of the scattering problem formulation which is derived in this thesis. Ad-
ditionally, we will explain how to evaluate the outgoing wave in the upper
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z

Figure 1: Sketch of a typical simulation setting for a scattering problem.
An incident field Einc enters the computational domain and excites an outgo-
ing field Eout. The computational domain encloses the scatterer (white). The
surrounding medium is typically layered but may contain prolonged struc-
tures such as optical waveguides.

half space outside the computational domain. This will provide the far field
pattern, i.e. the angular spectrum representation, of the outgoing wave in
the upper half space. This is of major importance because the far field is
typically the quantity of interest for the abovementioned applications.

To numerically solve a scattering problem one encloses the scatterer in
a bounded domain which serves as the computational domain, see Figure 1.
Transparent boundary conditions are needed on the interface between the
computational domain and its surroundings. These transparent boundary
conditions must guarantee that the computed light field within the compu-
tational domain is identical to the original solution of the scattering problem
as posed on the entire space.

Different concepts for the numerical realization of transparent boundary
conditions exist. Among them we distinguish between five fundamental ap-
proaches 1:

– Green’s tensor methods,

– infinite elements,

– mode matching method,

1Approximate transparent boundary conditions are not considered in this thesis, see
for example Bayliss, Gunzburger and Turkel [11], Engquist and Majda [45], and Antoine,
Darbas et al. [5].
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– perfectly matched layers (PML),

– pole condition method.

Green’s tensor methods rely on fundamental solutions to Maxwell’s equa-
tions in the exterior domain which need to be numerically available. Exam-
ples are the classical boundary integral methods as treated in Colton and
Kress [32], and Nédélec [84]. Green’s tensor techniques for stratified media
were chiefly developed by Martin et al. [73, 88, 89]. However, geometries as
shown in Figure 1 cannot be treated due to the lack of a numerically feasible
Green’s tensor.

The theoretical foundation for the infinite element method can be traced
back to Leis [70]. The starting point is a variational formulation of the scat-
tering problem within a Hilbert space equipped with a weighted Sobolev
norm so that an outward radiating field has a finite norm. Demkowicz et al.
proposed a numerical discretization of this variational problem which is sim-
ilar to the finite element method [36, 21, 35]. The idea of the infinite element
method is to decompose the exterior domain into non-overlapping infinite
patches. Analog to the finite element method, an ansatz function is attached
to a certain sub-patch of an infinite patch and has support only in those infi-
nite patches which share this sub-patch. These ansatz functions must span a
finite dimensional sub-space of the underlying weighted Sobolev space. The
major drawback of the infinite element method is that the construction of
conformal ansatz functions contained in the weighted Sobolev space requires
special knowledge on the asymptotic behavior of the outgoing waves. This
restricts the applicability of the infinite element method to problems with a
homogeneous exterior domain.

In the mode matching method the field in the exterior domain is repre-
sented by a series expansion into ansatz functions which satisfy Maxwell’s
equations on infinite sub-domains of the exterior domain. Typically, the
ansatz functions are constructed by solving various kinds of eigenvalue prob-
lems stemming from the time–harmonic Maxwell’s equations. The corre-
sponding eigensolutions are called eigenmodes in the engineering science.
Matching conditions of the mode expansions within two adjacent sub-domains
are imposed to enforce the field continuity across their common interface.
Accordingly, one matches the field data on the boundary of the computa-
tional domain. For example, when the computational domain is a ball and
the exterior domain is homogeneous, a solution to time–harmonic Maxwell’s
equations can be expanded into a series of products of spherical harmonics
and spherical Bessel functions, see Monk [79, Chap. 10]. In this simple
case, the matching conditions on the sphere can be realized by means of a
Dirichlet-to-Neumann-operator, see Grote and Keller [48]. More complicated
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geometries as shown in Figure 1 can also be treated with the mode matching
method, see Chew [27, Chap. 6] and Hammer [71, 50]. The major criticism
of the mode matching method is that a discretization yields a dense matrix
block of a dimension equal to the number of used modes. This is only toler-
able as long as the number of required modes for an accurate approximation
remains small. Unfortunately, this is not the case for a geometry as given
in Figure 1 with a plane wave illumination because one has to deal with a
continuum of modes, cf. Chew [27, Section 6.3.2].

The pole condition method proposed by Schmidt [98] as well as Bérenger’s
perfectly matched layer method (PML) will play a central role throughout
this thesis. We will introduce both concepts in greater detail. However,
our numerical considerations will focus on the PML method and beyond.
Besides the development of an adaptive PML method, we will extend the
PML method to cope with complicated scattering problems such as given in
Figure 1. Moreover, we will explain how to utilize the PML solution for a
field evaluation in the exterior domain. A rough sketch of the involved ideas
is given in the outline section below.

In this thesis, the pole condition approach is primarily used for the mathe-
matical description of scattering problems. For numerical aspects on the pole
condition method we refer to Schmidt et al. [98, 100], Ruprecht et al. [96],
Antoine et al. [4], and Hohage and Nannen [55, 83]. We remark that the pole
condition method can be regarded as a generalization of the infinite element
method, which remedies the restriction to homogeneous exterior domains.

Outline

In Chapter 1 we will review the required physical background of Maxwell’s
equations and construct some special solutions. Furthermore, we will intro-
duce the exterior calculus which allows for a compact and elegant notation
of Maxwell’s equations.

After this preparatory work we will regard the mathematical formulation
of time harmonic scattering problems in Chapter 2. To do so, we will intro-
duce the pole condition concept. We further discuss so called Calderon maps
which realize the transparent boundary conditions by operators defined on
the Sobolev trace spaces of the computational domain’s boundary.

The Chapters 3–5 are the core of this thesis and address the following
aspects: the construction and implementation of an adaptive PML method,
an exterior domain evaluation formula and a novel scattering problem for-
mulation for more complicated exterior domains. We give a more detailed
overview to these topics here:
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Adaptive PML Bérenger introduced the perfectly matched layer method
(PML) in 1994 [15] to realize transparent boundary conditions. In a nutshell,
the electromagnetic field in the exterior domain is turned into an exponen-
tially damped function by using a complex continuation. This way a trun-
cation of the ”complex stretched” exterior domain (called sponge layer) is
justified, see Chew and Weedon [28]. Numerous papers have been published
on this topic discussing the mathematical justification of the PML method
or proving the convergence of the numerical method, see for example the
papers by Lassas and Somersalo [68, 67] which provide a convergence proof
for a homogeneous exterior domain. Together with Hohage and Schmidt the
author generalized the convergence proof to a certain class of inhomogeneous
exterior domains [57]. Furthermore, numerical experiments demonstrated an
exponentially fast convergence of the PML method for more general exterior
domains like layered media with waveguide inhomogeneities [118, 117].

However, a standard implementation of the PML method fails for periodic
grating problems2 in the presence of so called anomalous modes [120, 117].
For the discussion of periodic gratings see also Elschner et al. [43, 42, 44].
An anomalous mode (also called Rayleigh frequency) corresponds to a wave
which travels in the direction of the periodic lattice and which is constant in
the outward direction. Due to this constantness a complex continuation has
no effect and the exponential convergence of the PML method is broken. This
misfeature of the PML method is not restricted to periodic grating problems.
We will see that with a standard PML implementation one encounters the
same problems for scattering off devices with multiply structured exterior
domains as given in Figure 1.

This led the author to the development of the adaptive PML, where the
sponge layer thickness is automatically adapted by an a posteriori error cri-
terion [120, 117]. Since the PML method acts as a high-frequency filter in
the outward radiating direction, it is possible to exponentially increase the
mesh width of the finite element discretization in the outward direction. In
the presence or in the vicinity of anomalous modes, a PML sponge layer
thickness of thousands of wavelengths is needed to achieve relevant accura-
cies. This thesis summarizes earlier results from 2005 on the adaptive PML
method, gives greater details on implementation issues and further validates

2The term periodic grating problem is used to describe a periodic arrangement of scat-
terers in one or two space directions. The PML method is only applied in space directions
which are perpendicular to the lattice vectors of the periodic arrangement. We do not
aim at the construction of transparent boundary conditions at the interface of the com-
putational domain to a semi–infinite periodic exterior domain. This challenging topic is
discussed for example in Wilcox et al. [111], Joly et al. [64], Ehrhard et al. [41, 40], Oskooi
et al. [87] and Soussi [103].
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the method for critical test problems.

We mention that Chen also proposed an adaptive PML method in 2003 [26]
with a detailed convergence analysis, see also the subsequent papers by Chen
et al. [10, 25]. However, Chen excluded anomalous modes in his analysis.
The algorithm Chen proposed uses an adaptive finite element discretization
within the PML sponge layer after fixing the sponge layer thickness. A similar
approach based on a hp–refinement strategy is studied in Michler, Demkow-
icz et al. [78]. Our approach is complementary to that, since we mainly aim
at an automatic adaption of the PML thickness for varying physical input
parameters.

Evaluation formula for PML solution Having a Green’s tensor at hand,
the outgoing field is easily evaluated at any position of the exterior domain.
Numerically efficient exterior domain evaluation methods are known for ho-
mogeneous exterior domains so far, see for example Monk et al. [82, 80],
and Grote and Kirsch [49]. This is not the case for geometries as given in
Figure 1. Even an asymptotic formula of the Green’s tensor for a far field
approximation is not available. To overcome this, the Rayleigh-Sommerfeld
diffraction formula, see Singer et al. [102], is commonly used for the evalua-
tion of the scattered electromagnetic field in a homogeneous half space above
the computational domain. However, standard numerical methods lack the
precise computation of the arising high–frequency integral with infinite in-
tegration domain. Together with Schmidt the author presented a numerical
method for the computation of the Rayleigh-Sommerfeld integral based on
the computed near field data within the computational domain including the
perfectly matched layer domain [123]. After deriving the exterior domain
evaluation formula we will comment on the numerical computation of the
angular spectrum representation of the far field in the upper half space.

Multiply structured exterior domains The incoming light field in Fig-
ure 1 is not only scattered at the structures enclosed in the computational
domain, but the light is also scattered by the infinite lines in the exterior
domain. The scattering problem formulation given in [98, 121] applies only
for incoming fields which approximately vanish on the infinite structures out-
side the computational domain. This is a realistic assumption only when the
incident field is a confined waveguide mode or a beam focused on the compu-
tational domain. Therefore, dealing with incident plane waves necessitates
a non-trivial extension of the scattering problem, recently proposed by the
author in [124]. The geometry in Figure 1 is a combination of two infinite
lines and a layered medium. In the proposed approach we split the exterior
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domain into these three parts and formulate appropriate matching conditions
at the interfaces within the PML sponge layer. The theory presented in this
thesis generalizes classical results by Wiener and Hopf for ideal geometries
like a thin half-screen, see for example Titchmarsh [107], Born and Wolf [18],
Noble [85], Clemmow [29] and Meister [77].

It may also be worth mentioning that the scattering problem setting with
multiply structured exterior domains (Figure 1) is similar to the rough surface
scattering problem. In a rough surface problem one investigates the scatter-
ing off a single infinite surface with a fixed boundary condition. We refer
to the detailed discussion on rough surface problems in Chandler–Wilde et
al. [23], Meier et al. [76], Arens et al. [6]. Chandler–Wilde et al. also address
the case of rough layered media above an unbounded surface, see [24]. A nu-
merical method to solve this type of problems is also proposed by Déchamps,
Bourlier et al. [33, 34, 19].

Besides the near field computation, we will tackle the far field extraction
above a structure with a multiply structured exterior domain.
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Chapter 1

Maxwell’s equations

James Clerk Maxwell established the governing equations of light propaga-
tion in 1873, see [75]. We give a short summary of Maxwell’s electromagnetic
field theory as can be found in classical textbooks on electrodynamics, see for
example Jackson [60] or the introductory chapters in Jin [63] and Chew [27].

1.1 Maxwell’s equations

The electromagnetic field is a pair of an electric field E(r, t) and a magnetic
field H(r, t), where r = (x, y, z) is the position in space and t is the time.
We further introduce the electric flux density D(r, t), the magnetic flux den-
sity B(r, t), the electric current density J(r, t) and the scalar charge density
ρ(r, t). Maxwell’s equations are

∇× E(r, t) = −∂tB(r, t), (1.1a)

∇× H(r, t) = ∂tD(r, t) + J(r, t), (1.1b)

∇ ·B(r, t) = 0, (1.1c)

∇ · D(r, t) = ρ(r, t). (1.1d)

This system of equations is not independent. To allow for a unique solution to
a given distribution of currents and charges Maxwell’s equations are supple-
mented by so called material equations also known as constitutive relations.
For general time-dependent Maxwell’s equations the constitutive relations
are rather complicated. In this presentation we assume that all bodies are at
rest and that the electromagnetic field exhibits a harmonic dependence on
time that is

E(r, t) = Re
(
Ê(r, ω)e−iωt

)
,

H(r, t) = Re
(
Ĥ(r, ω)e−iωt

)
,

13



14 CHAPTER 1. MAXWELL’S EQUATIONS

and accordingly for D, B, J, and ρ. Here, ω is called angular frequency. The
quantities with a hat (Ê, etc.) are known as phasors. Under this assumptions
the constitutive relations take the form

D̂(r, ω) = ε(r, ω) Ê(r, ω), (1.2a)

B̂(r, ω) = µ(r, ω) Ĥ(r, ω), (1.2b)

Ĵ(r, ω) = σ(r, ω) Ê(r, ω) + Ĵi(r, ω), (1.2c)

with the tensors ε, µ, and σ called permittivity, permeability and conductiv-
ity, respectively. Ĵi(r, ω) is the impressed current density. For simplicity we
will henceforth drop the hats. Introducing the complex permittivity tensor
εc = ε+ iσ/ω the time-harmonic Maxwell’s equations read as

∇×E(r) = iωµ(r)H(r), (1.3a)

∇×H(r) = −iωεc(r)E(r) + Ji(r), (1.3b)

∇ · µH(r) = 0, (1.3c)

∇ · εcE(r) = − i

ω
∇ · Ji(r). (1.3d)

As usual, ε will henceforth denote the complex permittivity tensor εc. To
derive the last equation (1.3d) we used the equation of continuity ∇·J = iωρ,
which assures the conservation of charge. To transfer the above first order
system of equations (1.3) into second order equations for E and H separately,
we insert equation (1.3a) and equation (1.3b) into each other. For the electric
field strength this yields

∇× µ−1∇×E(r) − ω2εE(r) = iωJi(r), (1.4)

which is the basic equation we deal with throughout this thesis. The di-
vergence condition for the electric field equation (1.3d) directly follows from
equation (1.4) when applying the divergence operator on both sides of equa-
tion (1.4).

1.2 Special solutions

We collect some special solutions to time-harmonic Maxwell’s equations (1.3)
as needed for later purposes. In this subsection we assume transparent ma-
terials, so that µ and ε are positive scalars. The material of the section is
chiefly taken from Chew [27].
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ǫ0, µ0

ǫ1, µ1

ǫN , µN

ǫN+1, µN+1

u0,↑ u0,↓

uN+1,↑uN+1,↓

Figure 1.1: Layered media configuration. The dotted lines are introduced
for theoretical purposes only.

1.2.1 Plane waves in layered media

In a homogeneous medium with constant µ and ε and without impressed
sources, the plane wave

E(r) = Êeik·r

is a solution to time harmonic Maxwell’s equations provided that k · Ê = 0,
k ∈ C3 and k2

x + k2
y + k2

z = ω
√
µε.

We say that a plane wave propagates in a direction r̂ if Re(k · r̂) > 0. For
the case Im(k · r̂) > 0 the plane wave is evanescent in the direction r̂.

The situation of a layered (or stratified) medium is more complicated. A
layered medium is a stack of N parallel plates with different thicknesses and
constant materials in each layer. Figure 1.1 shows such a configuration and
fixes the notation. The 0th layer is the infinite half space below the stack.
The (N +1)th layer is the infinite half space above the stack. Layered media
configurations are considered in many textbooks on electrodynamics, see for
example Chew [27].

We want to construct special solutions in layered media which generalize
the plane waves solutions in homogeneous media. We choose a Cartesian
coordinate system (x, y, z) so that the normal direction n of the stack is
equal to the z–direction.
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Using the ansatz E(x, y, z) = Ê(z)eikxx+ikyy we have




ikx

iky

∂z


× µ−1




ikx

iky

∂z


× Ê(z) − ω2εÊ(z) = 0.

Hence, Maxwell’s equations reduce to an system of ordinary differential equa-
tions for fixed kx, ky ∈ R.

In the following we only consider ky = 0 since the case ky 6= 0 follows
from a rotation of the coordinate system around the normal axis n. Now, the
above ODE system decouples into two polarizations namely a single equation
for Êy,

−∂zµ
−1∂zÊy − (ω2ε− µ−1k2

x)Êy = 0, (TE) (1.5)

and a system of equations for (Êx, Êz), which we do not derive here. Since

(Êx, Êz) = i/εω (−∂zĤy, ikxĤy) we alternatively solve for Ĥy to determine

(Êx, Êz),

−∂zε
−1∂zĤy − (ω2µ− ε−1k2

x)Ĥy = 0. (TM) (1.6)

In the TE (transversal electric) case the electric field vector is transverse to
the normal direction and lies in the xy–plane (even after a rotation due to
ky 6= 0). The term TM (transversal magnetic) is motivated accordingly. We

deal only with the TE case and denote u = Êy.
In each layer, a general solution of the TE–equation (1.5) is given by

uj(z) = uj,↑e
ikj,z(z−zj−1) + uj,↓e

−ikj,z(z−zj), (1.7)

with

kj,z(kx) = (ω2εjµj − k2
x)

1/2. (1.8)

This is a double–valued function with branch points at kx = ±kj, where
kj = ω

√
εjµj is the local wave number in the jth layer. We fix the definition

of the square root in (1.8) by demanding that

Re(kj,z(kx)) > 0, for |kx| < kj

Im(kj,z(kx)) > 0, for |kx| > kj.

This way, uj,↑e
ikxx+ikj,zz is an upward traveling plane wave when |kx| < kj

and is an exponentially decaying field in the upward direction if |kx| > kj.
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The plane wave uj,↓e
ikxx−ikj,zz has the opposite behavior, i.e. it propagates

downwards or decays in the downward direction.
The splitting of uj(z) in equation (1.7) is not valid when kj,z = 0. To

cover also this case we switch over to another general solution of the field in
the jth layer,

uj(z) = vj,0 cos(kj,z(z − zj−1)) + vj,1
sin(kj,z(z − zj−1))

kj,zhj

,

with hj = zj − zj−1. This definition also covers the case kj,z = 0, as we see
from

lim
kj,z→0

cos(kj,z(z − zj−1)) = 1,

lim
kj,z→0

sin(kj,z(z − zj−1))

kj,zhj
= (z − zj−1)/hj.

We further remark that this form of the general solution is independent of
the branch cuts used in the square root definitions (1.8), because cos(kj,zz)
and sin(kj,zz)/kj,zhj are even functions in kj,z.

The fields within two adjacent layers must be matched across the common
interface in order to satisfy the TE-equation (1.5). From Maxwell’s equations
one derives the constraints

uj(zj) = uj+1(zj),

µ−1
j ∂zuj(zj) = µ−1

j+1∂zuj+1(zj).
(1.9)

Essentially, the matching conditions assure the continuity of the magnetic
and electric fields’ tangential components across a material interface.

To bring the coupling conditions (1.9) into an algebraic notation for the
coefficients vj,0, vj,1, j = 0, . . . , N + 1, we define

Aj−1,j =

[
1 0
0 µ−1

j /hj

]

and

Aj,j =

[
cos(kj,zhj) sin(kj,zhj)/kj,zhj

−µ−1
j kj,z sin(kj,zhj) µ−1

j cos(kj,zhj)/hj

]
.

Now, the coupling conditions (1.9) are given by

Aj,jvj = Aj,j+1vj+1, (1.10)
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with vj = [vj,0, vj,1]
T.As a function of kx, the matrices Aj,j(kx) and Aj−1,j(kx)

are single–valued, since all coefficients in these matrices are even functions
of kj,z.

For 2(N + 2) unknowns vj , j = 0, . . . N + 1, the field matching condi-
tions (1.10) imposes 2(N + 1) linear constraints. Hence, we have two free
parameters.

Typically, these free parameters are used to prescribe the incoming plane
waves from below and from above by setting u0,↑ and uN+1,↓, respectively.
For later purposes we allow for a complex value kx ∈ C, and we want to
clarify which values of kx permit unique solutions to the TE equation (1.5)
for given coefficients u0,↑ and uN+1,↓ :

To prescribe u0,↑ and uN+1,↓, the field matching constraints (1.10) are
supplemented by

B0v0 = u0,↑,

BN+1vN+1 = uN+1,↓,

with

B0 = 0.5
[

1 −i/k0,zh0

]
and

BN+1 = 0.5e−ikN+1hN+1
[

1 i/kN+1,zhN+1

]
.

We arrive at the 2(N + 2) × 2(N + 2) linear system




A0,0 −A0,1

A1,1 −A1,2

. . .
. . .

AN,N AN,N+1

B0

BN+1







v0

v1
...

vN

vN+1




=




0
0
...
0
u0,↑

uN+1,↓




.

(1.11)

We have already seen that the matrices Aj,j(kx) and Aj−1,j(kx) are single–
valued functions of kx. But, the coefficients in the row vectors B0(kx) and
BN+1(kx) are not even functions of k0,z and kN+1,z, respectively. This has the
important consequence, that we must fix the location of the branch cuts in the
definition (1.8) of kj,z for the outermost, infinite layers j = 0 and j = N + 1,
and that we do not need to bother about branch cuts for j = 1, . . . , N.

For the definition of the branch cuts we only regard the upper half space.
The treatment of the lower half space is alike. In the defining equation (1.8)
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+
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k

x
)

=
−
k

N
+

1

Im(kx)

Re(kx)

Figure 1.2: Branch cuts for kN+1,z = (k2
N+1 − k2

x)
1/2. The complex

plane is divided into regions accordingly to the signs of Re(kN+1,z(kx)) and
Im(kN+1,z(kx)).

for kN+1,z, we have already characterized kN+1,z on the real axis:

Re(kN+1,z) = Re((k2
N+1 − k2

x)
1/2) > 0, |Re(kx)| < kN+1

Im(kN+1,z) = Im((k2
N+1 − k2

x)
1/2) > 0, |Re(kx)| > kN+1.

To meet these conditions, we define kN+1,z(kx) for a complex value kx by

kN+1,z(kx) = (k2
N+1 − k2

x)
1/2 = i

√
−i(kN+1 + kx)

√
−i(kN+1 − kx).

We remind that
√· denotes usual root function with the branch cut along

the negative real axis.
Figure 1.2 shows the branch cuts of the so defined analytic function

kN+1,z(kx). There, we divided the complex plane into regions accordingly
to the signs of Re(kN+1,z(kx)) and Im(kN+1,z(kx)). For example, in regions
marked with (+,+i) we have Re(kN+1,z(kx)) > 0, Im(kN+1,z(kx)) > 0,whereas
in the region (−,+i) we have Re(kN+1,z(kx)) < 0, Im(kN+1,z(kx)) > 0. Other
regions are characterized accordingly. In particular, we have Re(kN+1,z(kx)) =
0 exactly on the interfaces of the regions (+,±i) with the regions (−,±i).

It is still in front of us to discuss the unique solvability of the linear
system (1.11). From linear algebra we know that the system (1.11) is not
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uniquely solvable at kx = κx ∈ C if and only if there exists an eigenvector
to this system with eigenvalue equal to zero. The corresponding field u(z) is
called an eigenmode in physics.

To see when such an eigenmode appears, we multiply the TE–equation for
u(z) with u(z) and integrate over the interval z = [z−1, zN+1], cf. Figure 1.1.
Integration by parts yields

∫ zN+1

z−1

∂zu(z)µ
−1∂zu(z) − u(z)(ω2ε− µ−1κ2

x)u(z)dz

− uN+1(zN+1)µ
−1
N+1∂zuN+1(zN+1) + u0(z−1)µ

−1
0 ∂zu0(z−1) = 0.

(1.12)

The boundary terms can be simplified by utilizing that um(z) is an eigen-
mode. The corresponding coefficient vector vm solves system (1.11) with
a zero right hand side, which means that um(z) contains no incoming plane
wave from below or from above. Consequently, we have u(z) = u0,↓e

−ik0,z(z−z−1)

in the lower half space and u(z) = uN+1,↑e
ikN+1,z(z−zN ) in the upper half space.

It holds true that u0,↓ 6= 0 and uN+1,↑ 6= 0, because otherwise the field is zero
in the lower or upper half space, which would imply that u(z) is zero every-
where. Using this, the boundary terms in (1.12) simplify to

−ikN+1,zCN+1 − ik0,zC0,

with positive numbers C0 = µ−1
0 |u0(z−1)|2 and CN+1 = µ−1

N+1|uN+1(zN )|2.
Taking the imaginary part of equation (1.12) yields

Im(κ2
x)

∫ zN+1

z−1

µ−1u(z)u(z)dz = Re(kN+1,z)CN+1 + Re(k0,z)C0.

For the sake of a simpler notation we normalize the eigenmode u(z) so that∫ zN+1

z−1
µ−1u(z)u(z)dz = 1. The above equation now implies

2Re(κx)Im(κx) = Re(kN+1,z)CN+1 + Re(k0,z)C0. (1.13)

Similarly, by taking the real part of equation (1.12), we have

∫ zN+1

z−1

∂zu(z)µ
−1∂zu(z)dz −

N∑

j=−1

Re(k2
j − κ2

x)

∫ zN+1

zj

µ−1u(z)u(z)dz =

− Im(kN+1,z)µ
−1
N+1CN+1 − Im(k0,z)µ

−1
0 C0.

In arriving at the above, we have used the definition kj = ω
√
εjµj. We derive

the condition

Re(κx)
2 − Im(κx)

2 ≤ k2
max − Im(kN+1,z)CN+1 − Im(k0,z)C0, (1.14)
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k0kN+1 kmax

Im(kx)

Re(kx)

Figure 1.3: Possible loci of eigenvalues κx. Eigenvalues marked with crosses
correspond to guided modes. Resonances are marked with bullets. The bold,
drawn through lines are the branch cuts corresponding to the square root
functions k0,z = (k2

0 − k2
x)

1/2 and kN+1,z = (k2
N+1 − k2

x)
1/2. The dashed lines

bound the real part of the eigenvalues.

with kmax = max{kj}.
With the two conditions (1.13), (1.14) we can exclude eigenvalues κx

within the following regions, where we only consider Re(κx) ≥ 0, since the
classification for Re(κx) < 0 follows from symmetry:

i) Im(κx) < 0 : In this case, Re(kN+1,z) and Re(k0,z) are positive, cf. Fig-
ure 1.2. An eigenvalue is excluded in this region by condition (1.13).

ii) Re(κx) > kmax : Here we have Im(kN+1,z) ≥ 0 and Im(k0,z) ≥ 0, cf.
Figure 1.2, so that Im(κx)

2 > 0 by condition (1.14). Since we have
already excluded eigenvalues with Im(κx) < 0, this gives Im(κx) > 0, and
from Figure 1.2 we infer Re(k0,z),Re(kN+1,z) < 0. But this contradicts
condition (1.13).

iii) Re(κx) < max{k0, kN+1}, Im(kx) = 0 : This is a refinement of i). With-
out restriction of generality we assume that k0 ≥ kN+1, so that κx <
k0 and κx ≤ kN+1. From Figure 1.2 we infer that Re(k0,z) > 0 and
Re(kN+1,z) ≥ 0, so condition (1.13) exclude an eigenvalue in this case.

Figure 1.3 shows the possible loci of eigenvalues κx.We distinguished between
two types of eigenvalues κx :
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An eigenvalue with Im(k0,z) > 0 and Im(kN+1,z) > 0 is called guided
waveguide mode. Guided waveguide modes propagate within the multi–layer
stack and decay exponentially in the outward directions of the lower and
upper half space. Guided modes only occur for max{k0, kN+1} ≤ |Re(κx)| <
kmax. Since then Re(k0,z),Re(kN+1,z) ≤ 0, cf. Figure 1.2, we infer from
condition (1.13) that guided modes lie on the real axis.

The remaining eigenmodes are called resonances. The corresponding
fields grow exponentially in the lower or upper half space and are there-
fore not directly encountered in reality. However, a resonance κx close to the
real axis has a large impact on the scattering off the layered structure, since
it renders the scattering problem ill-conditioned.

For later purposes we need to bound the maximum value of the field u(x)
for large values of kx, when prescribing an incoming field from above, that is
uN+1,↓ = uinc and u0,↑ = 0 with a given scalar uinc.

For the sake of a simpler notation we set µ = 1, here, and introduce the
notation

q(z) = −(ω2ε− κ2
x),

κ0 = ik0,z,

κN+1 = ikN+1,z.

q(z), κ0 and κN+1 are positive for sufficiently large values of kx. We assume
uinc ∈ R, so that the problem is posed in the real arithmetic. The solution
u(z) satisfies

∫ zN+1

z−1

∂zu(z)∂zu(z) + q(z)u(z)u(z)dz

− u(zN+1)∂zu(zN+1) + u(z−1)∂zu(z−1) = 0

(1.15)

At the upper and lower interfaces we have

u(zN+1) = uinc + uN+1,↑e
−κN+1hN+1

∂zu(zN+1) = κN+1uinc − κN+1uN+1,↑e
−κN+1hN+1

∂zu(z−1) = κ0uz−1.

Inserting this into (1.15) and denoting uout = uN+1,↑e
−κN+1hN+1 we get

∫ zN+1

z−1

∂zu(z)∂zu(z) + q(z)u(z)u(z)dz + κ0|u(z−1)|2 + κN+1|uout|2

= κN+1u(zN+1)uinc − κN+1uincuout

(1.16)
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To start with the bound on |u(z)|, we quote the Sobolev embedding theorem,
which states that u(z) is bounded by its H1–norm, see for example Renardy
and Rogers [93, Sec. 6.4.6]. We perform the estimations

‖u‖2
∞ ≤ C‖u‖2

H1

≤ C
(∫ zN+1

z−1

∂zu(z)∂zu(z) + q(z)u(z)u(z)dz +

κ0|u(z−1)|2 + κN+1|uout|2
)
.

Utilizing equation (1.16) gives

‖u‖2
∞ ≤ κN+1C

(
u(zN+1)uinc + uincuout

)

≤ κN+1C‖u‖∞|uinc| + κN+1C|uout||uinc|.
(1.17)

To bound the second term we need an estimate |uout| ≤ C‖u‖∞. At the
interface of the (N + 1)th layer we have

u(zN) = uince
−κN+1hN+1 + uout,

u(zN+1) = uinc + uout.

Multiplying the second equation with ǫ = e−κN+1hN+1 and subtracting the
second from the first equation gives

u(zN) − ǫu(zN+1) = uout(1 − ǫ).

Since ǫ < 1 for sufficiently large |kx| this leads to the bound

|uout| ≤ C max{u(zN), u(zN+1)} ≤ C‖u‖∞,

which completes the estimation in (1.17) together with dividing by ‖u‖∞:

‖u‖∞ ≤ κN+1C|uinc| ≤ C|kx||uinc|. (1.18)

1.2.2 Point source

We want to solve Maxwell’s equations in a homogeneous medium with an
idealized point dipole placed at position r′ ∈ R3,

∇× µ−1∇× E(r) − ω2εE(r) = iωδ(r− r′)Jp. (1.19)

Here, J is the dipole direction of the point source.
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The solution to the point source problem (1.19) is given by

E(r) = iωG+(r, r′)Jp, (1.20)

where G+(r, r′) is the outward radiating Green’s tensor, which satisfies

∇× µ−1∇× G+(r, r′) − ω2εG+(r, r′) = δ(r − r′)1.

Here, 1 is the 3 × 3 unit matrix, also called unit dyad in this context. The
curl operator acts on r.

From Martin and Piller [73] we take that

G+(r, r′) = µ

(
1 +

∇∇T

k2
b

)
g+(r, r′), (1.21)

with the background wave number kb = ω
√
µε and the scalar Green’s func-

tion

g+(r, r′) =
eikb|r−r

′|

4π|r − r′| .

The scalar Green’s function g+(r, r′) is the outward radiating fundamental
solution to the Helmholtz equation,

−∆rg+(r, r′) − k2
bg+(r, r′) = δ(r − r′).

We quote the Fourier transform of the Green’s tensor on a hyperplane
with constant z–coordinate. Before we start with this, we need to fix the
prefactor in the Fourier transform. For a function f : Rn → C we define the
Fourier transform as

f∧(k) =
1

(2π)n

∫

Rn

f(x)e−ik·xdx. (1.22)

For the inverse Fourier transform this means

f(x) = (f∧)∨(x) =

∫

Rn

f∧(k)e+ik·xdk.

From Weyl [110] or Singer et al. [102, p.55], we take Weyl’s representation
of a scalar, diverging spherical wave

g∧+(kxy, z, r
′) =

i

8π2

eikz|z−z′|

kz
· e−ikxy·r′xy , (1.23)
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with r′xy = (r′x, r
′
y)

T, kxy = (kx, ky)
T and kz =

√
k2

b − |kxy|2. The Fourier
transform is performed only in the x- and y-coordinates and is singular at
kxy with |kxy| = kb. Therefore, the above formula is understood in the dis-
tributational sense, cf. Rudin [94, p. 166].

To move on to the vectorial case we exploit the following relations,

(∂x/yg+)∧(·, z, r′) = ikx/yg
∧
+(·, z, r′)

∂zg
∧
+(·, z, r′) = isgn(z − z′)kzg

∧
+(·, z, r′)

∂zzg
∧
+(·, z, r′) = −k2

zg
∧
+(·, z, r′) − 1

4π2
δ(z − z′)e−ikxy ·r′xy ,

From equation (1.21) we now derive the Green’s tensor version of Weyl’s
representation formula

G∧
+(kxy, z, r

′) = µ

(
1 − kkT

k2
b

)
g∧+(kxy, z, r

′) −

µ

4π2

nzn
T
z

k2
b

δ(z) · e−ikxy·r′xy ,

(1.24)

with the notations k = (kx, ky, sgn(z − z′)kz)
T, nz = (0, 0, 1)T.

To give the Fourier transform a physical meaning we regard a point source
placed above the z = 0 hyperplane, that is z′ > 0. For z < z′, we have

G∧
+(kxy, z, r

′) = e−ikzzG∧
+(kxy, 0, r

′).

Applying the inverse Fourier transform yields

G+(r, r′) = (G∧
+(kxy, 0, r

′)e−ikzz)∨(r)

=

∫

z=0

G∧
+(kxy, 0, r

′)eikxy·rxye−ikzzdkxy.

We recall that kz is a real, positive number for |kxy| < kb, whereas for |kxy| ≥
kb we have Re(kz) = 0 and Im(kz) ≥ 0. Hence, the above representation
formula for G+(r, r′) in the lower half space can be seen as an “integral
summation” of downward traveling or evanescent plane waves.

In general, such a Fourier transform–based representation formula of an
electromagnetic field in a half space is commonly called angular spectrum
representation.

1.2.3 Line source

The setting is as in the previous subsection but instead of a point source we
impose a line source δ(rxz − r′xz)e

ikyyJl at position r′xz = (x′, z′)T :

∇× µ−1∇× E(r) − ω2εE(r) =iωδ(rxz − r′xz)e
ikyyJl.
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Again, we want to construct the solution by a Green’s tensor Gky ,+(r, r′xz),

E(r) = iωG+(r, r′)Jl. (1.25)

Using
∫ ∞

−∞

δ(r − r′)eikyy′

dy′ =δ(rxz − r′xz)e
ikyy

the corresponding Green’s tensor is readily constructed from the 3D Green’s
tensor (1.21):

Gky ,+(r, r′xz) =

∫ ∞

−∞

G+(r, r′)eikyy′

dy′

=µ

(
1 +

∇∇T

k2

)∫ ∞

−∞

g+(r, r′)eikyy′

dy′

=µ

(
1 +

∇∇T

k2

)
i

4
H0,+(kxz|rxz − r′xz|)eikyy,

(1.26)

where H0,+ is the zeroth order Hankel function of first kind. kxz =
√
k2

b − k2
y

is the cross section wave number. For the last identity in the equation above
we refer to Martin and Piller [73]. We remark that the function

g
(2D)
+ (rxz, r

′
xz) =

i

4
H0,+(kxz|rxz − r′xz|)

is the scalar Green’s function to the 2D Helmholtz equation,

−∆rxzg
(2D)
+ (rxz, r

′
xz) − k2

xzg
(2D)
+ (rxz, r

′
xz) = δ(rxz − r′xz).

Again, we want to provide the Fourier transform of Gky ,+(r, r′xz) for a
constant z–coordinate. Essentially, the derivation is a repetition of the con-
siderations made for the point source case. Since Gky,+(r, r′xz) trivially de-
pends on y, the Fourier integrals can be restricted to the x–coordinate. The
2D Weyl’s representation formula reads as

(g
(2D)
+ )∧(kx, z, r

′
xz) =

i

4π

eikz |z−z′|

kz
e−ikxx′

, (1.27)

with kz =
√
k2

xz − k2
x =

√
k2

b − |kxy|2. Inserting this into equation (1.26) we
finally arrive at

G∧
ky,+(kxy, z, r

′
xz) = µ

(
1 − kkT

k2
b

)
(g

(2D)
+ )∧(kx, z, r

′
xy)δ(ky) −

µ

4π2

nzn
T
z

k2
b

δ(ky)δ(z − z′),

(1.28)

which has the same form as the Fourier transform of a point source solution
in equation (1.24).
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Figure 1.4: A point source placed above a layered media.

1.2.4 Point and line sources above layered media

The configuration shown in Figure 1.4 is a combination of the previous ex-
amples. We seek the solution to a point or line source placed at position r′

above a layered media,

∇× µ−1∇× E(r) − ω2εE(r) =iωJ(r), (1.29)

where

J =

{
δ(r − r′)Jp, (point dipole),

δ(rxz − r′xz)e
ikyyJl, (line source).

We adopt the notation of Section 1.2.1, where we discussed the propagation
of plane waves in a layered media.

Disregarding the layered media, the source in the upper half space emits
an electromagnetic field Einc which satisfies

∇× µ−1
N+1∇×Einc(r) − ω2εN+1Einc(r) = iωJ(r).

An analytic expression for Einc by means of the Green’s tensor was given in
equations (1.20) and (1.21) for the point source case and in equations (1.25),
(1.26) for the line source case.

Physically spoken, the source field Einc hits the layered media from above
and is scattered by the multilayer stack. To construct the solution E we
evoke the angular spectrum representation of the field Einc, equations (1.24)
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and (1.28), which permits to decompose Einc into downward traveling and
evanescent waves,

Einc(r) =

∫
E∧

inc(kxy, 0)eikxy·rxye−ikN+1,zzdkxy

=

∫
E∧

inc(kxy, 0)eikN+1,↓·rdkxy,

(1.30)

with the notation kj,↓ = (kx, ky,−kj,z), j = 0, . . . N + 1, and kj,↑ defined
accordingly. Equation (1.30) is valid below the source position, that is z < z′.

With the angular spectrum representation (1.30) at hand we separately
compute the light fields stimulated by the Fourier modes E∧

inc(kxy, 0)eikj,↓·r

within the layered media. Afterwards we superimpose these contributions by
inverse Fourier transforming with respect to kxy in order to gain the sought
field E. After doing so, we will verify that the so constructed field E indeed
satisfies Maxwell’s equations (1.29).

In Section 1.2.1 we have derived that the field within the layered media
stimulated by a plane wave E∧

inc(kxy0)eikj,↓·r from above has the following
form in the jth layer:

E∧
j (kxy, z)e

ikxy ·rxy =E∧
j,↑(kxy)e

ikj,↑·r + E∧
j,↓(kxy)e

ikj,↓·r.

In the lower half space (j = 0) we have E0,↑(kxy) = 0 which excludes incoming
waves from below. In the upper half space (j = N+1) we have EN+1,↓(kxy) =
E∧

inc(kxy, 0) which prescribes the stimulating field.
Now, the solution E is given in the jth layer and for z < z′ by the integral

over the plane waves contributions E∧
j (kxy, z), which is exactly the inverse

Fourier transform,

Ej(r) =

∫
E∧

j (kxy, z)e
ikxy ·rxydkxy,

=

∫
E∧

j,↑(kxy)e
ikj,↑·r + E∧

j,↓(kxy)e
ikj,↓·rdkxy.

(1.31)

Integral representations of this type are called Sommerfeld integrals, see
Chew [27]. We mention that the integral in (1.31) requires a careful defi-
nition in the distributational sense, because the integral is singular, when
‖kxy‖ is equal to k0, or kN+1, or is equal to a guided mode of the layered
media. We refer to the discussion on the unique solvability of the layered
media problem with a stimulating plane wave in Section 1.2.1.

To properly define the integral representation (1.31) and for a numerical
evaluation of the Sommerfeld integral it is possible to apply a complex in-
tegral deformation, see [27] and Paulus et al. [88]. To exemplify this, we
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restrict ourselves to the case of a y-polarized and y–independent line source,
that is

J(r) =δ(rxz − r′xz)
(

0, 1, 0
)T
.

Then, the fields Einc and E have only y-components and Maxwell’s equa-
tions collapse to the Helmholtz equation in 2D,

−∇Tµ−1∇Ey(x, z) − ω2ǫEy(x, z) = iωδ(rxz − r′xz). (1.32)

The source field Einc,y can be computed from the line source Green’s tensor,
equations (1.25) and (1.26), with ky = 0:

Einc,y = iωµH0,+(kxz|rxz − r′xz|).

Accordingly, the angular spectrum representation (1.30) of Einc reduces
to an integral over kx,

Einc,y(x, z) = µN+1

∫

R

(g
(2D)
+ )∧(kx, 0, r

′
xy)e

−ikN+1,zzeikxxdkx

=
iµN+1

4π

∫

R

eikN+1,zz′e−ikxx′

kj,z
e−ikN+1,zzeikxxdkx,

for z < z′, and the Sommerfeld integral (1.31) becomes

Ej,y(x, z) =

∫

R

uj,↑(kx)e
ikj,z(z−zj−1)eikxx +

uj,↓(kx)e
−ikj,z(z−zj)eikxxdkx,

(1.33)

with scalar coefficients uj,↑(kx), uj,↓(kx) as introduced in equation (1.7). In
the upper half space (j = N+1) we prescribe the stimulating field by setting

uN+1,↓(kx) = µN+1(g
(2D)
+ )∧(kx, 0, r

′
xy)

=
iµN+1

4π

e−ikN+1,zz′e−ikxx′

kN+1,z
.

(1.34)

We exclude incoming waves from below by setting u0,↑ = 0.
With equation (1.34) we can replace the Sommerfeld integral (1.33) in

the upper half space by

EN+1,y(x, z) = Einc,y(x, z) +

∫

R

uN+1,↑(kx)e
ikN+1,z(z−zN )eikxxdkx. (1.35)
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k0kN+1 kmax

Im(kx)

Re(kx)

Cδ

δ

Figure 1.5: Complex integration path for the numerical evaluation of the
Sommerfeld integral. For the pole loci and the branch cuts (vertical lines)
we refer to Figure 1.3.

The coefficient functions uj,↑(kx) and uj,↓(kx) are analytic functions of
kx with poles and branch cuts as shown in Figure 1.3. To circumvent an
integration over a singularity or across a branch cut in the Sommerfeld inte-
gral (1.33) we use a complex integration path Cδ as given in Figure 1.5,

Ej,y(x, z) =

∫

Cδ

uj,↑(kx)e
ikj,z(z−zj−1)eikxx +

uj,↓(kx)e
−ikj,z(z−zj)eikxxdkx.

(1.36)

In the upper half space, equation (1.35) with a complex integration path Cδ

reads as

EN+1,y(x, z) = Einc,y(x, z) +

∫

Cδ

uN+1,↑(kx)e
ikN+1,z(z−zN )eikxxdkx. (1.37)

We will show soon that this integral is absolutely integrable. This way
it is clear, that the integral value in (1.36) is independent of δ, so that it
delivers a numerically feasible expression for the Sommerfeld integral (1.33).

To show the absolute integrability of the integral in (1.36) we use equa-
tion (1.18), which gives a bound on the coefficients uj,↑(kx) and uj,↓(kx) for
large values |kx| :

|uj,↑↓(kx)| ≤ C
|uN+1,↓(kx)|

|kx|
≤ C|eikN+1,zz′|.
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We remind the definition of the square root function kN+1,z = (k2
N+1 −k2

x)
1/2

with branch cuts as shown in Figure 1.2. For large values of |kx| we have
that Im(kN+1,z) ∼ |kx|, which yields the bound

|uj,↑↓(kx)| ≤ Ce−|kx|z′.

This gives the following bound for the first integrand in the Sommerfeld
integral (1.36)

|
∫

Cδ

uj,↑(kx)e
ikj,z(z−zj−1)eikxxdkx| ≤ C

∫

Cδ

e−|kx|z′e−|kx|(z−zj−1)|dkx|

≤ C

∫

Cδ

e−|kx|z′|dkx|.

The last estimate holds for j > 0, because z − zj−1 is positive. For j = 0 we
have that uj,↑(kx) = 0 by definition, since we ruled out incoming waves from
below.

Similar, one shows for the second integrand in the Sommerfeld inte-
gral (1.36), that

|
∫

Cδ

uj,↓(kx)e
ikj,z(z−zj)eikxxdkx| ≤ C

∫

Cδ

e−|kx|z′e|kx|(z−zj)|dkx|. (1.38)

This shows the absolute integrability of the Sommerfeld integral (1.36) pro-
vided that z − zj is negative. This is the case for layers with j ≤ N. In the
upper half space with j = N + 1, absolute integrability is only guaranteed
for z < z′. However, equation (1.35) is valid in the entire upper half space, so
that an integration of the second integrand in the Sommerfeld integral (1.33)
can be avoided for j = N + 1.

It remains to verify that the field Ey defined by the Sommerfeld inte-
gral (1.36) and (1.37) indeed solves the Helmholtz equation (1.32). Since all
integrals on the complex integration path Cδ are now absolutely integrable,
we can differentiate under the integral sign and one readily confirms that Ey

solves the Helmholtz equation (1.32).

Far distance source

We now want to derive the asymptotic approximation of the field within the
layered media for a source located in a far distance position. We will see that
the asymptotic field is equal to the field stimulated by a plane wave incident
from the direction of the source position.

Again, we only deal with the line source case in the Helmholtz equa-
tion (1.32). However, a generalization of the results to the Maxwell case is
straightforward, but requires a tedious notation.
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Let the position of the line source be given by (x′, z′) = R(x̂, ẑ) with
|(x̂, ẑ)| = 1. We want to discuss the limit R → ∞. Equation (1.34) relates
the angular spectrum representation of the incoming field with the coefficients
uj,↑(kx, R), uj,↓(kx, R) in the Sommerfeld integral (1.36). Here, we added the
dependency on the distance R. We infer that

uj,↑(kx, R) = uN+1,↓(kx, R)
uj,↑(kx, 1)

uN+1,↓(kx, 1)

= uN+1,↓(kx, R)ũj,↑(kx),

where we introduced ũj,↑(kx) = uj,↑(kx, 1)/uN+1,↓(kx, 1). The coefficients of
the downward traveling waves ũj,↓(kx) are defined accordingly. Note that
ũN+1,↓(kx) = 1, so that the coefficients ũj,↑(kx), ũj,↓(kx) corresponds to the
plane wave solution in the layered media with normalized incoming field from
above.

The Sommerfeld integral (1.36) now reads as

Ej,y(x, z) =

∫

Cδ

ũj,↑(kx)e
ikj,z(z−zj−1)eikxxuN+1,↓(kx, R) +

ũj,↓(kx)e
ikj,z(z−zj)eikxxuN+1,↓(kx, R)dkx.

(1.39)

In the following we only discuss the first integrand, since the treatment of
the second integrand follows in an analog way. With the angular spectrum
representation of the source field, equation (1.34),

uN+1,↓(kx, R) =
iµN+1

4π

e−ikN+1,zRẑe−ikxRx̂

kN+1,z
,

the considered integral is given by

I↑ =
iµN+1

4π

∫

Cδ

ũj,↑(kx)e
ikj,z(z−zj−1)eikxx e

−ikN+1,zRẑe−ikxRx̂

kN+1,z
dkx

The parameter R renders the above expression into a highly oscillatory
integral as R → ∞. Following Chew [27, Sec. 2.5] we apply the method of
stationary phase, cf. Maslov and Fedoriuk [74, Sec. 1.1].

We split the above integrand into an highly oscillatory part with phase
function S(kx) and a smooth part ϕ(kx):

I↑ =
iµN+1

4π

∫

Cδ

ϕ↑(kx)e
iRS(kx)dkx,
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with

ϕ(kx) =
iµN+1

4π
ũj,↑(kx)e

ikj,z(z−zj−1)eikxx/kN+1,z and

S(kx) = −kN+1,z ẑ − kxx̂.
(1.40)

Reminding the definition kN+1,z = (k2
N+1 − k2

x)
1/2, we see that the phase

function S(kx) has a stationary point, S ′(k′x) = 0 only at k′x = −kN+1x̂.
Now, the method of stationary phase method yields the following first

order asymptotic approximation for large values R,

I↑ ∼ ϕ(k′x)

∫

Cǫ

eiRS(kx)dkx

We denote k′j,z = kj,z(k
′
x). Undoing the substitutions from equations (1.40),

we are led to

I↑ ∼ ũj,↑(k
′
x)e

ik′
j,z(z−zj−1)eik′

xx · iµN+1

4πk′N+1,z

∫

Cǫ

eiRS(kx)dkx

= A · ũj,↑(k
′
x)e

ik′
j,z(z−zj−1)eik′

xx,

with the prefactor

A =
iµN+1

4πk′N+1,z

∫

Cǫ

eiRS(kx)dkx. (1.41)

Repeating the above consideration for the second integrand in the Sommer-
feld integral (1.39) we finally arrive at

Ej,y(x, z) ∼ A · ũj,↑(k
′
x)e

ik′
j,z(z−zj−1)eik′

xx +

A · ũj,↓(k
′
x)e

−ik′
j,z(z−zj)eik′

xx.
(1.42)

Using that
k′N+1,z = (k2

N+1 − k2
N+1x̂

2)1/2 = kN+1ẑ,

we see that this is the solution to the layered media problem with an incoming
plane wave Aei(−k′

xx−k′
N+1,zz) from direction (−x̂,−ẑ).

To fix the prefactor A we help us with a trick: Since only the ma-
terial properties of the upper half space are involved in the definition of
A, equation (1.41), we regard a blank material stack with µj = µN+1,
εj = εN+1. Then we trivially have Ej,y(x, z) = Einc,y(x, z) and ũj,↑(k

′
x) = 0,

ũj,↓(k
′
x) = e−k′

zzj for all j. From equation (1.42) we conclude,

A ∼ Einc,y(0, 0) = iωµH0,+(kN+1R).
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Together with the asymptotic behavior of the Hankel functions, see Abramowitz
and Stegun [1, p. 108], this gives

A =

√
2

πkN+1R
ei(kN+1R−π/4).

Remarks 1.1

i) To compute Sommerfeld integrals for a point source in 3D by utilizing
a complex integration path in the kxy–space, it is easier to use cylinder
coordinates (ρ, φ, z). Then, the complex path integration is performed in
the variable kρ =

√
k2

x + k2
y , cf. Chew [27, Sec. 2.7], Paulus et al. [88].

ii) A point or line source embedded in the layered media can also be treated
with little modifications, see again [27, 88].

1.2.5 Waveguide modes

We assume that the material properties are invariant in the z–direction,
ε(x, y, z) = ε(x, y, 0) and µ(x, y, z) = µ(x, y, 0) for all z ∈ R. A waveguide
mode has the form E(x, y, z) = E(x, y)eikzz. So, Maxwell’s equations in the
(x, y)–cross section read as




∂x

∂y

ikz


× µ−1




∂x

∂y

ikz


× E(x, y) − ω2εE(x, y) = 0.

As demonstrated in Jin [63], see also Schmidt et al. [99], this yields after some
manipulations an eigenvalue problem for k2

z in the cross-section. To solve the
eigenmode problem numerically one either imposes radiating boundary con-
ditions in the cross-section or truncates the computational domain in the
cross-section. The latter approach is justified when the eigenmode is con-
fined by a waveguide structure in the cross–section as it often happens in
applications. A layered medium as described above may also exhibit wave-
guide modes. These eigenmodes appear when for a chosen kz the ODE
system permits a non-trivial solution for zero incoming fields u0,+ = 0 and
uN+1,− = 0.
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line integrals:
∫

γ
E · dl,

∫
γ
H · dl

surface integrals:
∫

A
D · dS,

∫
A
B · dS,

∫
A
J · dS

volume integrals:
∫

V
ρ dV

Table 1.1: Integrals in classical notation as they appear in electrodynamics.

1.3 Exterior calculus

The exterior calculus provides a consistent view on many types of differential
equations like the Helmholtz equation in acoustics or Maxwell’s equations.
Classical integral identities like Green’s theorems for scalar fields and Stokes’s
theorem for vector fields, see Monk [79, p. 52] or Nédélec [84, p. 73], are
direct consequences of a central theorem also called Stokes’s theorem. This
way, Maxwell and Helmholtz scattering problems can be treated within one
theory. Besides its mathematical elegancy, the exterior calculus allows for
a much simpler notation. Especially we will extensively make use of the
simple transformation rules under coordinate changes, when introducing the
perfectly matched layer method or when using cylindrical coordinates. It is
not the objective of this thesis to introduce the exterior calculus in greater
detail. Here we only collect the relevant notations and formulas. We refer to
Jänich [61] for a comprehensive treatment of differential forms.

E, D, H, B, J and ρ as differential forms

In the previous section Maxwell’s equations (1.1) were given in a differential
representation. The integral representation of Maxwell’s equations as intro-
duced for example in Chew [27], are closer related to the data measured in
physical experiments. Table 1.1 collects involved integrals in classical nota-
tion. One regains the field values E, D, etc. at a position r as the limit
for shrinking integration domains (lines, surfaces or volumes). Consequently,
in the exterior calculus the field quantities are defined as their response on
infinitesimal small integration volumes. For example we have

e(r)[t] = lim
ε→0

1

|εt|

∫

[r,r+εt]

E · dl = E(r) · t,

b(r)[t1, t2] = lim
ε→0

1

|[εt1, εt2]|

∫

r+[εt1,εt2]

B · dS = B(r) · (t1×t2),

ρ(r)[t1, t2, t3] = lim
ε→0

1

|[εt1, εt2, εt3]|

∫

r+[εt1,εt2,εt3]

ρ dV = ρ(r) det(t1, t2, t3),
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electric field energy density: uelec = E · D/2
magnetic field energy density: umagn = H · B/2

energy flux density(Poynting-vector): S = E×H

Table 1.2: Field products in classical notation. For time-harmonic fields the
values are averaged in time, see Jackson [60].

where [εt1, εt2] denotes the oriented surface in R3 spanned by εt1 and εt2

with area size |[εt1, εt2]|. The volume [εt1, εt2, εt3] is defined accordingly.
Here, the position vector r and the vector t are elements in R3, but in the
differential geometry theory r and t are defined in different spaces. The
position r lives on an oriented manifold M (here M = R3) and t lives in the
linear tangential space TrM to M at r, see Jänich [61].

We denote the space of alternating k-forms on the vector space TrM by
AltkTrM and the space of differential k-forms by ΩkM , see again Jänich [61].
The above equations define the electric field as a differential 1-form e ∈ Ω1M,
the magnetic flux density as a differential 2-form b ∈ Ω2M, and the charge
density as a differential 3-form ρ ∈ Ω3M. Differential 0-forms are the scalar
functions on the manifold M .

In the following we will often restrict a differential form on the boundary
of a domain. The boundary of a sufficiently smooth manifold M ⊂ R3 is a
2-dimensional sub-manifold N = ∂M. The tangent space TrN to N at r is a
sub-space of TrM and so the restriction (or trace) of a k-form η ∈ ΩkM as a k-
form η|∂M ∈ ΩkN is naturally defined by η|∂M(r)[t1, . . . , tk] = η(r)[t1, . . . , tk],
with t1, . . . , tk ∈ TrN ⊂ TrM.

The exterior calculus defines the integral of a k-form in ΩkN over a k-
dimensional manifold N ⊂ R3. The integrals in Table 1.1 are notated as

∫

γ

e,

∫

A

b,

∫

V

ρ, etc.

Here, γ is an oriented curve (1D-manifold), A is an oriented surface (2D-
manifold) and V is an oriented volume.

Wedge products and exterior derivatives

Table 1.2 gives bilinear field products as they appear in electromagnetic field
theory. The first two examples are products between a 1-form and a 2-form
with a 3-form as result. The last example is a product of two 1-forms. The
result is a 2-form (flux density) which gives the energy flux of the electro-
magnetic field through an infinitesimal surface. These examples are special
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cases of wedge products defined within the exterior calculus,

∧r,s : ΩrM × ΩsM → Ωr+sM

(η, ζ) 7→ η ∧r,s ζ.

As usual, we drop the sub-indices for the product ∧ in the following. The
product of a 0-form with a k-form is the scalar multiplication. The wedge
product is associative, (η ∧ ζ) ∧ ζ = η ∧ (ζ ∧ ζ), and anti-commutative,
ζ ∧ η = (−1)r·sη ∧ ζ.

As a next step we transfer the classical differential operators ∇, ∇×, and
∇· to the exterior calculus. A look on Maxwell’s equations (1.1) reveals that
applying the ∇× operator on a 1-form gives a 2-form, see equation (1.1a) or
equation (1.1b). Applying the ∇· operator on a 2-form yields a 3-form, see
equation (1.1c) or equation (1.1d). Additionally, from electrostatics we know
that Estat = ∇φ(r), with the scalar potential function φ which is a 0-form.
Hence a 0-form is mapped to a 1-form by applying the gradient operator.
We observe that for a k-form the action of a specific differential operators
yields a (k + 1)-form. In general the exterior calculus defines the exterior
derivatives,

dk : ΩkM → Ωk+1M.

Again, we will henceforth drop the sub-index for the exterior derivative d.
Later we will make use of the following identities:

d ◦ dη = 0, (1.43a)

d(η ∧ ζ) = dη ∧ ζ + (−1)kη ∧ dζ, for η ∈ ΩkM. (1.43b)

The first equation (1.43a) reflects that a gradient field is curl free (∇×∇ = 0)
and that a rotational field is divergence free (∇ · ∇× = 0). The second
equation (1.43b) covers the classical product rules in one single equation
that is, ∇(fg) = ∇fg + f∇g, ∇× (fE) = ∇f × E + f∇× E, ∇ · (fD) =
∇f · D + f∇ · D, ∇ · (E ×H) = ∇× E · H− E · ∇ ×H.

Material tensors ε, µ and the Hodge operator

The constitutive equations (1.2) give us a hint of how the material tensors
µ and ε act on the differential forms. From equation (1.2a) we see that the
permittivity tensor ε maps the 1-form e on the 2-form d and we therefore
consider ε as an operator ε : Ω1M → Ω2M. The permeability tensor µ acts
in the same way (equation (1.2b)).
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We are now in the position to write Maxwell’s equation (1.4) and the
divergence condition (1.3d) for the electric field in differential form,

dµ−1de − ω2εe = iωji, (1.44a)

dεe = − i

ω
dji. (1.44b)

The expression on the right hand side of equation (1.44a) is a 2-form and
so is the expression on the left hand side as one concludes when observing
the action of the operators µ−1 and d. The expressions on both sides of
equation (1.44b) are 2-forms.

The scalar Helmholtz equation in acoustics, see for example Ihlenburg [59],
is given by

−∇ · c2,H∇u− ω2c0,Hu = 0.

From the types of the differential operators involved (∇ and ∇·), we conclude
that u is a (scalar) 0-form and that c2,H∇u is a 2-form. Consequently, c0,Hu
is a 3-form. In exterior calculus we can cast the Helmholtz equation and
Maxwell’s equations (1.44a) into the form

(−1)k+1dc2dη − ω2c0η = 0.

Here, the k–form η is a 0-form for the Helmholtz case and a 1-form for the
Maxwell case. In a unified way the material operators act like

c0 : ΩkM → Ωn−kM,

c2 : Ωk+1M → Ωn−k−1M.

We remark that the material tensors are closely related to the Hodge oper-
ator ∗ defined on Riemann manifolds, see Jänich [61] and Teixeira [46, 104].
With the introduction of the co-derivative δ the classical Maxwell’s equations
can be cast into the exterior calculus in a slightly different way than above.
As in [118] we prefer to use the explicit definition of the material tensors
c0 and c2 given above in order to restrict the theoretical considerations to a
minimum.

Together with Stokes’s theorem (Jänich [61]),
∫

M

dη =

∫

∂M

η,

the product rule (1.43b) yields the partial integration formula

(−1)k+1

∫

M

η ∧ dc2de =

∫

M

dη ∧ c2de −
∫

∂M

η ∧ c2de. (1.45)

In the following we only deal with Maxwell’s equations in 3D thus setting
k = 1. We also prefer to use the notation ε and µ−1 for the material tensors.
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y∗
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e, d, h, b e∗, d∗, h∗, b∗

M

M∗

B

Figure 1.6: Sketch of a coordinate transform. Here, we consider the
manifold M as a physical body embedded into R3 with coordinates (x, y, z).
The manifold M∗ together with the isomorphism B is used to define new
coordinates (x∗, y∗, z∗) for M. The isomorphism B defines locally a linear
mapping of the tangent spaces at identified points. The transformed fields
e∗, etc. yield the same observable data, e.g. the same integral values.

Coordinate transformations

The definition of a k-form by its action on the tangential vectors t1, . . . , tk ∈
TrM is independent of the chosen coordinate system. However, when doing
numerics one is forced to fix a coordinate system. We will see that the
definition and implementation of transparent boundary conditions are often
easier when not using the standard Euclidean coordinate system r = (x, y, z).

To define the coordinate change for differential forms we regard two man-
ifolds M and M∗ of same dimension n, see Figure 1.6. Both manifolds are
identified via a piecewise smooth isomorphism B. We assume that M and
M∗ are embedded in R3 equipped with Euclidean coordinates r = (x, y, z)
and r∗ = (x∗, y∗, z∗), respectively. At each point the isomorphism r = B(r∗)
defines a linear mapping J(r∗) : Tr∗M∗ → TrM from the tangent space to
M∗ at r∗ onto the tangent space to M at r. Clearly, this is the Jacobian
when n = 3. For a k-form η ∈ ΩkM the transformed (pulled back) k-form
η∗ ∈ ΩkM∗ is defined as

η∗(r∗)[t1,∗, . . . , tk,∗] = η(r)[J(r∗)t1, . . . , J(r∗)tk], ∀t1,∗, . . . , tk,∗ ∈ Tr∗M∗,

so it gives the same result when applied on the transformed tangent vectors
as the original k-form applied on the original tangent vectors. One shows the
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following important identities (see Jänich [61]),

∫

N∗

η∗ =

∫

N

η, (1.46a)

dη∗ = dη, (1.46b)

η∗ ∧ ζ∗ = (η ∧ ζ)∗. (1.46c)

In the first equation (1.46a) N ⊂ M is a k-dimensional sub-manifold of M
and η ∈ ΩkM.

Equation (1.46a) reflects the fact that the physical observables (=real
numbers) are independent on the chosen coordinates. The two last equa-
tions (1.46b), (1.46c) guarantee that the application of the wedge operators
and the differential operators does not depend on the coordinate system.

It remains to transform the material tensor ε and µ. We define

ε∗η∗ = (εη)∗, (1.47a)

µ∗η∗ = (µη)∗. (1.47b)

Hence, applying a material tensor and pulling back commutes. With this
definition the transformed electric field e∗ to a solution e ∈ Ω3M of Maxwell’s
equations (1.44) meets the transformed Maxwell’s equations,

dµ−1
∗ de∗ − ω2ε∗e∗ = iωji,∗ , (1.48)

dε∗e∗ = − i

ω
dji,∗ . (1.49)

Remark 1.1 For completeness we bring the transformed Maxwell’s equa-
tions back to classical notation. The electric field (1-form) is transformed as
E∗ = JTE and a 2-form is transformed as D∗ = |J |J−1D, where J is the
Jacobian as defined above. For simplicity we assume ji = 0. and introduce
∇∗ = (∂x∗, ∂y∗, ∂z∗)

T . We have

∇∗ ×
(
|J |J−1µJ−T

)−1 ∇∗ ×E∗ − ω2|J |J−1εJ−TE∗ = 0.

Here, we used the canonical transformed vector E∗. When using the original
vector E(r∗) = E(r) one gets,

∇∗ ×
(
|J |J−1µJ−T

)−1 ∇∗ × JTE − ω2|J |J−1εE = 0.



Chapter 2

Scattering problems

A scattering problem consists of three major components: the illumination
system, the scattering object and the detector. This chapter is devoted
to the mathematical description of the light scattering off the considered
object. The illumination system is reduced to an idealized light source and
the detector is not considered at all. However, for later purposes when we deal
with the far field extraction it indispensable to develop a basic understanding
of the involved length scales in a scattering experiment.

We refer to Figure 2.1. The overall scattering problem setup is very
complicated. In reality, the illumination system and the detector consist of a
complex arrangement of a large number of lenses, apertures and other opto-
electronical devices, cf. Wong [114]. This way, light traveling in different
directions is collected in the detector and focused on a photosensitive device.
To deal with a scattering problem numerically a cascade of idealizations
is necessary. A keystone for these simplifications is the separation of the
microscopic and macroscopic length scale effects.

Our first idealization concerns the nature of the emitted light. As in
the previous chapter we only consider a monochromatic light source, so that
the electromagnetic field depends harmonically on time with an angular fre-
quency ω. In practice, such a pure, perfectly coherent light source is never
encountered due to transient effects, thermal fluctuation, etc. Therefore,
a realistic illumination model requires a statistical description of the light
source as explained in Wolf and Mandel [72, 112].

As a second idealization we separate the scatterer from its surroundings.
We suppress any interferences of the outgoing field eout with the illumination
system and the detector. Since the scatterer is directly placed on a substrate
it is necessary to take the interactions with the substrate into account. But we
also disregard any interactions with other obstacles placed on the substrate
as well.

41
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z
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illumination

scatterer

detector

substrate

Figure 2.1: Principle setup of a scattering experiment. The scatterer has a
microscopic length scale r, whereas the illumination system and the detector
are placed in a far distance R ≫ r to the scatter.

The third idealization utilizes that r ≪ R so that we are allowed to replace
the source field esrc by its asymptotic expansion einc ∼ esrc. For example, a
divergent spherical wave emanated from a far distant dipole looks like a plane
wave front in the vicinity of the scatterer.

After applying these idealizations we are in the situation as depicted in
Figure 2.2 in case of a 2D problem. Since no impressed sources are present,
the total electric field e stimulated by the incoming field einc satisfy equa-
tion (1.44a) in the entire space R3 with a zero right hand side,

dµ−1de − ω2εe = 0. (2.1)

We drop the divergence condition (1.44b) since a solution e to the above
equation satisfies dεe = 0 as a consequence of the identity d ◦ d = 0, see
equation (1.43a).

Since the incoming field einc is the asymptotic form of the idealized illu-
mination it does not satisfy Maxwell’s equations within the substrate. Con-
sequently, the outgoing field eout = e − einc is not a solution to Maxwell’s
equations in the exterior domain as well. This makes the outgoing field
eout unsuitable for a discretization with the PML method or the pole condi-
tion method. To cure that we choose a different splitting of the total field,
e = eref + esc, into a reference field and a scattered field as follows:

The reference field eref is the field which is stimulated by the incoming field
in the substrate without the scatterer. Hence, eref is a solution to Maxwell’s
equations in the entire exterior domain and comprises the incoming field einc.
It may contain outward traveling waves but no incoming traveling wave other
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einc

eout

eout

x

z

Ω

Figure 2.2: Idealized scattering problem: The incoming field is given as
the asymptotic form of a complex light source. The scatterer painted in light
gray only interacts with the substrate.

than the prescribed field einc. To give an example, we regard Figure 2.2 and
assume that the incoming field einc is a plane wave. Without the scatterer,
the incoming plane wave propagates through the layered media. We derived
the exact solution to this propagation in a layered medium in Section 1.2
of the previous chapter. This gives our reference field eref which is indeed
a solution to Maxwell’s equations in the entire exterior domain and which
comprises the original incoming field einc.

We are now in the position to give a first definition of a scattering problem.

Problem 2.1 (scattering problem). Let a reference field eref be given, which
satisfies Maxwell’s equations in the exterior of a bounded domain Ω ⊂ R3,

dµ−1deref − ω2εeref = 0 in Ωext = R3 \ Ω.

We seek the total field solution e satisfying Maxwell’s equations in the entire
space R3,

dµ−1de − ω2εe = 0 in R3

so that the scattered field esc = e − eref defined in the exterior domain Ωext

is outward radiating.

The precise definition of the term outward radiating is discussed in the
section after next. In the next section we will restrict the shape of the
computational domain Ω to admissible geometries.
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Figure 2.3: Admissible geometry for a 2D domain. The exterior domain
is composed of infinite quadrilaterals. Each quadrilateral Qj is the image of
an infinite reference quadrilateral under an affine bilinear mapping βj . These
local mappings are combined to a global mapping B : [ηmin, ηmax]π×[0,∞) →
Ωext so that a distance coordinate ξ and an angular–like coordinate η are
globally defined.

2.1 Admissible geometries

In the scattering problem formulation it is a crucial point to decompose
the electromagnetic field into outgoing and incoming waves. Before we can
start with this, it is necessary to define outward coordinate directions in a
geometrical sense. For examples, if Ω is a ball, one may equip the exterior
domain with a spherical coordinate system (ϕ, ϑ, r), where r is the distance
to the sphere and serves as the outward coordinate direction.

To generalize this, we will regard geometries which allows for the def-
inition of a generalized distance coordinate ξ in the exterior domain. We
restrict ourselves to domains Ω which can be represented by a finite element
mesh with straight edges and plane faces.

For the definition of admissible geometries with a single outward coor-
dinate direction we refer to Schmidt [98] and Kettner [66]. To cover tensor
product-like exterior domains as well, we propose a more general approach
here. In these cases we use multiple distance coordinates, which are not
defined in the entire exterior domain.

The definition of admissible geometries given below for 3D domains is
very technical. We therefore exemplify the construction for the 2D case
first. Figure 2.3 shows an admissible geometry in 2D. The computational
domain is a convex polygon. Each boundary segment is an edge of an infinite
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Figure 2.4: Admissible geometry for a 2D domain (tensor product ge-
ometry). We allow for quadrilaterals with two infinite coordinate directions.
Multiple distance–like coordinate directions are present. As indicated by the
dashed and dotted lines these distance–like coordinates are continuous across
quadrilateral boundaries.

quadrilateral. Two adjacent quadrilaterals share a common infinite edge. We
demand that there exists a continuous and piecewise affine bilinear coordinate
transformation B : [ηmin, ηmax]π × [0,∞) → Ωext, cf. Figure 2.3. [ηmin, ηmax]
is a periodified interval (ηmin and ηmax are identified). The coordinate η ∈
[ηmin, ηmax]π is a generalized angle parameterizing the polygonal boundary
∂Ω. ξ is a globally defined distance variable.

Another type of an admissible geometry in 2D is depicted in Figure 2.4.
There the exterior domain is split into compartments, which are mapped
locally on simply infinite reference quadrilaterals Q1,ref = {(η, ξ) ∈ R2 | η, ξ ≥
0, η ≤ 1} or on doubly infinite reference quadrilaterals Q2,ref = {(ξ1, ξ2) ∈
R2 | ξ1, ξ2 ≥ 0}. This way on each quadrilateral one or two distance–like
coordinates are defined locally. We again demand that these coordinates
match continuously for adjacent quadrilaterals.

We now address the 3D case and give a general definition of the admissible
geometries. We introduce the following infinite reference elements:

Pref = {(η1, η2, ξ1) ∈ R3 | 1 − η1 − η2 ≤ 1, η1, η2, ξ1 ≥ 0} (infinite prism),

B
(1)
ref = {(η1, η2, ξ1) ∈ R3 | η1, η2 ≤ 1, η1, η2, ξ1 ≥ 0} (simply infinite brick),

B
(2)
ref = {(η, ξ1, ξ2) ∈ R3 | η ≤ 1, η, ξ1, ξ2 ≥ 0} (doubly infinite brick),

B
(3)
ref = {(ξ1, ξ2, ξ3) ∈ R3 | ξ1, ξ2, ξ3 ≥ 0} (triply infinite brick).

An infinite cell is a sub–manifold T ⊂ R3 which is the image of an orientation
preserving, multi-linear isomorphism βT from an infinite reference element
into R3.
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A cell T gives rise to the definition of rays. For example, if T is a doubly
infinite brick a ray r : [0,∞) → R3 is defined by r(·) = T (η1, ξ1, ·) for fixed
coordinates η1, ξ1. Other rays are defined accordingly by selecting an infinite
coordinate ξk and fixing the other coordinates.

We call an edge, triangle, quadrilateral finite if it is bounded.

Definition 2.1 (admissible geometries). A domain Ω is admissible, if the
following conditions are satisfied:

1. Ω is connected, convex and bounded.

2. The exterior domain Ωext = R3 \Ω is a finite union of non-overlapping
infinite cells such that,

i) The intersection of two infinite cells is a common vertex, edge or
quadrilateral.

ii) An infinite cell’s vertices, finite edges, finite triangles and finite
quadrilaterals lie on the boundary ∂Ω.

iii) Common rays of adjacent cells have the same parameterization.
More precisely, let r1 and r2 denote rays defined on different cells.
If rg(r1) = rg(r2) then r1 = r2 that is, r1(τ) = r2(τ) for all τ ∈
[0,∞).

iv) The material tensors ε and µ are constant scalars on each infinite
cell.

Condition 2iii) is called ray matching condition and assures that a dis-
tance like variable ξk defined on a cell is continuous across cell boundaries.
Figure 2.5 sketches an admissible domain in 3D.

2.2 The pole condition

The pole condition concept as introduced by Schmidt [98] allows for a char-
acterization of outgoing waves for admissible geometries.

Before we start with the pole condition concept, we regard the homo-
geneous exterior domain, so that ε and µ are constant scalars. This yields
a constant wave number k = ω

√
µε in the entire exterior domain. From

physics, one sees that a field e is outward radiating if and only if it satisfies
the radiation condition

lim
ξ→∞

ξ
d−1
2 µ−1(de(ξx̂) − ikx̂ ∧ e(ξx̂)) = 0, (2.2)
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ξ

η1

η2βT
Ω

Figure 2.5: Sketch of an admissible geometry in 3D. An infinite cell is
mapped onto the corresponding reference element. Here a prism is mapped
onto Pref by the transformation β−1

T .

uniformly for any direction x̂ ∈ Rd, ‖x̂‖ = 1. Here d = 1, 2, 3 is the space
dimension. This equation comprises the Sommerfeld radiation condition for
the scalar case as well as the Silver–Müller radiation condition for Maxwell’s
equations, see Monk [79, p. 226].

In a numerical simulation, the radiation condition (2.2) can be used to
impose boundary conditions on a truncated domain. However, this boundary
condition is not transparent, because an outgoing wave only satisfies the
Sommerfeld condition (2.2) asymptotically for large computational domains.
This renders a numerical simulation intractable.

From a theoretical point of view, the Sommerfeld radiation condition (2.2)
characterized outgoing waves and is the corner stone for a mathematical the-
ory on scattering problems in many textbooks, see for example Colton and
Kress [32] or Nédélec [84]. Since a Sommerfeld-like radiation condition is
not available for general inhomogeneous exterior domains, a new approach
towards the characterization of outgoing waves is needed for numerical sim-
ulations and theoretical purposes as well. This gives the motivation for the
pole condition concept.

To explain the principle idea of the pole condition concept we consider
the 1D case,

−u′′(x) − k2u(x) = 0, x ∈ [0,∞)

u(0) = 1.
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The solution has the form u(x) = Aeikx + Be−ikx with A + B = 1. Clearly,
for u to satisfy the above radiation condition (2.2) we conclude that B = 0,
so that A = 1.

We see that the general solution decomposes into an outgoing wave Aeikx

and an incoming wave Be−ikx. For this simple example the decomposition
into outgoing and incoming parts is explicitly given. Because this is not the
case for general geometries, we look for another characterization of outgoing
and incoming waves.

As observed by Schmidt, the Laplace transform of u reflects this decom-
position into outgoing and incoming waves, as we will explain now. The
Laplace transform

U(s) =

∫ ∞

0

u(x)e−sxdx =
A

s− ik
+

B

s+ ik

exhibits two poles s± = ±ik and we conclude that a wave is outgoing when
its Laplace transform is holomorphic in the lower complex half space.

We now generalize this idea to higher space dimensions and to Maxwell’s
equations. We assume within this subsection that the exterior domain is
equipped with coordinates which define a global distance–like coordinate ξ.
Let us regard a cell T of Ωext as in Definition 2.1 for admissible geometries.
For τ > 0 we define the displaced cell Tτ by

Tτ = {x ∈ Ωext |x = βT (η1, η2, ξ + τ), (η1, η2, ξ) ∈ β−1
T (T )}.

The displaced exterior domain Ωext,τ is defined piecewise. The ray matching
condition in Definition 2.1 assures that the so defined isomorphism Dτ :
Ωext → Ωext,τ is continuous and piecewise affine bilinear.

For a field e defined in Ωext, eτ denotes the differential form pulled back
from Ωext,τ to Ωext via the isomorphism Dτ . The pulled back material tensor
ετ is defined as in equation (1.47a). Given a test function ϕ we define the
scalar function

ue,ε,ϕ(τ) =

∫

Ωext

ϕ ∧ ετeτ . (2.3)

Definition 2.2 (pole condition). Let a field esc be given which solves Maxwell’s
equations in the exterior of an admissible domain Ω ⊂ R3,

dµ−1desc − ω2εesc = 0 in Ωext = R3 \ Ω.

esc is called outward radiating if the Laplace transform

Ue,ε,ϕ(s) =

∫ ∞

0

uesc,ε,ϕ(τ)e−sτdτ
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of uesc,ε,ϕ as defined in equation (2.3) has a holomorphic extension into the
lower complex half plane for all test functions ϕ.

As shown in Hohage et al. [56] the pole condition is equivalent to the
Sommerfeld radiation condition for homogeneous exterior domains and the
scalar Helmholtz equation. Arens and Hohage [7] showed that for rough
surface problems the pole condition is equivalent to the upward propagating
radiation condition.

We now address the inverse Laplace transformation of Uesc,ε,ϕ(s) to re-
cover uesc,ε,ϕ(τ). The results will be useful for the theoretical motivation of
the adaptive PML method later. Because the field esc is bounded in the
exterior domain for non-active materials we are allowed to apply the inverse
Laplace transform theorem. This yields

uesc,ε,ϕ(τ) =
1

2πi

∫ ǫ+i∞

ǫ−i∞

Uesc,ε,ϕ(s)esτds.

In the following we use that |Uesc,ε,ϕ(s)| ≤ C/|s| for large values of |s| without
giving a proof for this estimate here, cf. Schmidt [98]. We further assume
that Uesc,ε,ϕ(s) is holomorphic in the upper complex half space for Im(s) >
kmax. We deform the integration path in the above inverse Laplace transform
integral as shown in Figure 2.6. Precisely, we have

2πiuesc,ε,ϕ(τ) = lim
R→∞

∫ ǫ+iR

ǫ−iR

Uesc,ε,ϕ(s)esτds

= lim
R→∞

∫ ǫ−iǫ

ǫ−R−iǫ

Uesc,ε,ϕ(s)esτds+

∫ ǫ+ikmax+iǫ

ǫ−iǫ

Uesc,ε,ϕ(s)esτds +

∫ ǫ−R+ikmax+iǫ

ǫ+ikmax+iǫ

Uesc,ε,ϕ(s)esτds +

∫

C

Uesc,ε,ϕ(s)esτds.

For τ > 0, the integral over the two arcs C disappears for R→ ∞. This gives

2πiuesc,ε,ϕ(τ) =

∫ ǫ−iǫ

−∞−iǫ

Uesc,ε,ϕ(s)esτds +

∫ −∞+ikmax+iǫ

ǫ+ikmax+iǫ

Uesc,ε,ϕ(s)esτds +

∫ ǫ+ikmax+iǫ

ǫ−iǫ

Uesc,ε,ϕ(s)esτds.

For the sake of a simpler notation we now set ǫ = 0. The arising integrals are
understood as the limit values for ǫ ց 0. With a change of the integration
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Figure 2.6: Contour as used for the inverse Laplace transform.

variables we end up with

uesc,ε,ϕ(τ) =
1

2πi

∫ ∞

0

(
Uesc,ε,ϕ(−κ) − Uesc,ε,ϕ(−κ + ikmax)τ)e

ikmaxτ
)
e−κτdκ +

1

2π

∫ kmax

0

Uesc,ε,ϕ(ik)eikτdk.

(2.4)

This formula admits an interesting interpretation: The first integral is an
“infinite summation” over evanescent waves. Whereas the second integral
gives rise to propagating waves.

2.3 Coupled interior–exterior domain prob-

lem

We want to bring the scattering problem (Problem 2.1) into a weak form.
We search the total field e in the space Hloc(curl,R3) such that it satisfies

∫

R3

dϕ ∧ µ−1de − ω2ϕ ∧ εe = 0
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for all ϕ ∈ H(curl,R3) with compact support. We split this integral into an
interior and an exterior part and use that e = esc + eref in Ωext,∫

Ω

dϕ ∧ µ−1de − ω2ϕ ∧ εe +

∫

Ωext

dϕ ∧ µ−1desc − ω2ϕ ∧ εesc =

−
∫

Ωext

dϕ ∧ µ−1deref − ω2ϕ ∧ εeref .

On the right hand side of this equation one finds the prescribed, exciting
field eref . Since eref satisfies Maxwell’s equations in Ωext the last term in
the equation above can be transformed to a boundary term by applying the
partial integration formula (1.45),
∫

Ωext

dϕ ∧ µ−1deref − ω2ϕ ∧ εeref =

∫

∂Ωext

ϕ ∧ µ−1deref = −
∫

∂Ω

ϕ ∧ µ−1deref .

Putting all together we get the coupled exterior–interior domain problem in
variational form:

Problem 2.2 (scattering problem in variational form). Let a reference field
eref ∈ Hloc(curl,Ωext) be given which satisfies Maxwell’s equations in the
exterior of an admissible domain Ω ⊂ R3,

∫

Ωext

dϕ ∧ µ−1deref − ω2ϕ ∧ εeref =

∫

∂Ωext

ϕ ∧ µ−1deref

for all test functions ϕ ∈ H(curl,Ωext) with compact support. We seek a pair
(e, esc) ∈ H(curl,Ω)×Hloc(curl,Ωext) such that esc is outward radiating and

∫

Ω

dϕ ∧ µ−1de − ω2ϕ ∧ εe +
∫

Ωext

dϕ ∧ µ−1desc − ω2ϕ ∧ εesc =

∫

∂Ω

ϕ ∧ µ−1deref ,
(2.5a)

(e − esc)|∂Ω = eref |∂Ω (2.5b)

for all ϕ ∈ H(curl,R3) with compact support.

We will explain later how to incorporate the Dirichlet jump condition (2.5b)
into a modified variational equation.

Remark 2.1 Impressed current sources ji can be easily taken into account
in an extension of Problem 2.2. For a source not compactly supported in the
interior domain Ω the reference field eref must already comprise the sources in
the exterior domain Ωext. This way, one can treat for example δ–distributed
sources located in the exterior domain.



52 CHAPTER 2. SCATTERING PROBLEMS

2.4 Dirichlet–to–Neumann operator

Our aim is to restrict the interior–exterior domain problem (2.5) onto the
bounded domain Ω. To account for the radiation of the field into the exterior
domain we need to formulate transparent boundary conditions on ∂Ω. This is
done by the so called Dirichlet–to–Neumann operator (also named Calderon
map), see Monk [79, p. 248]. We mention that the numerical methods we
will discuss in later chapters do not rely on the DtN–operator. However,
the formal restriction of the scattering problem to a bounded domain is
very useful for an existence and stability analysis of the scattering problem.
Furthermore the effect of the PML method on the interior domain solution
can be understood as a perturbation of the exact DtN–operator, see Lassas
et al. [68] and Hohage et al. [56].

Let us start with the variational scattering problem (2.5a). We trans-
form the integral over Ωext into a boundary integral by applying the partial
integration formula (1.45),
∫

Ωext

dϕ ∧ µ−1desc − ω2ϕ ∧ εesc =

∫

∂Ω

ϕ ∧ µ−1desc +

∫

Ωext

ϕ ∧ dµ−1desc − ω2ϕ ∧ εesc.

The last integral term is equal to zero because esc satisfies Maxwell’s equa-
tions in the exterior domain Ωext. Inserting this into equation (2.5a) gives
∫

Ω

dϕ ∧ µ−1de − ω2ϕ ∧ εe +

∫

∂Ω

ϕ ∧ µ−1desc =

∫

∂Ω

ϕ ∧ µ−1deref . (2.6)

This equation is only posed on the interior domain Ω but the unknown
Neumann–data of the scattered field solution esc is still involved. To pro-
ceed with, we assume that an outgoing field in the exterior domain Ωext is
uniquely defined by its Dirichlet data on ∂Ω. This way, we can formally define
the DtN–operator

DtN : H1/2 → H−1/2

g 7→ (µ−1deout)|∂Ω,

where eout solves

dµ−1deout − ω2εeout = 0,

eout|∂Ω = g

and is outward radiating. Here, H1/2 denotes the space of Dirichlet data
(trace space) andH−1/2 its dual space. For Maxwell’s equations the definition
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of these spaces is very technical. Now, we eliminate the Neumann term of
esc in the above equation (2.6),

∫

∂Ω

ϕ ∧ µ−1desc =

∫

∂Ω

ϕ ∧ DtN[esc]

=

∫

∂Ω

ϕ ∧ DtN[e − eref ],

and end up with the sought variational problem
∫

Ω

dϕ ∧ µ−1de − ω2ϕ ∧ εe +

∫

∂Ω

ϕ ∧ DtN(e) =
∫

∂Ω

ϕ ∧ (µ−1deref + DtN(eref))

(2.7)

for all ϕ ∈ H(curl,Ω).

Remarks 2.1

i) The DtN–operator can be constructed explicitly for a homogeneous ex-
terior domain, see Monk [79, p. 248].

ii) For separable coordinate systems the DtN–operator is numerically avail-
able, see for example Keller and Givoli [65] and Grote and Keller [48].
The DtN–operator is a non–local operator on ∂Ω. In a numerical dis-
cretization with finite elements or finite differences this leads to a dense
block with a dimension equal to the number of discretization points on
the boundary.

iii) One may also define a Neumann–to–Dirichlet operator H−1/2 → H1/2.
In this case one needs to solve the exterior domain problem for given
Neumann-data on ∂Ω. Similar to equation (2.7) one derives a variational
problem in H0(curl,Ω).

2.5 Geometries with symmetries

When the geometry and the incoming field exhibit a symmetry, Maxwell’s
equations in 3D can be restricted to a smaller domain. We will even see
that a 3D problem may collapse to a 2D or 1D problem. In the following
we discuss various symmetries often present in real life applications. The
definition of admissible geometries in Definition 2.1 is too strict to deal with
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symmetries, since we need to impose certain boundary conditions on sym-
metry planes. For the following cases it is obvious how to treat the extra
boundary conditions.

Periodicity

We assume periodic material tensors ε(r + a) = ε(r), and µ(r + a) = µ(r)
for a lattice vector a. If the reference field is Bloch periodic that is,

eref(r + a) = eikB·aeref(r),

then the total field and hence the scattered field are also Bloch periodic with
the same Bloch vector kB ∈ R3. The scattering problem can be restricted
to R3

a
= {r ∈ R3 | 0 ≤ a · r ≤ ‖a‖2} which looks like an infinite plate with

faces Γ0 = {r ∈ R3 | a · r = 0} and Γa = {r ∈ R3 | a · r = ‖a‖2}. According
to the Bloch periodicity of the fields we use the space with Bloch periodic
boundary conditions on Γ0 and Γa,

Hloc(curl,R3
a,kB) = {e ∈ Hloc(curl,R3

a) | e|Γa = eikB·ae|Γ0},

as the ansatz space in the variational scattering formulation Problem 2.2.
The test functions are chosen accordingly with compact support in R3

a. A
twofold periodicity can be treated in an analogous way. In this case the
scattering problem is posed on an infinite cylinder which has a bounded
cross–section with twofold periodic boundary conditions.

Remark 2.2 Dobson and Pasciak [39] analyzed the Bloch eigenmode prob-
lem. They used standard periodic function spaces and modified the differ-
ential operators to account for the phase–shifting behavior of a Bloch mode.
Doing so, Nédélec’s finite elements do not preserve the de Rham properties
of the modified operators. To cure this, Dobson and Pasciak adapted the
finite element spaces. On a discrete level this yields exactly the same alge-
braic problem as in the above approach, where the Bloch phase jumps are
incorporated into the function spaces.

Translation invariance

We assume that the geometry is invariant in the z-direction so that ε(x, y, z) =
ε(x, y, 0) and µ(x, y, z) = µ(x, y, 0) for all z ∈ R. We further assume that the
reference field and thus all other fields have the form

e(x, y, z) = eikzze(x, y, 0).
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This condition is general enough to allow for an oblique incoming plane wave
with a wave vector k not lying in the xy–plane. We will see that this special
geometry allows for a restriction of the scattering problem onto the cross-
section z = 0. Since all field components e = exdx+eydy+ezdz are non-trivial
the restricted 2D problem exceeds the framework of differential forms in 2D.
Dealing with the field in the cross–section only,

e(x, y, 0) =

[
e⊥(x, y)
ez(x, y)

]
,

the 2D Maxwell’s equations have the following form in classical notation,




∂x

∂y

ikz



× µ−1




∂x

∂y

ikz



×
[

e⊥

ez

]
− ω2ε

[
e⊥

ez

]
=0. (2.8)

The curl–operator (∂x, ∂y, ikz)
T× acts in the following way




∂x

∂y

ikz


×

[
e⊥

ez

]
=

[
P (∇ez − ikze⊥)
∂xey − ∂yex

]
,

with P = [0 1;−1 0]. Formally, e⊥ is a 1–form in 2D and ez is a 0–form
for which the gradient operator is defined. One therefore may regard the
above 2D Maxwell’s equations as a coupled system of a 1-form e⊥ and a 0–
form ez. Finite elements are constructed accordingly, see for example Jin [63]
and [118]. The derivation of a scattering problem for the 2D Maxwell’s
equations is analog to the general 3D case. Radiating boundary conditions
(pole conditions) are imposed for all field components.

We want to derive the variational formulation of the 2D cross section
Maxwell’s equations (2.8). Instead of using the above splitting e = (e⊥, ez)
we find it more intuitive to start with the 3D variational form and to restrict
the ansatz and test space. Given an admissible 2D geometry Ω2D with exte-
rior domain Ωext,2D = R2 \ Ω2D, we define Ω = Ω2D × R and the ansatz and
test space as

Hloc(curl,R3, kz) = {e ∈ Hloc(curl,R3) | e(x, y, z) = eikzze(x, y, 0)}.

The test functions ϕ are chosen in Hloc(curl,R3, kz) with compact support
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in the xy–plane. We integrate over R2 × [0, δ], with δ > 0,
∫

Ω2D×[0,δ]

dϕ ∧ µ−1de − ω2ϕ ∧ εe +

∫

Ωext,2D×[0,δ]

dϕ ∧ µ−1desc − ω2ϕ ∧ εesc =

∫

∂Ω2D×[0,δ]

ϕ ∧ µ−1deref +

∫

Ω2D×{0}

ϕ ∧ µ−1de +

∫

Ω2D×δ

ϕ ∧ µ−1de +

∫

Ωext,2D×{0}

ϕ ∧ µ−1desc +

∫

Ωext,2D×δ

ϕ ∧ µ−1desc.

Due to the special choice of the ansatz and test space, each integrand is inde-
pendent of the z-coordinate. The two terms in the last line cancel each other
since the cross-sections Ω2D × {0} and Ω2D × δ have opposite orientations.
The same holds true for the last but one line. Hence after dividing by δ we
end up with a 2D variational problem.

Rotational symmetry

Equipping the space R3 with cylinder coordinates (r, y, φ) gives rise to the
isomorphism

T : (0,∞) ×R × [0, 2π) → R3 \ ({0} × R× {0})
(r, y, φ) 7→ (r cos(φ), y, r sin(φ)).

We use the isomorphism T to transform Maxwell’s equations from the Carte-
sian coordinate system (x, y, z) to the cylinder coordinate system. As derived
in Section 1.3, transforming Maxwell’s equation results only in a change of
the material tensors. We recall equation (1.48)

dµ−1
∗ de∗ − ω2ε∗e∗ = 0,

where e∗ denotes the pulled back differential form and µ∗, ε∗ denote the pulled
back material tensors. For a rotational symmetric problem the material
tensors do not depend on φ. With an expansion of the reference field into
Fourier modes,

eref,∗ =

∞∑

n=−∞

eref,n(r, y)einφ,

the transformed problem separates into 2D Maxwell’s equations as described
in the previous paragraph, cf. [122]. The only difference is that special care
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needs to be taken at the cylinder axis r = 0 where the transformed material
tensors have singularities. The φ–component of the transformed differential
form e∗ vanishes at r = 0 since e∗,φ = rez. Therefore one must enforce the
boundary condition e∗,φ = 0 at r = 0 which is readily done in the finite
element context. More delicate is the assembling of the stiffness and mass
matrices near r = 0 due to arising 1/r terms. To overcome these difficulties,
Hiptmair and Ledger [53] proposed to use extra high numerical quadrature
rules near the cylinder axis without giving a full theoretical justification.

The reduction of a cylinder symmetric problem to a set of 2D problems
is possible due to the separability of Maxwell’s equations after a coordinate
change. More general configurations which allow for a separation are consid-
ered in Pollok [90].
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Chapter 3

Adaptive perfectly matched

layers

The perfectly matched layer (PML) method is widely used for the numerical
implementation of transparent boundary conditions. For the application on
Maxwell’s equations it goes back to Bérenger who proposed the method for
Cartesian coordinates and planar interfaces of the computational domain in
1994 [15]. 1 The method has been generalized to curvilinear coordinates by
Teixeira, Chew [105] and Collino, Monk [31]. More general and systematic
approaches are reported in Teixeira et al. [106, 46], see also [118, 121]. To
introduce the perfectly matched layer concept and to establish the notation
we exemplify the principle ideas for the 1D problem,

−u′′(x) − k2(x)u(x) = 0, x ∈ [−a,∞)

u(−a) = 1.

We assume that the local wave number k(x) is constant outside the bounded
interval Ω = [−a, 0], that is, k(x) = kext in Ωext = (0,∞). In this introductory
example we assume kext > 0.We denote the field in the exterior domain by usc

and demand that usc is outward radiating. This problem directly allows for a
restriction on the bounded interval Ω by imposing the Sommerfeld radiation
condition (2.2) at x = a, that is, u′(a) = ikextu(a). But, a local transparent
boundary condition is not available in higher space dimensions and so we
do not exploit this special property here. We write the above problem as a

1The PML method is related to the “spectral deformation theory” developed in the
early 70’s for the definition and the computation of quantum resonances, cf. Aguilar and
Combes [2], Hislop and Sigal [54].
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coupled interior–exterior domain problem

−u′′(x) − k2(x)u(x) = 0, x ∈ [−a, 0] (3.1a)

−u′′sc(ξ) − k2
extusc(ξ) = 0, ξ ∈ (0,∞) (3.1b)

u(0) = usc(0), (3.1c)

u′(0) = u′sc(0). (3.1d)

As in the above system of equations we will henceforth denote a coordinate
direction with an infinite range [0,∞) by ξ. The general solution in the
exterior domain is usc(ξ) = Aeikξ + Be−ikξ and with B = 0 the field is
outward radiating.

In a numerical simulation it is not possible to truncate the exterior domain
to a bounded domain Ω

(ρ)
ext = [0, ρ] with a zero boundary condition at ξ = ρ

(Neumann or Dirichlet), since then |A| = |B| which results in serious artificial
reflections. The principle idea of the PML method is to replace the scattered
field with a numerically more favorable field allowing for a truncation to a
bounded domain. In order to not affect the interior field solution we need to
perfectly match the interface conditions (3.1c), (3.1d).

Complex continuation is the mathematical tool for the construction of
such a perfectly matching field. Any solution in the exterior domain is defined
in the complex plane, usc(ξ̂) = Aeikξ̂ + Be−ikξ̂ with ξ̂ ∈ C. The complex
function usc(ξ̂) still satisfies the system of equations (3.1) with the complex
differentiation as derivatives.

The important observation is that the outgoing wave Aeikξ and the in-
coming wave Be−ikξ behave very differently under the complex continuation.
For Im(ξ̂) → ∞ the outgoing wave is exponentially damped, whereas the
incoming wave grows exponentially.

Let us regard a C1–path ξ̂(·) : [0,∞) → C of the form

ξ̂(ξ) =

∫ ξ

0

γ(s)ds,

with ξ̂′(ξ) = γ(ξ). For notation purposes we will use γ to label a path and
we will call γ the path parameter. The field usc,γ on a path is given by

usc,γ(ξ) = usc(ξ̂(ξ)), ξ ∈ [0,∞).

We assume Im(γ(ξ)) > σ0 with a positive number σ0. Then usc,γ decays
exponentially,

|usc,γ(ξ)| = |Aeikextξ̂(ξ)| = |A|e−kextIm(ξ̂(ξ)) ≤ |A|e−kextσ0ξ.
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x = −a ξ = 0 ξ = ρ
Re(ξ̂)

Im(ξ̂)

ξ̂γ1

ξ̂γ2

Figure 3.1: Principle idea of the PML method. The field in the exterior
domain ξ > 0 is oscillatory and numerically not feasible. To overcome this
one deforms the real axis path into a path in the complex plane (ξ̂γ1 or ξ̂γ2).
An outward radiating field is exponentially damped on the shown paths.

Figure 3.1 shows two admissible paths ξ̂γ1 and ξ̂γ2 .
With

u′sc,γ(ξ) =
d

dξ
usc(ξ̂(ξ)) =

d

dξ̂
usc(ξ̂(ξ)) · γ(ξ)

one verifies that the pair (u, usc,γ) solves the coupled interior–exterior prob-
lem

−u′′(x) − k2(x)u(x) = 0, x ∈ [−a, 0]

− 1

γ(ξ)
(

1

γ(ξ)
u′sc,γ(ξ))

′ − k2
extusc,γ(ξ) = 0, ξ̃ ∈ (0,∞)

u(0) = usc,γ(0),

u′(0) =
1

γ
u′sc,γ(0).

Here the interior field solution u(x) is still the exact solution. Since the field
usc,γ decays exponentially a truncation of the exterior domain to a bounded

domain Ω
(ρ)
ext = [0, ρ] seems appropriate. One indeed proves that the solution

(u
(ρ)
γ , u

(ρ)
sc,γ) of the truncated problem converges exponentially fast to the exact

solution in Ω with increasing thickness ρ of the absorbing sponge layer,

‖u− u(ρ)
γ ‖H1(Ω) ≤ Ce−iσ0ρ.

The truncation error of the PML method only depends on the endpoint ξ̂(ρ)
of the complex path. In numerics two paths ξ̂γ1 and ξ̂γ2 as shown in Figure 3.1
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with the same endpoint behave differently because the regularity of usc,γ

depends on the specific choice of the path. Improving the PML method
by choosing an optimal path parameter γ is widely discussed in literature,
Collino and Monk [31] and Bermúdez et al. [16]. As an alternative approach
towards an optimal PML we prefer to use a straight line in the complex plane
in combination with an adaptive finite element method to find an efficient
discretization on this path. This topic is detailed in a later subsection.

Remark 3.1 Typically one chooses a path ξ̂γ with

γ(ξ) = 1 + i
σ(ξ)

ω
,

where ω is the angular frequency of the underlying time-harmonic scattering
problem. The 1/ω term is motivated from the time-dependent Maxwell’s
equations where an attenuation factor necessarily exhibits a 1/ω dependency
in the frequency domain. However, from a numerical point of view the ω de-
pendency of the path ξ̂γ has the undesirable effect that the scaling invariance
of the time-harmonic Maxwell’s equations r → sr, ω → ω/s is broken.

3.1 Complex coordinate stretching

We now derive the PML system in 2D/3D. We start from the variational scat-
tering formulation Problem 2.2. This will directly yield a variational problem
well suited for a discretization with standard vectorial finite elements. In the
following we assume for simplicity that any cell T is the image of the infinite
reference prism Pref . As will become clear from the following, simply, doubly
and triply infinite reference bricks B

(1)
ref , etc. are treated in an obvious way.

For an infinite cell T let βT (η1, η2, ξ) denote the transformation of the
infinite reference prism Pref onto T. This defines the pulled back differential
form e

(T )
∗,sc. Hence on each unit prism the situation is very similar to the above

1D case. We have coordinates (η1, η2, ξ), where ξ is a distance coordinate
with infinite range ξ ∈ [0,∞). According to the 1D motivation we want to
use a complex stretching in the ξ direction on each prism. We assume that
e

(T )
∗,sc permits a complex continuation in ξ, but as we will see soon, we only

use that integral values as in the pole condition (2.3) allow for a complex
continuation. On the reference prism and with the notation of the previous
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section we define the stretching

Sref,h : Pref → Pref

(η1, η2, ξ) → (η1, η2, ξ̂γh
(ξ)),

where

ξ̂γh
(ξ) =

∫ ξ

0

γh(s)ds =

∫ ξ

0

σR(s) + hσI(s)ds.

Here σR/I : [0,∞) → [0,∞) are smooth, positive and monotone growing
functions. h is a homotopy parameter. We will use this homotopy parameter
to make the transition from a real value coordinate stretching to a complex
value coordinate stretching. Since h is a single scalar we are allowed to make
use of standard function theory of one complex variable in the following.

Let us first assume that h is a real and positive value. The stretching
on the reference prism defines a stretching for each cell T ⊂ Ωext. The ray
matching condition 2iii in Definition 2.1 for admissible geometries assures
that the infinite distance coordinate ξ is globally defined. Therefore we can
define a global stretching

Sh : Ω ∪ Ωext → Ω ∪ Ωext

r 7→
{

r, r ∈ Ω
βT ◦ Sref,h ◦ β−1

T (r), r ∈ T

which is continuous and C∞ on each cell. The stretching Sh is a simple
coordinate transformation when the homotopy parameter h is positive and
real. Hence we are allowed to apply transformation rules for differential
forms. Let esc,h, µh, etc. denote the pulled back quantities. Here we abandon
the dependence on the PML path parameter γ in the notation for a while.
In the interior domain Ω we have eh = e since Sh is the identity in Ω.
Accordingly (µ−1deref)|∂Ω = (µ−1deref)|∂Ω because the transformation Sh is
also the identity on ∂Ω and hence the tangential space to a boundary point
is not changed. The transformation rules (1.46), (1.47a) (1.48) imply that
∫

Ω

dϕh ∧ µ−1de − ω2ϕh ∧ εe +

∫

Ωext

dϕh ∧ µ−1
h deh,sc − ω2ϕh ∧ εheh,sc =

∫

∂Ω

ϕh ∧ µ−1deref

(3.2)

for all ϕ ∈ Hloc(curl,Ω∪Ωext). We emphasis that this equation is still equiv-
alent to the original scattering problem. Since ϕ was chosen arbitrarily and
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the transformation Sh gives rise to an isomorphism in Hloc(curl,Ω ∪ Ωext)
we can suppress a transformation of the test function ϕ and are allowed to
replace ϕh with ϕ in the above variational equation. This way all integral
expressions are holomorphic functions in the homotopy parameter h. Since
the above equation is valid for all h on the positive real axis we conclude that
the equation is also valid for h ∈ C with Re(h) > 0. We now fix h = i which
yields the PML equation.

It remains to incorporate the matching condition

(e − esc)|∂Ω = eref |∂Ω.

into the variational equation. Note that this matching condition involves only
tangential components of the electric field on ∂Ω. The coordinate stretching
does not affect the tangential field data of esc since the tangent space TrM
for a point r ∈ ∂Ω is not stretched. Hence the above Dirichlet matching
condition also holds true for esc replaced with ei,sc. Let Ieref denote a field
in Hloc(curl,Ωext) with support in a vicinity of ∂Ω which interpolates the
Dirichlet data of eref on ∂Ω. Surely, I is an extension operator of the Dirichlet
data space into Hloc(curl,Ωext). In the finite element context such an operator
is easily constructed. We define

eγ =

{
e in Ω,

ei,sc + Ieref in Ωext.

One checks that eγ ∈ Hloc(curl,Ω∪Ωext) provided that the complex stretched
field ei,sc exists in Hloc(curl,Ωext). From equation (3.2) one easily derives a
variational equation for eγ as given later for a truncated domain in Prob-
lem 3.1.

In the following we denote εγ = εi and µγ = µi. For ρ > 0 we define the

truncated exterior domain Ω
(ρ)
ext ⊂ Ωext,

Ω
(ρ)
ext = {r ∈ Ωext | β−1

T (r) ∈ P
(ρ)
ref },

where P
(ρ)
ref is the truncated prism with ξ–coordinate smaller ρ. The ray

matching condition guarantees that Ω
(ρ)
ext is a convex polyhedron.

Problem 3.1 (scattering problem with PML). Let a reference field eref ∈
Hloc(curl,Ωext) be given which satisfies Maxwell’s equations in the exterior of
an admissible domain Ω ⊂ R3,

∫

Ωext

dϕ ∧ µ−1deref − ω2ϕ ∧ εeref =

∫

∂Ωext

ϕ ∧ µ−1deref
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for all test functions ϕ ∈ H(curl,Ωext) with compact support. For a given
path ξ̂γ, a given thickness of the sponge layer ρ and with the notations above

we seek e
(ρ)
γ ∈ H(curl,Ω ∪ Ω

(ρ)
ext) such that

∫

Ω∪Ω
(ρ)
ext

dϕ ∧ µ−1
γ de(ρ)

γ − ω2ϕ ∧ εγe
(ρ)
γ =

∫

∂Ω

ϕ ∧ µ−1deref +

∫

Ω
(ρ)
ext

dϕ ∧ µ−1
γ dIeref − ω2ϕ ∧ εγIeref

(3.3)

for all ϕ ∈ H(curl,Ω ∪ Ω
(ρ)
ext).

The unique solvability of (3.3) was shown by Lassas and Somersalo [68, 69,
67] for homogeneous exterior domains and complex paths ξ̂γ which behaves
asymptotically like straight lines. Furthermore they proved an exponential
convergence of u

(ρ)
γ with growing ρ in the interior domain. Slightly more gen-

eral exterior domains are considered in Hohage, Schmidt and Zschiedrich [56],
where we showed that an outward radiating solution satisfying the pole con-
dition also permits a complex continuation with damping properties similar
to the homogeneous case. For more general exterior domain such as layered
media a convergence proof is still missing. However, with the help of Green’s
functions in layered media as constructed in Martin and Piller [73] one proves
that a complex continuation of the scattered field exists and exhibits the de-
sired damping properties.

The above PML variational equation (3.3) is well suited for a discretiza-
tion with standard, vectorial finite elements. We do not go into details about
finite elements in this thesis. For finite element aspects we refer to Demkow-
icz [37], Ainsworth [3] and Zaglmayr [116].

After the finite element discretization of the scattering problem the arising
linear system of equations calls for a numerical solution. For large scale
problems the discretized scattering problem is highly indefinite and standard
iterative methods suffer from extremely slow convergence rates.2 For the
numerical examples in this thesis we rely on the sparse LU solver Pardiso
by Schenk and Gärtner [97]. The development of an efficient linear solver
in combination with improved finite elements for high–frequency Maxwell’s
equations is a topic of vivid research [51, 81, 17].

2This is in contrast to other types of equations also stemming from Maxwell’s equa-
tions like eddy-current problems, electro/magneto-static problems or when computing an
implicit time step for the time-dependent Maxwell’s equations. In these cases efficient
preconditioners like multilevel methods (Beck et al. [13], Hiptmair et al. [52], Arnold et
al. [8]), algebraic multigrid methods (Beck [12], Reitzinger [92]) and domain decomposition
preconditioners (e.g. Toselli [108]) are available.
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3.2 Relation of the PML method to the pole

condition

The PML method relies on the decay of the complex deformed field eγ in
the exterior domain with an increasing distance ξ to the coupling boundary
∂Ωext. We argued that the splitting of the general solution to Maxwell’s
equations in the exterior domain into outgoing and incoming parts manifests
under a complex deformation: outgoing parts are damped, whereas incoming
parts are amplified. By demanding that eγ ∈ H(curl,R3) we filter out the
unwanted incoming waves.

With the Definition 2.2 of the pole condition we already have character-
ized outgoing and incoming waves. Our aim is to justify the PML method
by the pole condition. We want to show that an outgoing wave (in terms of
the pole condition) possesses a complex continuation which indeed exhibits
the desired exponential decay.

In the definition of the pole condition we regarded scalar functions of the
form

ue,ε,ϕ(τ) =

∫

Ωext

ϕ ∧ ετeτ .

ϕ is a test function and eτ is the field pulled back under a displacement
isomorphism Dτ . Here, we demand that ϕ is holomorphic and rapidly de-
creasing in the ξ direction, e.g. ϕ(·, ·, ξ) = p(ξ) exp(−c(ξ− ξ0)) ·φ(·, ·), where
p is a polynomial.

The pole condition states that the scalar function ue,ε,ϕ(τ) possesses a
Laplace transform Ue,ε,ϕ(τ)(s) which is holomorphic outside the strip

S = {s ∈ C | 0 ≤ Im(s) ≤ kmax,Re(s) ≤ 0},

where kmax > 0 is problem specific, cf. Figure 2.6 in the pole condition
section 2.2.

Additionally we make the conjecture that Ue,ε,ϕ(τ)(s) is holomorphic out-
side

Sκ = S \ {s ∈ C | |s| ≤ κ}, (3.4)

with κ > 0. The domain Sκ is sketched in gray on the left hand side of
Figure 3.2. We further assume that |Ue,ε,ϕ(τ)(s)| ≤M/|s| for large |s|. These
assumptions can be justified by using that e solves Maxwell’s equations in
the exterior domain.

To link the PML method to the pole condition we combine the displace-
ment isomorphism Dτ with the complex coordinate stretching Sγ . We restrict
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Ue,ε,ϕ Ueγ ,εγ ,ϕγ

Re(s)Re(s)

Im(s) Im(s)

κ

κIm(γ)
Sκ

γS κ

Figure 3.2: Holomorphic regions of Ue,ε,ϕ and Ueγ ,εγ ,ϕγ . Regions in which
the functions are not holomorphic are painted in gray. The gray dashed lines
indicate that the gray regions are unbounded. We demand that the func-
tion Ue,ε,ϕ satisfies the pole condition and is holomorphic outside Sκ (left).
The Laplace transform Ueγ ,εγ ,ϕγ which corresponds to the PML solution is
holomorphic outside the rotated domain γSκ (right).

the PML path to a straight line ξ̂(ξ) = γξ with |γ| = 1 and Re(γ), Im(γ) > 0.
We have that Sγ ◦Dτ = Dγτ ◦ Sγ and hence

Dγτ = Sγ ◦Dτ ◦ Sγ−1 .

This gives

ue,ε,ϕ(γτ) =

∫
ϕ ∧ εγτeγτ

=

∫
ϕ ∧

(
(εγ)τ (eγ)τ

)
γ−1

=

∫
ϕγ ∧ (εγ)τ (eγ)τ .

In the last line we used that the ϕ is analytic in ξ. We have derived that the
PML solution eγ satisfies

ueγ ,εγ ,ϕγ(τ) = ue,ε,ϕ(γτ), (3.5)

and we want to show that ueγ ,εγ ,ϕγ(τ) exponentially decays when ue,ε,ϕ(τ)
meets the pole condition. The Laplace transform of ueγ ,εγ ,ϕγ(τ) is given by

Ueγ ,εγ ,ϕγ (s) =
1

γ
Ue,ε,ϕ(

s

γ
). (3.6)
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Re(s)

Im(s)

Rp

Rm

S κ

C ǫ

Figure 3.3: Complex contours used in the Laplace inversion of the function
Ueγ ,ϕγ .

Since we assumed |γ| = 1 the Laplace transform Ueγ ,εγ ,ϕγ is just a rotated
version of Ue,ε,ϕ, see Figure 3.2. Hence, Ueγ ,εγ ,ϕγ is holomorphic in C \ γSκ

which contains the half space Re(s) > −κIm(γ).
For a ǫ > 0, we apply the Laplace inversion on an integration path as

indicated by the dashed line in Figure 3.3

ueγ ,εγ ,ϕγ(τ) = lim
R→∞

1

2πi

∫ Rp

Rm

Ueγ ,εγ ,ϕγ(s)e
sτds,

where Rm = −iR − κImγ + ǫ and Rp = iR − κImγ + ǫ. Repeating the
arguments which led to the Laplace inversion formula (2.4) in the non-PML
case, we are allowed to use the integration path Cǫ,

ueγ ,εγ ,ϕγ(τ) =
1

2πi

∫

Cǫ

Ueγ ,εγ ,ϕγ(s)e
sτds. (3.7)

Since this integral is absolutely convergent for τ > 0 we can perform the
estimate

|ueγ ,εγ ,ϕγ (τ)| ≤ e−(κImγ−ǫ)τ 1

2π

∫

Cǫ

|Ueγ ,εγ ,ϕγ (s)|e(Re(s)+κIm(γ)−ǫ)τ |ds|.

Fixing a τ∗ > 0 gives

|ueγ ,εγ ,ϕγ (τ)| ≤ e−(κImγ−ǫ)τ 1

2π

∫

Cǫ

|Ueγ ,εγ ,ϕγ (s)|e(Re(s)+κIm(γ)−ǫ)τ∗ |ds|,
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for τ > τ∗. This yields the desired estimate

|ueγ ,εγ ,ϕγ (τ)| ≤ Ce−(κImγ−ǫ)τ .

For a formal discussion of this estimate we regard the 1D case, so that eγ

is a scalar field and eγ(ξ) = e(γξ). We have

ueγ ,εγ ,ϕγ (τ) =

∫ ∞

0

ϕγ(ξ)εe(γ(ξ + τ))dξ.

In the context of the PML variational formulation (3.3) we see that the
contribution of the field eγ decays exponentially with the distance to the
boundary when tested with the same test function ϕγ.

Surely, to show rigorously the exponential convergence of the PML vari-
ational problem many further steps are required. For example, we need to
remedy the restriction that the test function ϕ is holomorphic and we need
to show that the exponential decay is uniform in all test functions. But this
is not in the scope of this thesis and we content ourselves with the gained
insight on the relation of the PML method to the pole condition.

3.3 Analysis of periodic grating problems

In the introductory 1D example at the beginning of this chapter we consid-
ered an exterior domain with a fixed wave number kext. For 2D/3D scattering
problems it is important that the PML method is efficient not only for a fixed
kext but for general kext with Re(kext) ≥ 0 and Im(kext) ≥ 0. To demonstrate
this we analyze the PML method for a periodic grating. For simplicity we
restrict ourselves to the scalar Helmholtz equation. We will pay special at-
tention to the case kext = 0.

A periodic grating is sketched in Figure 3.4. The scattering problem is
posed on [0, a] × R with computational domain Ω = [0, a] × [−b, 0]. The
exterior domain separates into two disjoint sets Ωext,− = [0, a] × (−∞,−b]
and Ωext,+ = [0, a] × [0,∞). We assume that the reference field exhibits a
Bloch periodicity,

uref(x+ a, z) = uref(x, z)e
ikxa.

We introduce the Sobolev space of Bloch periodic functions

H1
kx

(Ω) = {u ∈ H1(Ω) | uref(x+ a, z) = uref(x, z)e
ikxa}.
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Ω

(0,−b)

(a, 0)

ε+, µ+

ε−, µ−

Γ+

Γ−

u(a, z) = u(0, z)eikxa

Figure 3.4: Sketch of a periodic grating problem. The structure is peri-
odically repeated in the x–direction. The fields are Bloch periodic (quasi-
periodic) that is u(x+ a, z) = u(x, z)eikxa.

Γ− and Γ+ denote the lower and upper boundary of Ω. The scattering problem
in the DtN–operator formulation is to find u ∈ H1

kx
(Ω) such that

∫

Ω

∇ϕµ−1∇u− ω2εu−
∫

Γ−

ϕDtN−[u] −
∫

Γ+

ϕDtN+[u] =

∫

Γ−

ϕ(DtN−[uref ] + µ−1∂nuref) +

∫

Γ+

ϕ(DtN−[uref ] + µ−1∂nuref)

(3.8)

for all ϕ ∈ H1
kx

(Ω).
In the following we only regard the upper exterior domain and write

Ωext = Ωext,+, Γ = Γ+, and DtN = DtN+. We will explicitly construct the
DtN–operator for the case that µ and ε are positive real numbers. Formally
the DtN–operator is defined as

DtN : H
1/2
kx

(Γ) → H
−1/2
kx

(Γ)

v 7→ µ−1∂zusc,

where usc is the outward radiating solution to the exterior domain problem

−∇µ−1∇usc − ω2εusc = 0,

u|Γ = v.

To construct the DtN–operator we use that usce
−ikxx and v(x)e−ikxx are pe-

riodic functions in x with periodicity length a. With g = 2π/a we expand
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these fields into Fourier modes,

v(x) =

∞∑

j=−∞

vje
i(kx+jg)x,

usc(x, z) =
∞∑

j=−∞

usc,j(z)e
i(kx+jg)x

and conclude that the Fourier coefficients usc,j(z) satisfy the 1D problem

−u′′sc,j(z) − k2
jusc,j(z) = 0,

usc,j(0) = vj,

with kj =
√
ω2µε− (kx + jg)2. Except for a coordinate change we have

already discussed this equation as the introductory model problem at the
beginning of this chapter with kext = kj. The outward radiating solution is
given by

usc,j(z) = vje
i(kx+jg)xeikjz.

The exterior domain solution behaves very differently in z–direction depend-
ing on the sign of ω2µε− (kx + jg)2. We distinguish three situations:

i) Re(kz) > 0, Im(kz) = 0 (propagating mode): The Fourier mode is an
undamped and upward propagating plane wave.

ii) Re(kz) = 0, Im(kz) > 0 (evanescent mode): The Fourier mode decays
exponentially in the outward direction.

iii) Re(kz) = 0, Im(kz) = 0 (anomalous mode): The Fourier mode is con-
stant in the outward direction. In this case we have (kx + jg)2 = k2

0 so
that the wave propagates perpendicular to the outward direction.

Computing the normal derivative of usc on Γ, the DtN–operator becomes

DtN[
∞∑

j=−∞

vje
i(kx+jg)x] = µ−1

∞∑

j=−∞

(ikjvj)e
i(kx+jg)x.

It is more comfortable to write the action of the DtN–operator as a mapping
of the Fourier coefficients, (vj) 7→ aµ−1(ikjvj). More precisely, the Fourier

series expansion defines an isomorphism between H
1/2
kx

(Γ) and the sequence

space h1/2 defined by

h1/2 = {(cj) | cj ∈ C,
∞∑

j=−∞

(1 + |j|)|cj|2 <∞}
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with norm ‖(cj)‖h1/2 = (
∑

(1+ |j|)|cj|2)1/2. The dual space of h1/2 is denoted
by h−1/2. In the following we denote the DtN–operator as a mapping h1/2 →
h−1/2,

DtN[(vj)] = aµ−1(ikjvj).

Here we understand the series on the right hand side as the functional (wj) ∈
h1/2 7→ aµ−1

∑
ikjvjwj. The factor a is the periodicity length and is needed to

assure that (DtN[(vj)])(wj) =
∫
Γ
w(x)DtN[v(x)], where w(x), v(x) ∈ H1/2(Γ)

correspond to the Fourier series (wj) and (vj), respectively. For the sake of
a simpler notation we set a = 1 and µ = 1.

Anomalous modes do not necessarily affect the unique and stable solv-
ability of the above scattering problem (3.8). It is sufficient that the DtN−–
operator or the DtN+– operator has no anomalous mode. The proof is sim-
ilar to Proposition 3 in Hohage et al. [56]. One uses that a solution to the
above problem (3.8) with u = 0 and ∂nu = 0 on one part of the boundary
Γ+ or Γ− is necessarily zero everywhere. Furthermore unique solvability is
also guaranteed when Im(ε) is strictly positive on a sub-domain within Ω.

We now want to study the affect of the PML method on the interior field
solution u. Following Lassas et al. [68] and Hohage et al. [57] we interpret
the application of the PML method as a perturbation of the DtN–operator.
We define the perturbed DtN–operator DtN(ρ)

γ in the same way as the orig-
inal DtN–operator but with the exterior domain problem replaced by the
truncated PML system. As shown in [57] the error ‖u − u

(ρ)
γ ‖H1

kx
(Ω) is then

proportional to the error of the DtN–operator ‖DtN − DtN(ρ)
γ ‖.

The separability of the problem into Fourier modes is not affected by the
PML method since the complex continuation only acts on the z–coordinate.
To define the DtN(ρ)

γ –operator we solve for each Fourier mode j the problem

−1

γ
(
1

γ
u′γ,j)

′ − k2
juγ,j =0,

uγ,j(0) =vj ,

uγ,j(ρ) =0.

(3.9)

Let ẑe = ẑγ(ρ) denote the endpoint of the PML path. The solution to this
problem is given by

uγ,j(z) = Tje
ikj ẑ(z) +R

−ikj ẑ(z)
j

with

Tj =
−vje

−ikj ẑe

eikj ẑe − e−ikj ẑe
,

Rj =
vje

+ikj ẑe

eikj ẑe − e−ikj ẑe
.
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This gives

DtN(ρ)
γ [(vj)] = (ikjvjp

(ρ)
γ,kj

)

with the perturbation factor

p
(ρ)
γ,kj

= −e
ikj ẑe + e−ikj ẑe

eikj ẑe − e−ikj ẑe
.

Note that DtN(ρ)
γ needs a careful definition for an anomalous mode since the

denominator of the perturbation factor is zero in this case. This is done by
the limit kj → 0 :

(DtN(ρ)
γ [(vj)])l = ivl lim

ǫ→0
(ǫp(ρ)

γ,ǫ)

= −vl
1

ẑe
.

We now want to estimate the error ‖DtN−DtN(ρ)
γ ‖. In the operator norm

we have

‖DtN − DtN(ρ)
γ ‖ = sup

‖(vj)‖=1

( sup
‖(wj)‖=1

|
∑

j

ikjvj(1 − p
(ρ)
γ,kj

)wj|).

With |kj| ∼ j, we immediately obtain the estimate ‖DtN − DtN(ρ)
γ ‖ ≤

C maxj |1 − p
(ρ)
γ,kj

|. But this estimate is too rough to allow for a bound of

anomalous modes. We define δ
(ρ)
γ,kj

= 1−p(ρ)
γ,kj

and proceed with the estimates

|
∑

kjvjδ
(ρ)
γ wj | ≤ |

∑

|kj|≤1

kjvjδ
(ρ)
γ,kj

wj| + |
∑

|kj|>1

kjvjδ
(ρ)
γ,kj

wj|

≤
(

max
|kj |≤1

|kjδ
(ρ)
γ,kj

| + C max
|kj |>1

|δ(ρ)
γ,kj

|
)
· ‖(vj)‖ · ‖(wj)‖,

and we obtain ‖DtN − DtN(ρ)
γ ‖ ≤ max|kj |≤1 |kjδ

(ρ)
γ,kj

| + C max|kj |>1 |δ(ρ)
γ,kj

|. As-

suming Im(ẑe) > 1 and with δ
(ρ)
γ,kj

= 2eikj ẑe/(eikj ẑe − e−ikj ẑe) we estimate

max
|kj |≤1

|kjδ
(ρ)
γ,kj

| ≤ max
|kj|≤1

∣∣∣
2kj

eikj ẑe − e−ikj ẑe

∣∣∣e−Im(kj ẑe)

≤ C
1

|ẑe|
max
|kj |≤1

e−Im(kj ẑe).

The estimate of the term max|kj|>1 |δ(ρ)
γ,kj

| is straightforward and we get the
error bound

‖DtN − DtN(ρ)
γ ‖ ≤ C

(
1

|ẑe|
max
|kj |≤1

e−Im(kj ẑe) + max
|kj |>1

e−Im(kj ẑe)

)
(3.10)
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and hence

‖u− u(ρ)
γ ‖H1Ω ≤ C

(
1

|ẑe|
max
|kj |≤1

e−Im(kj ẑe) + max
|kj |>1

e−Im(kj ẑe)

)
(3.11)

If no anomalous mode is present that is, kj 6= 0 for all j ∈ Z, we observe an
exponential convergence

‖DtN − DtN(ρ)
γ ‖ ≤ max

j
e−Re(kj)Im(ẑe)−Im(kj)Re(ẑe).

To observe an exponential convergence for ρ → ∞ along a PML path ẑγ it
is necessary that Re(ẑγ(ρ)), Im(ẑγ(ρ)) → ∞.

As a mode approaches an anomalous mode, that is kj → 0, the exponen-
tial convergence degrades. Only the 1/ẑγ(ρ)–factor in the error bound (3.10)
guarantees convergence of the PML method.

Remark 3.2 For the definition of the DtN(ρ)
γ –operator we used the exte-

rior domain problem (3.9) with zero Dirichlet boundary condition at ẑγ(ρ).
Alternatively, it is possible to pose a Sommerfeld like boundary condition
∂nuγ(ρ) = ik̃uγ(ρ) at the outer boundary of the PML sponge layer. Using
k̃ = kj the PML system yields the exact transparent boundary condition for
the jth Fourier mode. Especially, with a zero Neumann boundary condition
∂nuγ(ρ) = 0 the anomalous mode is treated exactly.

Unfortunately, for Maxwell’s equations it is generally not possible to treat
anomalous modes exactly by imposing appropriate boundary condition on
the outer PML boundary. For twofold periodic problems or for 2D problems
with a conical light incidence (ky 6= 0) several anomalous modes may appear.
It is only possible to treat one of same exactly for all polarization of the
scattered field. Therefore it is indeed necessary that the PML method copes
with anomalous modes.

Regularity of the PML solution

The truncation error of the PML system (3.3) only depends on the chosen
end-point ξ̂(ρ) of the PML. Besides this truncation error the discretization
error within the PML also affects the interior field solution. In a finite element
approximation this discretization error is related to the regularity of the
solution uγ on the path ξ̂. Therefore we study the derivatives of uγ along

a path ξ̂(ξ). Since the notation is nasty for higher derivatives we restrict
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ourselves to the analysis of the first derivative which is given by

u′γ(ξ) =
∑

j

vjikj ξ̂
′(ξ)eikj ξ̂(ξ).

Let Jp denote the set of propagating and anomalous modes and let Je denote
the set of evanescent modes. Since we only consider positive scalar material
parameters µ > 0 and ε > 0 we are allowed to introduce κj ≥ 0 with kj = κj

for j ∈ Jp and kj = iκj for j ∈ Je. We recall that kj =
√
ω2µε− (kx + jg)2

which gives κj ∼ |j|. We start with a trivial estimate of |u′γ(ξ)| for ξ ≥ 0,

|u′γ(ξ)| ≤
∑

j∈Jp

|vj |κj|ξ̂′(ξ)|e−κjIm(ξ̂(ξ)) +
∑

j∈Je

|vj|κj |ξ̂′(ξ)|e−κjRe(ξ̂(ξ))

≤ C‖(vj)‖h2|ξ̂′(ξ)|
(

max
j∈Jp

e−κjIm(ξ̂(ξ)) + max
j∈Je

e−κjRe(ξ̂(ξ))

)
,

(3.12)

where we assumed that the Dirichlet data (vj) have regularity in H2
kx

(Γ) to
make the estimate
∑

j

|vj|κj ≤ C
∑

j

|vj|(1 + |j|)2 · 1

1 + |j|

≤ C
(∑

j

|vj |2(1 + |j|)4
)1/2(∑

j

1

(1 + |j|)2

)1/2

≤ C‖(vj)‖h2 .

This is not a severe assumption because one shows that uγ|Γ ∈ H∞
kx

(Γ) when
the scatterer within the computational domain does not intersect the bound-
ary Γ. This can be enforced in any case by shifting the coupling boundary.

The above estimate (3.12) tells us that we observe an exponential decay
of the derivative when κj 6= 0 for all j. However, we are not satisfied with
the above estimate (3.12) for the following reason: As κj approaches zero the
estimate (3.12) only guarantees boundedness of the derivative u′γ(ξ). But as
we learned in the previous section a small value κj ∼ 0 necessitates a large
PML thickness. To keep the number of unknowns small in an adaptive finite
element discretization requires a successive “gain” of regularity with growing
ξ which we cannot prove uniformly for κj ≥ 0 by the given estimate.

We now want to sharpen up our estimate of the derivative u′γ(ξ) for small
values of κj. We have

|u′γ(ξ)| ≤
∑

j∈Jp

|vj |κj|ξ̂′(ξ)|e−κjIm(ξ̂(ξ)) +
∑

j∈Je

|vj|κj |ξ̂′(ξ)|e−κjRe(ξ̂(ξ))

≤ C‖(vj)‖l1|ξ̂′(ξ)|
(

max
j∈Jp

κje
−κjIm(ξ̂(ξ)) + max

j∈Je

κje
−κjRe(ξ̂(ξ))

) (3.13)
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The l1–norm of the series (vj) is bounded by the estimate

∑

j

|vj| =
∑

j

|vj |(1 + |j|) 1

1 + |j| ≤ C‖(vj)‖h1.

To derive a uniform bound for κj ≥ 0 from inequality (3.13) we compute
that

max
κ≥0

κe−κα =
1

eα
.

for any α > 0. Using this in inequality (3.13) with α = Im(ξ̂) and α = Re(ξ̂)
gives

|u′γ(ξ)| ≤ Cǫ
|ξ̂′|

max{Re(ξ̂), Im(ξ̂)}
‖(vj)‖h1 ≤ Cǫ

|ξ̂′|
|ξ̂|

‖(vj)‖h1 . (3.14)

3.4 Discussion of various PML paths

The convergence property (3.11) and the regularity estimation (3.14) have
important consequences for the numerics in the presence of an anomalous
mode. Let us assume that we want to keep the PML error below a threshold
tol > 0. Since in the presence of an anomalous mode the convergence rate of
the PML method in equation (3.11) degrades to 1/|ξ̂| we are forced to select
a PML thickness ρ > 0 so that |ξ̂(ρ)| ∼ 1/tol. For example to bound the
error to tol = 10−4 the length |ξ̂(ρ)| is approximately equal to ten thousands
of wavelengths!

To handle this numerically the PML solution u
(ρ)
γ (·, ξ) must allow for an

efficient approximation within the truncated domain Ω
(ρ)
ext. At this point the

regularity of the PML solution u
(ρ)
γ (·, ξ) for ξ ∈ [0, ρ] comes into play. The

smaller the derivatives of u
(ρ)
γ (·, ξ) with respect to ξ the less discretization

points are needed. We see the need for a treat–off between the thickness ρ of
the PML and the regularity of u

(ρ)
γ (·, ξ) in [0, ρ]. We will discuss this issue for

various PML paths. In the following discussion we consider the regularity
estimate (3.14) as a sharp estimate.

Straight line ξ̂(ξ) = γξ

We first discuss the straight line path ξ̂(ξ) = γξ with γ = (1 + i)/
√

2.
Similar to the estimate of the first derivative in equation (3.14) one computes
|∂n

ξ u(ξ)| ≤ Cn/|ξ|n. We want to develop a simple heuristics for the choice
of the mesh width h(ξ) in dependency of ξ ∈ [0, ρ] as required for a finite
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element discretization. The local discretization error for the kth order finite
element method is proportional hk+1|∂k+1

ξ u(ξ)|. We therefore demand that

h(ξ) ∼ |∂k+1
ξ u(ξ)|−1/(k+1) ∼ |ξ|.

Hence we are allowed to use a discretization {ξ0 = 0, . . . , ξN = ρ} of the
interval [0, ρ] so that the number of discretization points only grows logarith-
mically with ρ. Since ρ ∼ 1/tol we conclude that the number of discretization
points is proportional to − ln(tol). In a combination with an adaptive finite
element method we expect an exponential convergence of the PML method
with the number of unknowns.

Polynomial paths ξ̂(ξ) = (ae + iσξn)ξ

These paths are discussed for example in Collino [30]. The motivation for
using polynomial paths is to increase the damping of modes with smaller
propagation in the outward direction. However, this extra damping is paid
with regularity losses of the evanescent modes. For an evanescent mode
kj = iκ the PML solution still exponentially decays (uγ,j(ξ) ∼ e−κξeiκξn+1

)
but exhibits higher oscillations as ξ increases. For κj → 0 it follows from the
regularity estimate (3.14) that the regularity is not improved with growing
ξ. Hence one is not allowed to use a coarser grid for large distances ξ. Since
κj → 0 requires to use a PML thickness of ρ ∼ tol−1/(n+1). We expect the
need for Ndof ∼ tol−1/(n+1) discretization points.

Paths with blow–ups

PML paths ξ̂(ξ) which reach infinity for a finite value ξ are used in Hugonin
and Lalanne [58] and Bermudez et al. [16]. Bermudez proposed a path with
ξ̂(ρ) = ae + i∞ for a finite value ρ > 0 and a method parameter ae > 0. With
this choice of the PML path evanescent modes are not treated correctly
since Re(ξ̂(ρ)) does not reach infinity, cf. equation (3.10). To damp the
evanescent modes below a given threshold one must either use a sufficiently
large computational domain or increases the parameter ae.

Hugonin and Lalanne [58] also use PML paths which reach infinity for
a finite value ρ > 0. Hugonin and Lalanne aim at the usage of the rigorous
coupled wave analysis method (RCWA) which rely on the expansion of the
field into a Fourier series. The usage of a Fourier series necessitates the
transformation on a finite domain which is numerically treated as a periodic
domain. The path proposed by Hugonin and Lalanne lie asymptotically
on a line in the complex plane with a non-linear parameterization so that
ξ̂(ξe) = ∞+i∞. Evanescent and propagating modes are transformed to fields
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uj(ξ) with finite norm in H(curl,Ω∪Ω
(ρ)
ext). However for kj ∼ 0 the regularity

of the transformed field is affected as can be concluded from our regularity
estimate (3.14).

3.5 A practical algorithm

As proposed by the author in [120, 117] we avoid the choice of a sophisticated
PML path. Instead, we use the straight line ξ̂ = (1 + iσ)ξ as the PML
path in combination with a finite element discretization which adapts well to
the various situations one encounters in scattering problems. The numerical
parameters are the thickness ρ of the PML layer and the discretization points
{ξ0 = 0, . . . , ξN = ρ}.

Chen et al. [26, 10, 25] fixed in an a priori way the parameter ρ and
used a standard adaptive finite element strategy to determine an accurate
discretization in the ξ–direction by an a posteriori error estimator.

As in [120, 117] we propose a different strategy. Since the field is smooth
in ξ–direction we avoid a costly a posteriori mesh control in the exterior
domain. Instead we determine the discretization points in the ξ–direction
by an a priori strategy discussed later in this section. As we learned in the
sections before, the required thickness ρ of the PML layer depends sensitively
on the physical situation. We therefore want to determine automatically the
required PML thickness by an a posteriori criterion. In the following we
assume that the interior domain is discretized with finite elements of order
l. We want to determine the PML parameters ρ and {ξ0 = 0, . . . , ξN = ρ}.
Our algorithm for an PML consists of the following building blocks:

1. Find goal accuracy: We analyze the interior domain discretization on
the coupling boundary to estimate the discretization error ǫint in the
interior domain. Furthermore the minimum mesh width hΓ on the
coupling boundary is extracted. We want to bound the PML error tol
by the discretization error in the interior domain that is, tol < ǫint.

2. Find PML thickness ρ: This parameter has to be chosen large enough
so that the truncation error is smaller than tol. The required thickness
ρ is not known a priorily. We choose ρ such that tol ≤ e−2κminρ, where
κmin is the weakest damping factor which is determined iteratively as
explained later in Step 4. As the initial guess we set κmin equal to
the minimum wave number kmin in the exterior domain. Hence a wave
which travels perpendicular to the coupling boundary is sufficiently
damped by this initial guess.
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3. Find discretization points: We determine the discretization points {ξ0 =
0, . . . , ξN = ρ} heuristically in the following way. The field uγ(·, ξ) is
a holomorphic function in the ξ direction and we assume that uγ(·, ξ)
can be written as

uγ(·, ξ) =

∫ kmax

0

Uγ(·, k)eik(1+iσ)ξdk +

∫ ∞

0

Uγ(·, κ)e−κ(1+iσ)ξdκ.

The first integral corresponds to propagating waves in the outward
ξ–direction and the second integral corresponds to evanescent waves.
For periodic grating problems we have verified such a representation
formula, with the integrals replaced by sums. For the general case we
remark that the above equation can be motivated from equation (2.4)
which we derived by an inverse Laplace transform, when we discussed
the pole condition.

It is not necessary to take the whole evanescent spectrum κ ∈ [0,∞)
into account, because modes with a large damping factor κ cannot be
resolved by the mesh in the interior domain. Hence we do not allow
for a smaller mesh width in the exterior domain than the minimum
mesh width hΓ on the coupling boundary. The cutoff factor κmax is
determined from the condition that the H1([0, ρ]) approximation error
of a function e−κξ with κ ≤ κmax is smaller than tol on a uniform mesh
with mesh width hΓ.

Let us regard the 1D reference problem

−v′′ + k̃2v = 0,

v(0) = 1,

v′(ρ) = 0

for k̃ ∈ [0, kmax] ∩ i[0, κmax]. To fix the discretization points {ξ0 =
0, . . . , ξN = ρ} we demand that the H1([0, ρ]) discretization error of the
above 1D reference problems is smaller than tol for all k̃ ∈ [0, kmax] ∩
i[0, κmax]. Practically, we solve the above 1D problem with an adaptive
mesh refinement for a few number of test values for k̃. This provides
us the desired discretization points.

4. A posteriori accuracy check: After we have solved the discrete scat-
tering problem we check if the field is sufficiently small on the outer
boundary of the PML. In our implementation this is done by a compar-
ison of the finite element coefficients on the outer PML boundary and
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Figure 3.5: Plane material interface: Computed reflectivity. c−,0(α) de-
notes the 0th order reflected diffraction mode in dependence on the incident
angle α.

the coupling boundary. To each finite element coefficient cj attached
to a boundary patch on the coupling boundary corresponds a finite
element coefficient cJ on the outer PML boundary. We demand that
|cJ |/|cj| ≤ tol. If the damping criterion is not satisfied we decrease the
weakest damping factor in Step 2 by a fixed rate κmin → κmin − δκ and
go back to Step 2. In our implementation we set δκ = kmin/10, where
kmin is the initial choice for κmin as described in Step 2. If κmin = 0 is
reached an anomalous mode is present and the iteration stops.

3.6 Numerical examples

It is a major feature of the adaptive PML algorithm that the PML thick-
ness and the discretization within the PML are determined accordingly to
the quality of the finite element solution in the interior domain. Therefore
we want to verify by numerical experiments that the algorithm behaves effi-
ciently under a successive refinement of the interior domain even in critical
situation when an anomalous mode appears.
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3.6.1 Plane material interface

We regard a plane material interface at z = 0. The material properties in
the lower half space are µ− = 1 and ε− = 4. This gives a refractive index
n− = 2 in the lower domain. In the upper half space we assume µ+ = 1
and ε+ = 1 and hence n+ = 1. As incoming fields we use TE/ TM–polarized
plane waves with vacuum wave number equal to one and coming from below
with incident angles (α, ϑ). Precisely, we have

kinc =
2πn−

λ0




− cos(ϑ) sin(α)
sin(ϑ) sin(α)

cos(α)


 . (3.15)

The two orthogonal polarizations ETM and ETE are given by

ETE =




sin(ϑ)
cos(ϑ)

0


 , ETM =




cos(ϑ) cos(α)
− sin(ϑ) cos(α)

sin(α)


 . (3.16)

The analytic solution to this problem is given by the Fresnel equations.
This configuration is periodic in the x–direction with any period and is

invariant in the y–direction. We use a cross-section computational domain
Ω = [−1, 1] × {0} × [−2, 2] with periodic boundary conditions in the x–
direction. In the following we fix ϑ = 20 ◦ and we vary the angle α from 0 ◦

to 40 ◦. For α ≥ 30 ◦ one observes a total internal reflection of the incoming
plane wave at the material interface. An anomalous mode appears in the
upper half space at the critical angle αC = 30 ◦.

Figure 3.5 shows the intensity |c−,0|2 of the computed 0th order reflected
mode. The critical angle αC is marked by the dotted vertical line. As ex-
pected we observe a total reflection for angles larger than the critical angle.
In the computation we used a fixed finite element grid in the interior domain
and fourth order finite elements.

The PML discretization {ξ0 = 0, . . . , ξN = ρ} was steered by our adaptive
PML method with a tolerance requirement tol = 1.2 · 10−3. Figure 3.6 shows
the number of grid points N in the lower and upper exterior domain. In the
upper domain the PML thickness varies in the range from 1.8 wavelengths to
circa 500 wavelengths at the critical angle αC (not plotted). The number of
mesh points in the PML varies only in the range from 4 points to 18 points
(Figure 3.6).

In Figure 3.7 we compared the computed 0th order mode c0,j with the
exact solution. The error has its maximum errmax = 4 · 10−3 at the critical
angle αC . This seems to be a discouraging result because our aim was to
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Figure 3.6: Plane material interface: Number of mesh points, N, in the
PML in dependence on the incident angle α. The PML is steered individually
for the upper and lower exterior domain.
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Figure 3.7: Plane material interface: Error of the computed reflected
diffraction mode c−,0. We observe a maximum error errmax = 4 · 10−3 at the
critical angle.
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Figure 3.8: Plane material interface: Convergence of the reflected diffrac-
tion mode c−,0 with the finite element mesh refinement level. In this case
we fixed the PML discretization and refined the interior finite element mesh
only. At the critical angle αC one observes the theoretical given convergence
rate of the second order finite element discretization (dotted line).

construct an algorithm which shows no convergence degradation at the crit-
ical angle. But the error at the critical angle remains below the prescribed
tolerance. The higher accuracy for α 6= αc can be explained as follows:

For α 6= αC the PML method converges exponentially with the layer
thickness. Since we increase the layer thickness by finite intervals we typi-
cally use a larger layer as needed to satisfy the prescribed tolerance condi-
tion. Only for α = αC the PML truncation error directly corresponds to
the prescribed tolerance. In addition, we observed a better convergence than
theoretically expected for α 6= αC . This “super”–convergence (the problem
and the functional c−,0 are smooth) is not observed at the critical angle αC .
In Figure 3.8 we verified the convergence of the finite element solution at
the critical angle αC . We fixed a sufficiently large PML discretization and
studied the convergence of a second order finite element discretization under
a refinement of the finite element mesh in the interior domain. The theoret-
ical convergence rate is given by the dotted line. The convergence rate is in
a good agreement with the theoretical given convergence rate of the second
order finite element discretization.
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Figure 3.9: Photomask with periodic line structure. The geometry is
invariant in the y–direction and periodic in the x–direction with period px =
400. The lower domain is glass with refractive index ng = 1.56306. The
upper domain consists of air. The line placed on top of the glass has a height
h = 65.4, widths w1 = 200, w2 = 191 and refractive index nl = 2.52+0.596i.

3.6.2 Periodic line mask

This realistic example is taken from Burger et al. [20]. We refer to Figure 3.9
for the definition of the material properties and the geometry configuration.
The structure is illuminated from below by TE/ TM–polarized plane waves
with vacuum wavelength λ0 = 193, and incident angles (α, ϑ), cf. equa-
tions (3.15) and (3.16) in the previous paragraph.

In the following we fix ϑ = 20 ◦ and vary the angle α from −25 ◦ to 25 ◦.
We denote the wave number in the lower and upper domains by k− and k+,
respectively. An anomalous mode appears in the upper/lower domain when

kinc,x(αC) + j
2π

px

=
√
k2

+/− − k2
inc,y(αC)

for some j ∈ N and a critical angle αC .
Figure 3.10 shows the computed intensity of the transmitted 0th order

diffraction mode c+,0. In the computation we used a fixed finite element grid
in the interior domain and quadratic finite elements. Incident angles αC

which give rise to an anomalous modes are marked by dotted, vertical lines
and are contained in the sampling grid for α. As expected the transmission
behaves non-smooth at these points.

The PML discretization {ξ0 = 0, . . . , ξN = ρ} was steered by our adap-
tive PML method with a tolerance requirement tol = 3 · 10−3. As shown in
Figure 3.11 the thickness of the PML layer varies between 1.7–3.8 · 103 wave-
lengths. The number of discretization points N varies only in the moderate
range from 8 to 27 (not plotted).
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Figure 3.10: Periodic line mask: Transmission in dependence on the
incident angle α. c+,0 denotes the 0th order transmitted diffraction mode.
Incident angles which give rise to an anomalous modes are marked by dotted,
vertical lines.
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Figure 3.11: Periodic line mask: PML thickness. The PML thickness is
chosen individually for the upper (air) and lower (glass) exterior domain. As
an anomalous mode appears a huge PML is required.
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Figure 3.12: Periodic line mask: Computed 0th order transmitted diffrac-
tion mode c+,0 compared to a reference solution cref . The reference solution is
obtained on a larger computational domain with higher finite element degree
and smaller mesh width.

To verify the accuracy we computed the same results on a larger computa-
tional domain with third order finite and halved mesh width, see Figure 3.12.
Again, we observe the maximum errors at the position of the anomalous
modes but the error remains below the prescribed tolerance. Furthermore
the error is not so drastically increased at the critical angles as in the previous
example with a smooth solution.

After focusing on the behavior of the adaptive PML method at the patho-
logical cases with an anomalous mode we also want to study the performance
of the method in a non-critical situation.

Figure 3.13 gives the convergence of the method for α = 0 ◦. We used a
second order finite element discretization. The grid in the interior domain
was uniformly refined whereas the PML discretization was steered by our
adaptive PML method. The reference solution was obtained with third or-
der finite elements with a finer mesh on an enlarged computational domain.
From Figure 3.13 we see that the finite element convergence under an uni-
form mesh refinement is not affected by the adaptive PML method. This
demonstrates the accuracy of the method. To check the efficiency of the
adaptive PML method we regard Figures 3.14 and 3.15. Theoretically we
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Figure 3.13: Periodic line mask: Convergence at α = 0 ◦ for second
order finite discretization with refinement level l. The finite element mesh
was uniformly refined in the interior domain. The PML discretization was
steered fully automatically. The dotted line corresponds to the expected
convergence behavior of the interior finite element discretization.
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Figure 3.14: Periodic line mask: PML thickness for non-critical incidence
angle α = 0 ◦.
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Figure 3.15: Line mask example: Number of PML discretization points, N,
for non-critical incidence angle α = 0 ◦. The dotted line gives the theoretically
expected optimum grow.

expect a linear grows of the PML thickness with the refinement level. Indeed,
the thickness as determined by the adaptive PML method grows moderately
with the refinement level (Figure 3.14).

More important for the efficiency is the number N of discretization points
used in the PML. With an uniform refinement of the interior domain we
also expect an uniform refinement of the PML discretization to improve the
finite element discretization error within the PML. Therefore, the number of
discretization points in the PML is allowed to grow like N ∼ 2l, with the
refinement level l. As can be seen in Figure 3.15 the number of discretization
points in the PML remains even smaller than expected in the beginning of
the refinement process.



Chapter 4

Exterior domain evaluation

formula for PML solutions

A computation of the near–field only is often of little practical interest. In-
stead one needs to know the field in the exterior domain in a large distance
to the scatterer. Since this distance typically measures hundreds or more
of wavelengths it is not a choice to increase the computational domain size
so that it contains the evaluation point. Figure 4.1 shows two typical situa-
tions in 2D. We assume that the material parameters µ and ε are constant
scalars above the hyperplane z = 0. Below this hyperplane the structure has
a complicated geometry.

The famous Rayleigh–Sommerfeld diffraction integral [47, p. 46] pro-
vides an evaluation formula for points with z > 0. The Rayleigh–Sommerfeld
diffraction integral only involves the field data on the hyperplane z = 0. This
integral representation has two numerical disadvantages. Firstly, the inte-
grand decays only very slowly with the distance r = |(x, y, 0)|. Secondly, the
integrand is oscillatory in r. Often a truncated integration volume is used,
see for example Veerman et al [109] and Shen and Wang [101]. This may
allow for fast integration methods but due to the slow decay of the integrand
a truncation is awkward. In [123] the author proposed a new way to evalu-
ate the Rayleigh–Sommerfeld diffraction formula which relies on a complex
deformation of the integration path. As in the PML method the oscillatory
factor of the integrand is transformed into an evanescent function making
the integral feasible for standard integration method. Not surprisingly, the
so complexed stretched Rayleigh–Sommerfeld diffraction integral involves the
field data within the PML.

In the next section we will derive a PML based exterior domain evalu-
ation formula, which covers the Maxwell’s case as well and which is more
general than the Rayleigh–Sommerfeld diffraction integral. The Rayleigh–

89
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z

(xp, zp)

Figure 4.1: Exterior domain evaluation. This figure shows two typical
situations. The evaluation point (xp, zp) lies above the scatterer. We assume
homogeneous materials above the hyperplane z = 0. The structure below
this hyperplane is arbitrary.

Sommerfeld diffraction integral, or Stratton-Chu diffraction integral for the
Maxwell case, is afterwards discussed in greater details.

4.1 Exterior domain evaluation formula based

on Green’s tensors

Let us regard Figure 4.2. The computational domain is admissible in the
sense of Definition 2.1, so that there exists a globally defined, generalized
distance coordinate ξ in the exterior domain. The dashed line in Figure 4.2
indicates a ξ = ρ > 0 isoline.

The exterior domain is split into two sub-domains Ωext,1 and Ωext,2. In
Figure 4.2, the common interface Ωext,1 ∩ Ωext,2 is shown by the bold black

lines. In the following Ω
(ρ)
ext denotes the bounded domain Ω

(ρ)
ext ⊂ Ωext enclosed

by the ξ = ρ hypersurface. Further, we define the bounded domains Ω(ρ) =
Ω ∪ Ω

(ρ)
ext, Ω

(ρ)
ext,1 = Ωext,1 ∩ Ω

(ρ)
ext and Ω

(ρ)
ext,2 accordingly.

Let us assume that an outward radiating Green’s tensor gxp is available

for an evaluation point xp ∈ Ω
(ρ)
ext,1 within Ωext,1, that is

dµ−1dgxp(x) − ω2εgxp(x) = δ(x − xp)1, x ∈ Ωext,1. (4.1)

In the situation as depicted in Figure 4.2, the domain Ωext,1 is a stack of
three layers, so that the Green’s tensor can be computed by means of the
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Figure 4.2: Exterior domain evaluation with partially known Green’s
tensor. We assume that the Green’s tensor corresponding to an evaluation
point (xp, zp) is known in the sub-domain Ωext,1 of the exterior domain. The
evaluation formula involves field data on the interface Ωext,1 ∩ Ω and on the
interface Ωext,1∩Ωext,2 (black lines). On the latter interface complex deformed
boundary integrals are evaluated which uses the PML solution.

Sommerfeld integrals as explained in Section 1.2.4.
We now apply the wedge product with the scattered field esc on both

sides equation (4.1) and integrate over Ω
(ρ)
ext,1. We have

esc(xp) =

∫

Ω
(ρ)
ext,1

esc ∧
(
dµ−1dgxp − ω2εgxp

)
,

and applying the partial integration formula (1.45) we get

esc(xp) =

∫

Ωext,1

desc ∧ µ−1dgxp − ω2esc ∧ εgxp−
∫

∂Ω
(ρ)
ext,1

esc ∧ µ−1dgxp

Partially integrating once more yields

esc(xp) =

∫

∂Ω
(ρ)
ext,1

µ−1desc ∧ gxp − esc ∧ µ−1dgxp. (4.2)

To bring the PML solution into play, we evoke the stretching automorphism

Sγ : Ωext → Ωext

(·, ·, ξ) 7→ (·, ·, γξ),
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for γ ∈ R+. This mapping gives rise to an isomorphism

Sγ,ρ : Ω
(ρ/γ)
ext,1 → Ω

(ρ)
ext,1,

and pull backing the right hand side of equation (4.2) gives

esc(xp) =

∫

∂Ω
(ρ/γ)
ext,1

µ−1
γ desc,γ ∧ gxp,γ − esc,γ ∧ µ−1

γ dgxp,γ,

where esc,γ, gxp,γ, etc. denote the pulled back quantities under the isomor-
phism Sγ,ρ. Since ρ > 0 was considered to be large but arbitrary, we are

allowed to switch back to the integration domain Ω
(ρ)
ext,1 in equation (4.2), so

that

esc(xp) =

∫

∂Ω
(ρ)
ext,1

µ−1
γ desc,γ ∧ gxp,γ − esc,γ ∧ µ−1

γ dgxp,γ. (4.3)

We are now in a similar position as in the derivation of the PML equation,
cf. Section 3.1. To prove that equation (4.3) is also valid for the PML
solution with a complex γ, we consider the right hand side of equation (4.3)
as a complex valued function of I(γ). Provided that I(γ) is analytic in a
simply connected subset of the complex plane containing the actual PML
path parameter, say γ = 1 + iσ, and the point γ = 1, we are done. To
guarantee this, we must pay special attention on the branch cuts of the
complex continued Green’s tensor gxp,γ. We will see later in Section 4.4, that
the arising branch cuts of the Green’s tensor constrain the PML damping
value σ depending on the position of the evaluation point. However, in most
situations that is not a severe restriction.

To derive a numerically feasible evaluation formula from equation (4.3)
we split the boundary integral:

esc(xp) =

∫

∂Ω
(ρ)
ext,1∩∂Ω

µ−1
γ desc,γ ∧ gxp,γ − esc,γ ∧ µ−1

γ dgxp,γ +

∫

∂Ω
(ρ)
ext,1∩Ω

(ρ)
ext,2

µ−1
γ desc,γ ∧ gxp,γ − esc,γ ∧ µ−1

γ dgxp,γ +

∫

∂Ω
(ρ)
ext,1∩∂Ω(ρ)

µ−1
γ desc,γ ∧ gxp,γ − esc,γ ∧ µ−1

γ dgxp,γ.

The latter integral only involves the PML solution esc,γ and the complex
continued Green’s tensor gxp,γ for distance ξ = ρ. Since both functions decay
exponentially with ξ, taking the limit ρ→ ∞ yields the desired formula
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Figure 4.3: Inappropriate splitting of the exterior domain into Ωext,1 and
Ωext,2.

esc(xp) =

∫

∂Ωext,1∩∂Ω

µ−1
γ desc,γ ∧ gxp,γ − esc,γ ∧ µ−1

γ dgxp,γ +

lim
ρ→∞

∫

∂Ω
(ρ)
ext,1∩∂Ω

(ρ)
ext,2

µ−1
γ desc,γ ∧ gxp,γ − esc,γ ∧ µ−1

γ dgxp,γ.
(4.4)

The first integral is defined on a bounded domain and can be numerically
integrated by standard quadrature rules.

The second integral (4.4) involves the PML solution and is defined on
the infinite interface of the first and second exterior domains. However,
by the damping property of the PML solution and the complex continued
Green’s tensor, the integrand decays exponentially with the PML thickness
ρ, rendering the integral into an well defined, absolutely convergent integral
even for ρ = ∞.

Unfortunately, one does not necessarily benefit from the exponentially
decay of the second integrand in (4.4). For an efficient numerical integration
of the second integral in (4.4), it is particularly required that the integrand
stays harmless for small values of ξ. We will see in Section (4.4) that this
depends strongly on the position of the evaluation point and the chosen
interface Ωext,1 ∩ Ωext,2.

To see that at a glance, we refer to Figure 4.3 as a counter example.
Now, the domains Ωext,1, Ωext,2 are chosen, so that their common interface
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is directed towards the evaluation point. The domain Ωext,1 is homogeneous
and an outward radiating Green’s tensor is given by formula (1.21). One
immediately verifies that for small values of ξ, the Green’s tensor contribution
in the evaluation formula (4.4) grows exponentially fast. For an efficient
numerical evaluation of the second integral in (4.4) it is required that the
decay of the PML solution overcompensates the possible grow of the Green’s
tensor for small ξ values. In Section 3.1 we will derive a criterion for when
this happens.

In contrast to the inappropriate splitting in Figure 4.3, our original split-
ting in Figure 4.2 is well suited for the evaluation formula (4.4), since the
Green’s tensor decays exponentially fast also for small values of ξ.

Far field evaluation When the decay of the PML solution overcompen-
sates the possible growth of the Green’s tensor in the evaluation formula (4.4),
a truncation of the infinite boundary integration domain Ωext,1 ∩ Ωext,2 to

Ω
(ρ)
ext,1 ∩ Ω

(ρ)
ext,2 results in an exponentially decreasing error with growing ρ.

Furthermore, the approximation quality only depends on the direction of the
evaluation point. This allows to replace the Green’s tensor by its asymptotic
approximation for a far distance evaluation point.

This may simplify the numerical evaluation. Often the asymptotic expan-
sion of the Green’s tensor for far distance evaluation points is numerically
available even when the exact Green’s tensor is hard to construct, e.g. when
the media in Ωext,1 are stratified as sketched in Figure 4.2, and one wants to
avoid a costly evaluation of the Sommerfeld integrals.

It is well-known that for a homogeneous upper half space, the far field
value of the scattered field in direction x̂ = (x, y, z) is related to its Fourier
transform with respect to xy. This way, the asymptotic form of the evaluation
formula (4.4) can be used to compute the angular spectrum representation of
the scattered field in the upper half space. We will come back this in greater
detail in Section 4.6. The special case that the Green’s tensor is valid on the
entire exterior domain, that is Ωext,1 = Ωext, is treated in Janssen, Haver et
al. [62].

4.2 Stratton–Chu diffraction integral

We regard the special configuration with Ωext,1 to be the upper half space
z ≥ 0, cf. Figure 4.4. In the evaluation formula (4.4) we use an outward
radiating Green’s tensor in the upper half space g̃xp which has zero Dirichlet
boundary values on the hyperplane z = 0. This Green’s tensor g̃xp can be
constructed by mirroring the Green’s tensor gxp related to the entire space
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Figure 4.4: Splitting into upper and lower half space as used for the
Stratton–Chu, respectively Rayleigh–Sommerfeld diffraction integral.

at the hyperplane z = 0,

g̃xp(x, y, z) = gxp(x, y, z) − sgxp(x, y,−z),

with the field mirror operator si,j = diag([1, 1,−1]). Dropping Dirichlet
boundary terms in equation (4.4) yields

esc(xp) = −
∫

∂Ωext,1∩∂Ω

esc,γ ∧ µ−1
γ dg̃xp,γ −

lim
ρ→∞

∫

∂Ω
(ρ)
ext,1∩∂Ω

(ρ)
ext,2

esc,γ ∧ µ−1
γ dg̃xp,γ.

To derive the Stratton–Chu diffraction integral we regard the non-PML case
γ = 0 and use an orientation of the hyperplane z = 0 with upward normal.
Using that dg̃xp,γ = 2gxp,γ on the hyperplane z = 0, we end up with the
Stratton–Chu diffraction integral

esc(xp) = 2

∫

z=0

esc ∧ µ−1dgxp. (4.5)

4.3 Rayleigh–Sommerfeld diffraction integral

for Helmholtz equation

To gain deeper insight into the exterior domain evaluation formula (4.4) and
to discuss the pitfalls related to the arising branch cuts of the Green’s tensor,
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we restrict ourselves to the scalar Helmholtz equation in two and three space
dimensions,

−∆usc − k2
+usc = 0,

with k+ = ω
√
ε+µ+ and µ+, ǫ+ the material parameters in the upper half

space.
To derive the scalar analog of the Stratton–Chu diffraction integral (4.5),

we may formally switch from the one form esc to the zero form usc. To do
this, let Gzp denote the shifted Green function to the Helmholtz equation
above,

−∆Gzp(x, z) − k2
+Gzp(x, z) = δ(0, z − zp),

given by

Gzp(x, z) =
i

4
H

(1)
0 (k+|(x, z − zp)|) (2D),

Gzp(x, y, z) =
eik+|(x,y,z−zp)|

4π|(x, y, z − zp)|
(3D) ,

with the zeroth Hankel function H
(1)
0 of first kind.

Eventually, one gets the first Rayleigh–Sommerfeld diffraction integral

usc(x⊥,p, zp) = −2

∫

Rd−1

usc(x
′
⊥, 0)∂zpGzp(x⊥,p − x′

⊥, 0)dx′
⊥. (4.6)

Chandler [22] called this representation formula upward propagating radiation
condition.

In the following we use the notation rp(x
′
⊥) = k+|(x⊥,p − x′

⊥, zp)|. We
first discuss the convergence of the above Rayleigh–Sommerfeld diffraction
integral for the two dimensional case. With

∂zpGzp(x⊥,p − x′
⊥, 0) = − izpk+

4rp(x′
⊥)
H

(1)
1 (k+rp(x

′
⊥))

and with the asymptotic behavior of the Hankel function |H (1)
1 (r)| ∼ r−1/2

for large values r, one proves that the Rayleigh–Sommerfeld diffraction inte-
gral (4.6) is absolutely convergent,

∫ ∞

−∞

|usc(x
′, 0)

izp

4rp(x′)
H

(1)
1 (k+rp(x

′))|dx′ ≤ C0 + C ·
∫ ∞

1

(r′)−3/2dr′ <∞

for any bounded field usc(x
′, 0). The constants C0 and C1 depend on the

evaluation point (xp, zp).
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To evaluate the Rayleigh–Sommerfeld diffraction integral (4.6) in 3D we
use polar coordinates (R,ϕ) in the hyper plane z = 0. With

∂zpGzp(x⊥,p − x′
⊥, 0) =

1

4π

(
ik+ − 1

rp

)
eik+rp

rp

zp

rp
(4.7)

one gets

usc(x⊥,p, zp) = − 1

2π

∫ ∞

0

∫ 2π

0

usc(R,ϕ, 0)

(
ik+ − 1

rp

)
eik+rp

rp

zp

rp
R dϕ dR.

Since rp ∼ R for large values R the integral above is absolutely convergent
for zp > 0 provided that |usc(R,ϕ, 0)| ≤ CR−ǫ for large values R and ǫ > 0 :

∫ ∞

0

∫ 2π

0

∣∣∣∣usc(R,ϕ, 0)

(
ik+ − 1

rp

)
eik+rp

rp

zp

rp

R

∣∣∣∣ dϕdR

≤ C0 + C1

∫ ∞

1

R−1−ǫdR <∞.

4.4 Complex deformed Rayleigh–Sommerfeld

diffraction integral

A direct numerical evaluation of the Rayleigh–Sommerfeld diffraction inte-
gral (4.6) is cumbersome due to the slow decay of the integration kernel
∂zpGzp(x⊥,p − x′, 0) ∼ (rp)

−(d+1)/2. To overcome this we will use a complex
deformation of Rayleigh–Sommerfeld diffraction integral. The so complex
deformed integral exhibits an exponentially fast convergence with the size of
the integration domain. Furthermore the arising integrand is available from
a near field simulation with perfectly matched layers (PML).

To keep the notation simple we only deal with the 2D case

usc(xp, zp) = −2

∫

R

usc(x, 0)
izp

4rp(x′)
H

(1)
1 (rp(x

′))dx′. (4.8)

As depicted in Figure 4.1 the intersection of the computational domain Ω
and the hyperplane z = 0 is an interval [−al, ar]. We split the 2D Rayleigh–
Sommerfeld diffraction integral into three parts,
∫ ∞

−∞

usc(x
′, 0)

izpH
(1)
1 (rp(x

′))

4rp(x′)
dx′ =

∫ −al

−∞

usc(x
′, 0)

izp

4rp(x′)
H

(1)
1 (rp(x

′))dx′ +

∫ ar

−al

usc(x
′, 0)

izp

4rp(x′)
H

(1)
1 (rp(x

′))dx′ +

∫ ∞

ar

usc(x
′, 0)

izp

4rp(x′)
H

(1)
1 (rp(x

′))dx′.
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Im(x)

Re(x)A0

PML path
x̂ = γx

∫ A

0

∫ γA

A

∫ 0
γA

Figure 4.5: Integral deformation for the numerical evaluation of Rayleigh–
Sommerfeld diffraction integral. The Rayleigh–Sommerfeld diffraction inte-
gral is originally defined on the real axis x ∈ [0,∞). The integrand, i.e. the
scattered field, is numerically not available on that integration domain but
on the PML path x̂ = γx. Using Cauchy’s contour integral theorem and
showing that the integral from A to γA vanishes as A → ∞ we replace
the original Rayleigh–Sommerfeld integral by a complex deformed integral
involving the PML solution.

The second term has a finite integration domain and is numerically evalu-
ated by means of a standard quadrature rule. The first and third integral
are oscillatory integrals defined on infinite integration domains. Since both
integrals are of the same form we only consider the third integral.

Without loss of generality we set ar = 0 and assume that the Dirichlet
data usc(x

′, 0) possesses a complex extension usc(s, 0) with Re(s) > 0 and
Im(s) ≥ 0 which is bounded in C++ = {s ∈ C : Re(s) > 0, Im(s) ≥ 0}.
This assumption was also needed for the justification of the PML method in
the previous chapter. Accordingly, a near field simulation as in Problem 3.1
delivers the PML solution uγ(ξ, 0) which is equal to the complex continuation
of the original field, uγ(ξ) = usc(γξ), up to the PML truncation error and
the finite element discretization error. Therefore the complex deformed field
usc(s, 0) is available for s = γξ and with ξ ≥ 0.

To evaluate the above third integral term we use Cauchy’s contour integral
theorem. We use the notation from Figure 4.5. We have,

∫ A

0

usc(x
′, 0)

izp

4rp(x′)
H

(1)
1 (r′p(s))dx

′ =

∫ γA

0

usc(s, 0)
izp

4rp(s)
H

(1)
1 (rp(s))ds +

∫ A

γA

usc(s, 0)
izp

4rp(s)
H

(1)
1 (rp(s))ds,

(4.9)
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with rp(s) =
√

(xp − s)2 + z2
p . Before we show that the integral in vertical

direction,

Iv =

∫ A

γA

usc(s, 0)
izp

4rp(s)
H

(1)
1 (rp(s))ds, (4.10)

tends to zero as A→ ∞ we must assure that the function

rp(s) = k+

√
(xp − s)2 + z2

p

is holomorphic in Cγ = {s ∈ C++ | Im(s)/Re(s) ≤ Im(γ)/Re(γ)}. The set Cγ

is the simply connected domain enclosed by the real axis and the PML path.
We introduce f(s) = (xp −s)2 + z2

p and apply a theorem from Rudin [95, Th.
13.11, p. 274] which states that rp(s) is properly defined if 1/f is holomorphic
in Cγ. Hence it is sufficient to demand that f(s) 6= 0 in Cγ. The roots of f
are given by s± = xp ± izp. s− 6∈ Cγ and s+ 6∈ Cγ requires that

xp

zp
≤ Re(γ)

Im(γ)
.

This formula has an important impact on the numerics since it restricts the
position of an evaluation point (xp, zp) to a certain domain which depends on
the used numerical parameter γ of the PML path in the near field simulation.
To understand that in greater detail we re-introduce the right computational
domain’s boundary coordinate ar which we previously set equal to zero for
conveniences. Together with an analogous consideration for the left infinite
integration domain (−∞, al] we derive

xp − ar

zp
≤ Re(γ)

Im(γ)
,

al − xp

zp

≤ Re(γ)

Im(γ)
.

This condition restricts the angles ϑr = atan2(xp − ar, zp), ϑl = atan2(ar −
xp, zp) under which an evaluation point is “seen” from the points (ar, 0) and
(al, 0), respectively. As usual in optics we express this condition in terms of
the numerical aperture sin(ϑl/r) :

sin(ϑl/r) ≤ sin(ϑγ), (4.11)

with ϑγ = atan2(Re(γ), Im(γ)). We have summarized the discussion in Fig-
ure 4.6 where we painted “forbidden” evaluation regions in gray.
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z=0

Ω

(xp, zp)

x = arx = al

ϑl

ϑγ ϑγ

Figure 4.6: Region of allowed positions (xp, zp) for exterior domain
field evaluation with the deformed Rayleigh–Sommerfeld diffraction integral.
“Forbidden” regions are painted in gray. For zp ≤ 0 field values are available
only within the computational domain. For zp > 0 an evaluation by means
of the deformed Rayleigh–Sommerfeld integral is restricted to points (xp, zp)
that satisfy sin(ϑl/r) ≤ sin(ϑγ), with ϑγ = atan2(Re(γ), Im(γ)). γ is the
PML stretching parameter used in the near field simulation. The numerical
efficiency for the evaluation of the deformed Rayleigh–Sommerfeld integral
degrades as the evaluation points approaches the forbidden region.

We now resume our discussion on the deformed Rayleigh–Sommerfeld
integral (4.9) and show that the vertical integral Iv defined in equation (4.10)
vanishes for A→ ∞. We have

|Iv| = |
∫ A

γA

usc(s, 0)
izp

4rp(s)
H

(1)
1 (rp(s))ds|

≤ CA max
s∈[A,γA]

1

|rp(s)|
· max

s∈[A,γA]
|H(1)

1 (r(s))|,

where [A, γA] defines the line in the complex plane from A to γA. Since
rp(s) ∼ s for |s| → ∞ we conclude A/|rp(s)| ≤ C for s ∈ [A, γA] and A
large enough. Together with the asymptotic behavior of the Hankel functions
|H(1)

1 (s)| ∼ 1/
√
|s| (Abramowitz and Stegun [1, p. 108]) in the first quadrant

of the complex plane this proves that Iv tends to zero in the limit A→ ∞.

We now want to rewrite the deformed Rayleigh–Sommerfeld integral (4.9)
so that the relation to the PML solution is more apparent. A near field
computation yields the PML solution data ur,γ(ξ) on the half infinite line
[ar,∞) and the PML field ul,γ(ξ) on (−∞, al]. Inserting the complex deformed
integral (4.9) into the original exterior domain evaluation formula (4.8) gives
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the final formula

usc(xp, zp) = − 2γ

∫ ∞

0

ul,γ(ξ, 0)
izp

4rl,p(ξ)
H

(1)
1 (rl,p(ξ))dξ

− 2

∫ ar

−al

usc(x
′, 0)

izp

4rp(x′)
H

(1)
1 (rp(x

′))dx′

− 2γ

∫ ∞

0

ur,γ(ξ, 0)
izp

4rr,p(ξ)
H

(1)
1 (rr,p(ξ))dξ,

(4.12)

with rl/r,p(ξ) =
√

(xp − al/r ∓ γξ)2 + z2
p .

It remains to discuss whether the involved infinite integrals admit an ef-
ficient numerical evaluation. We know from the previous discussion that the
above formula losses its validity as the evaluation point (xp, zp) approaches
the forbidden region as sketched in Figure 4.6. Therefore we suspect a degra-
dation of the numerical efficiency near the forbidden region. This is indeed
the case. But before we explain this, we show that the integrands of the
infinite integrals in the evaluation formula (4.12) exponentially decay.

Again, we only consider the third integral in equation (4.12). We set
ar = 0 and drop the subscript ’r’ in the following. For large values of ξ
we have rp(ξ) ∼ γξ and with the asymptotic form of Hankel’s function (see
Abramowitz and Stegun [1, p.108]),

H
(1)
1 (s) ∼

√
2

πs
ei(s− 3

4
π), (4.13)

we conclude that the integrand on the right hand side of the equation above
decreases asymptotically with an exponential rate,

|ur,γ(ξ, 0)
izp

4rp(ξ)
H

(1)
1 (rp(ξ))| ≤ Ce−κIm(γ)ξe−k+Im(γ)ξ. (4.14)

The first exponential factor stems from the PML solution with exponential
decay rate κ Im(γ). The precise value of κ depends on the actual problem.
The second exponential term reflects the asymptotic behavior of Hankel’s
functions.

At a first glance this is a promising estimate which justifies a trunca-
tion of the infinite integrals in a numerical approximation of the complex
deformed Rayleigh–Sommerfeld diffraction formula (4.12). However, the es-
timate (4.14) is only an asymptotic result for large values |ξ|. For an effi-
cient numerical evaluation of the involved integrals, the behavior of the term
H

(1)
1 (rp(ξ)) for small values of ξ matters since the truncated integration in-

terval’s length should be of the same order as the computational domain
diameter. We therefore want to sharpen up the above estimate.
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(xp, zp)

z = 0

x = 0

λp

Ω

Figure 4.7: Behavior of a diverging spherical wave on the integration
domain of the diffraction integral. We integrate on the real axis x > 0. One
factor in the Rayleigh–Sommerfeld diffraction integral is proportional to the
field values of a diverging spherical wave emanated from the evaluation point
(xp, zp). Under a complex deformation we expect an exponential growth rate
proportional to the directed “effective” wavelength λp. For x > xp we observe
an exponential decay.

We assume that the evaluation point (xp, zp) is placed sufficiently far away

from the hyperplane z = 0 so that we are allowed to replace H
(1)
1 (rp(ξ)) with

Ceirp(ξ) for a qualitative discussion. The integrand estimate in equation (4.14)
now reads as

|ur,γ(ξ, 0)
izp

4rp(ξ)
H

(1)
1 (rp(ξ))| ≤ Ce−κIm(γ)ξe−Im(rp(ξ)). (4.15)

Before we start with the elementary but tedious analysis of the exponent
−Im(rp(ξ)) we want to develop some intuitive insight into the behavior of
the two involved exponential terms.

The second exponential term stems from a point source placed at (xp, zp).
As sketched in Figure 4.7 the phase fronts of this field hit the integration do-
main x > 0 under an angle depending on the position of the evaluation point.
For x > 0 we define the “effective” wavelength λp = 2πzp/k+(x − xp) as in
Figure 4.7. λp is negative for x < xp and switches its sign at x = xp. The
restriction of the spherical wave emanated from (xp, zp) essentially behave

like H
(1)
1 (rp(x)) ∼ exp(ikp(x)x), with kp = 2π/λp(x). Under a complex de-

formation x→ γξ of the integrand this term has a local growth rate roughly
given by kp(ξ)Im(γ). For Re(ξ) ≤ xp we expect an exponential growth which
switches to an exponential decay for Re(ξ) > xp.
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As already mentioned above the first exponential term in the estimate (4.15)
corresponds to the decay of the PML solution. The overall integrand de-
creases exponentially when the decay of the PML solution overcompensate
the possible growth of the second exponential term. In many application we
observe that κ ≥ k+ but the actual decay rate of the PML solution has to
be monitored in a numerical implementation.

For the precise analysis of the exponent −Im(rp(ξ)) we recall the defini-
tion of rp(ξ),

rp(ξ) = k+

√
(xp − γξ)2 + z2

p .

For ξ > xp/Re(γ) we have Im((xp − γξ)2 + z2
p) > 0 and hence the second

exponential term in the above estimate (4.15) is bounded by one. We now
aim at finding a constant κγ with −Im(rp(ξ)) ≤ κγξ for ξ ≤ xp/Re(γ). In
other words we want to bound the slope | − d/dξIm(rp(ξ))| ≤ κγ. To do so
we differentiate −Im (rp(ξ)) with respect to ξ,

− d

dξ
Im (rp(ξ)) = −Im

(−k2
+γ(xp − γξ)

rp(ξ)

)

= Im

(
k2

+γ(xp − γξ)

rp(ξ)

)
.

At ξ = 0 we have

− d

dξ
Im (rp(ξ)) = Im(γ)k+

xp√
x2

p + z2
p

.

We will verify that −Im(rp(ξ)) has its maximum slope at ξ = 0 in the con-
sidered interval [0, xp/Re(γ)]. So, we infer from equation (4.15) that

|ur,γ(ξ, 0)
izp

4rp(ξ)
H

(1)
1 (rp(ξ))| ≤Ce−(κ−κp)Im(γ)ξ, (4.16)

with κp = k+xp/
√
x2

p + z2
p . This is the estimate we needed. Provided that

κ ≥ κp the overall integrand is exponentially damped since the exponential
decay rate of the PML solution overcompensate the exponential growth rate
of Hankel’s function with complex arguments. The decay rate (κ−κp) Im(γ)
depends on the evaluation point. The larger the angle sin(ϑr) = xp/

√
x2

p + z2
p

the larger κp. Hence the decay rate of the integrand gets worse with the angle
ϑr of the evaluation point. We will come back to this point when we detail
the numerical implementation of the exterior domain evaluation.
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We have postponed to verify that the slope of −Im(rp(ξ)) has its max-
imum at ξ = 0 in the interval [0, xp/Re(γ)]. It is sufficient to show that
the second derivative of −Im(rp(ξ)) with respect to ξ is non-positive in the
interval [0, xp/Re(γ)]. Without restriction of generality we set k+ = 1. We
compute

− d2

d2ξ
Im (rp(ξ)) = Im

( −γ2

rp(ξ)
+
γ2(xp − γξ)2

r3
p(ξ)

)

= Im

( −γ2

rp(ξ)
+
γ2(r2

p − z2
p)

r3
p(ξ)

)

= −z2
p Im

(
γ2

r3
p(ξ)

)
.

To show that Im(γ2/r3
p(ξ)) > 0 one easily checks that this condition only

depends on the direction of the evaluation point (xp, zp) and the PML path
direction (Re(γ), Im(γ). We are therefore allowed to set γ = 1+iσ and xp = 1
without restriction of generality. The numerical aperture condition (4.4) now
states that σ ≤ zp and we must show

Im

(
(1 + iσ)2

(
(1 − (1 + iσ)ξ)2 + z2

p

)3/2

)
≥ 0 (4.17)

for ξ ∈ [0, 1]. We introduce f(ξ) = (1 − (1 + iσ)ξ)2 + z2
p and write

1 + iσ =Aσe
iϑσ

f(ξ) =Aξe
iϑξ

with positive numbers Aσ, Aξ. Condition (4.17) now reads as

0 ≤ 2ϑσ − 3/2ϑξ ≤ π.

From now we assume that σ > 0 is chosen small enough so that ϑσ ≤ π/8.
We introduce fi(ξ) = Im(f(ξ)) = 2σ(ξ2 − ξ) and fr(ξ) = Re(f(ξ)) = (1 −
σ2)ξ2 − 2ξ + z2

p + 1. We have that fi(ξ) ≤ 0 and fr(ξ) ≥ 0 for ξ ∈ [0, 1] using
that σ ≤ max(1, zp). This gives −π/2 ≤ ϑξ ≤ 0 and proves condition (4.17).

4.5 Complex deformed evaluation integrals in

3D

In this section we generalize the results obtained for the complex deformed
1D Rayleigh–Sommerfeld diffraction integral in 2D to scattering problems
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in three space dimensions. As we will see soon the estimates we tediously
gained in the previous section are directly valid in 3D.

Let us first consider an arrangement as given in Figure 4.8. The hyper-
plane z = 0 is equipped with an “angle-radius”–like coordinate system (η, ξ).
We find a globally defined, smooth “radial”–like distance coordinate ξ and
a quadrilateral–wise defined “angle”–like coordinate η. We use this (η, ξ)–
coordinate system to map each quadrilateral Qj × {0} onto the reference
infinite quadrilateral [0, 1] × [0,∞). We denote this bilinear transformation
by Tj : [0,∞) → Qj. The Rayleigh–Sommerfeld diffraction integral (4.6) is
transformed accordingly quadrilateral–wise. On each quadrilateral we gain
an integral

Ij = −2

∫ 1

0

∫ ∞

0

usc(Tj(η, ξ), 0)
[
∂zpGzp

]
(x⊥,p − Tj(η, ξ), 0)|Tj|dξdη.

The outer integral is numerically tackled by standard quadrature rules. The
inner integral has a similar structure as in the two dimensional case and we
are allowed to use a complex coordinate stretching in the ξ–direction. This
way the original scattered field usc(Tj(η, ξ), 0) is replaced by its PML counter-
part uγ(η, ξ) and the Green’s function is evaluated with complex arguments.
To show the exponential decay of the integrand one needs to balance out the
behavior of the two factors uγ(η, ξ) and [∂zpGzp](x⊥,p−Tj(η, γξ), 0) as in the
two dimensional case. We do not detail this here and refer to Figure 4.7 for
an intuitive understanding of the expected exponential decay rate.

As a generalization to the “radial–distance”–like (η, ξ)–coordinate sys-
tem one encounters situation where the hyperplane is equipped with a tensor
product like coordinate system as shown in Figure 4.9. Now, we find quadri-
laterals Q2,j × {0} with two distance–like coordinates ξ1 and ξ2 which gives
rise to a bilinear mapping T2,j : [0,∞) × [0,∞) → Q2,j × {0} from the dou-
bly infinite reference quadrilateral onto the considered quadrilateral. The
transformed integral contribution of a doubly infinite quadrilateral to the
Rayleigh–Sommerfeld integral has the form

I2,j = −2

∫ ∞

0

∫ ∞

0

usc(Tj(ξ1, ξ2), 0)
[
∂zpGzp

]
(x⊥,p − Tj(ξ1, ξ2), 0)|Tj|dξ1dξ2.

To evaluate this integral we use a complex deformation in both variables ξ1
and ξ2 in a now obvious manner.
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x
y

z

ξ

ξ = 1

η

Figure 4.8: 3D geometry configuration for field evaluation in the exterior
domain. The computational domain painted in gray is placed beyond the
hyperplane z = 0. An evaluation point (x⊥,p, zp) needs to lie above this
hyperplane. We equip the hyperplane z = 0 with an “angle-radius”–like
coordinate system (η, ξ). The dashed line indicates the ξ = 1 isoline. To
evaluate the Rayleigh–Sommerfeld diffraction integral numerically we use a
complex deformation in the ξ–direction.

x
y

z

ξ1

ξ2

ξ1 = 1

ξ2 = 1

η

Figure 4.9: 3D geometry configuration for field evaluation in the exterior
domain with tensor product coordinate system in the hyperplane z = 0. In
contrast to the situation in Figure 4.8 the hyperplane z = 0 is not equipped
with a globally defined distance–like coordinate ξ. As a generalization an
quadrilateral may possesses two distance–like coordinates ξ1 and ξ2. To eval-
uate the Rayleigh–Sommerfeld integral it is necessary to use a complex de-
formation in both infinite coordinate directions ξ1 and ξ2.
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4.6 Far field pattern and the Fourier trans-

form

There exists a well-known relationship between the far field behavior of the
scattered field esc(x⊥, z) and the Fourier transform with respect to x⊥. Given
a far distance evaluation point (x⊥,p, zp) = R · (n⊥, nz) with normal vec-
tor (n⊥, nz) and R ≫ 1 the Green’s function in the Rayleigh–Sommerfeld
diffraction integral (4.6) only appears with large arguments. Hence in the
limit R → ∞ it is possible to replace the Green’s function by its asymptotic
expansion.

For the two dimensional case we use the asymptotic form of Hankel’s
function (see Abramowitz and Stegun [1, p.108]),

∂zpGzp(x⊥ − x′
⊥, 0) = − izpk+

4rp(x′)
H

(1)
1 (k+rp(x

′))

∼ − izpk+

4rp(x′)

√
2

π(k+rp(x′))
e−i3π/4eik+rp(x′)

∼ − zpk+

rp(x′)3/2

√
1

8πk+
e−iπ/4eik+rp(x′).

Since rp(x
′) ∼ R we can replace rp(x

′) with R in the denominator. With
cosϑ = zp/R we get

∂zpGzp(x⊥ − x′
⊥, 0) ∼ −k+

√
1

8πk+R
e−iπ/4eik+rp(x′) cosϑ = C2 · eik+rp(x′) cosϑ.

The three dimensional case yields a similar expression. For large values of
R we drop the 1/r3

p(x
′
⊥) term in the formula (4.7) for ∂zpGzp(x⊥ − x′

⊥, 0).
After performing operations similar to the two dimensional case we get

∂zpGzp(x⊥ − x′
⊥, 0) =

1

4π
(ik+ − 1/rp(x

′
⊥))

eik+rp(x′
⊥

)

rp(x′
⊥)

zp

rp(x′
⊥)

∼ ik+

4πR
eik+rp(x′

⊥
) cosϑ = C3 · eik+rp(x′

⊥
) cosϑ.

A further asymptotic expansion concerns the calculation of rp(x
′
⊥),

rp(x
′
⊥) =

√
|Rn⊥ − x′

⊥|2 + (Rnz)2 = R
√
|n⊥ − x′

⊥/R|2 + n2
z

= R
√

1 − 2n⊥ · x′
⊥/R+ |x′|2/R2 ∼ R(1 − n⊥ · x′

⊥/R).
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Now Rayleigh–Sommerfeld diffraction integral (4.6) has the following asymp-
totic expansion for large values of R,

usc(x⊥,p, zp) = −2

∫

Rd−1

usc(x
′
⊥, 0)∂zpGzp(x⊥ − x′

⊥, 0)dx′
⊥

!∼ −2Cd

∫

Rd−1

usc(x
′
⊥, 0) · eik+rp(x′

⊥
) cosϑdx′

⊥

∼ −2Cd

∫

Rd−1

usc(x
′
⊥, 0) · eik+R(1−n⊥·x′

⊥
/R) cosϑdx′

⊥

∼ −2Cde
ik+R cos(ϑ)

∫

Rd−1

usc(x
′
⊥, 0) · e−ik⊥·x′

⊥dx′
⊥,

(4.18)

where we defined k⊥ = k+n⊥. We will comment on the step from the first
line to the second line later. The integral on the right hand side in the
last line above has the form of a Fourier integral. Defining kz = k+nz =√
k2

+ − k⊥ · k⊥ and using cos(θ) = kz/k+ we are led to the formula

û(k⊥, 0) ∼ −k+

2(2π)(d−1)kzCd

e−ik+R · usc

(
R

k+

(k⊥, kz)

)
, R → ∞.

(4.19)

The step marked with “
!∼” in the above derivation (4.18) requires a care-

ful justification. In this step we make the transition from the absolutely
convergent Rayleigh–Sommerfeld diffraction integral to the improper Fourier
integral. We will not give the details here. Instead we derive a formula which
allows for a direct evaluation of the Fourier transform. We only consider the
scalar 2D case. For ǫ > 0 we define

uǫ(x) =





usc(x, 0)e−ǫ(ar−x), x ∈ (∞, ar]
usc(x, 0), x ∈ [al, ar]
usc(x, 0)e−ǫ(x−al), x ∈ [al,∞)

,

where [al, ar] is the top face of the computational domain as defined in Sec-
tion 4.4. uǫ(x) is a L1(R)–function. Its Fourier transform is given as

2πûǫ(kx) =

∫

R

uǫ(x
′)e−ikxx′

dx′ =

∫ al

−∞

uǫ(x
′)e−ikxx′

dx′ +

∫ ar

al

uǫ(x
′)e−ikxx′

dx′ +

∫ ∞

ar

uǫ(x
′)e−ikxx′

dx′.
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In the following we only discuss the third infinite integral and assume ar = 0.
We use a complex deformation of the integral. For γ = 1 + iσ with σ > 0
one proves that

∫ ∞

0

uǫ(ξ)e
−ikxξdξ =

∫ γ∞

0

uǫ(s)e
−ikxsds

=
1

γ

∫ ∞

0

uǫ(γξ)e
−ikxγξdξ

=
1

γ

∫ ∞

0

uγ(ξ)e
−ǫγξe−ikxγξdξ.

(4.20)

In the last line the PML solution uγ has entered the stage. The rest of the
discussion is similar to the consideration on the convergence of the complex
deformed Rayleigh–Sommerfeld integral. We assume that the PML–solution
uγ(ξ) exhibits a decay |uγ(ξ)| ∼ e−κσ. We want that this decay overcompen-
sates the growth of the exponential function eσkx stemming form the Fourier
transform. This gives the restriction

kx < κ. (4.21)

In this case the last integral in (4.20) is absolutely convergent also for ǫ = 0.
Using the same assumption for the left infinite integral

∫ al

−∞

uǫ(x
′)e−ikxx′

dx′

we conclude that the Fourier transform ûsc(kx) is a continuous function in
kx ∈ (−κ, κ) and can be computed by the above deformed Fourier integrals.

Remark 4.1 In a real world application the scattered field is not directly
projected on a screen. Rather, the light enters a detector which forms an
image on a photosensitive device.

In the Abbe theory the optical imaging is described by a coherent transfer
function h(k⊥), see Singer [102, Chapt. 21]. The image field uI(x) is formed
by inverse Fourier transforming the product of û(k⊥, 0) and the transfer
function,

uI(x) = (û(k⊥, 0) · h(k⊥))∨(x).

The transfer function h(k⊥) accounts for wavefront aberrations, amplitude
attenuations and has a bounded support in ‖k⊥‖ ≤ NA·k+, with a numerical
aperture NA < 1. Hence, for optical imaging purposes we only require the
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Fourier transform û(k⊥, 0) in the band ‖k⊥‖ ≤ NA · k+ Fortunately, we
typically have that κ > NA · k+, where κ is the minimum PML damping
factor, cf. inequality (4.21).

The most simple optical imaging system is given by the band pass filter

h(k⊥) = χ‖k⊥‖≤NA·k+ ,

where ξ is the characteristic function.

4.7 Numerical implementation and examples

The exterior domain evaluation by means of the Rayleigh–Sommerfeld diffrac-
tion integral relies on the field data in the PML. These data need to be
available with a sufficient accuracy to guarantee a precise evaluation of the
complex deformed Rayleigh–Sommerfeld integral. This is contradictory to
the concept of the adaptive PML (Chapter 3) where we only took care for
the accuracy in the interior domain. It is possible to steer the adaptive PML
method so that the accuracy of the PML data is improved. But this is paid
with higher costs for the near field computation.

As an alternative, we compute the field data as needed for the complex
deformed Rayleigh–Sommerfeld diffraction integral in a subsequent simula-
tion step. We explain this concept for a scalar field u(x, z) and refer to
Figure 4.10: A near field simulation provides the Dirichlet data uγ̃|Γ(0, z) of
the scattered field on the vertical interface Γ. γ̃ is the PML path parameter
used in the near field simulation. The field uγ̃|Γ corresponds to a wave which
propagates in +x–direction. We choose a γ = 1 + iσ which satisfies the nu-
merical aperture condition (4.4) for the given evaluation points. Selecting a
δ > 0 we apply the PML method to compute the following field:

uγ,γ̃(ξ, z) =





usc(γξ, z)), ξ < δ, z ∈ [−a, 0]
usc(γξ, γ̃(z + a)), ξ ≤ δ, z < −a
usc(γξ, γ̃z), ξ ≤ δ, z > 0
usc(γδ + γ̃(ξ − δ), z), ξ > δ, z ∈ [−a, 0]
usc(γδ + γ̃(ξ − δ), γ̃(z + a)), ξ > δ, z < −a
usc(γδ + γ̃(ξ − δ), γ̃z), ξ > δ, z > 0

We have that uγ(ξ, 0) = uγ,γ̃(ξ, 0) for ξ ∈ [0, δ]. This way, the field data
uγ(ξ, 0) as needed in the complex deformed Rayleigh–Sommerfeld integral
are available in the interval [0, δ]. Extracting the Dirichlet data uγ,γ̃|Γδ

(δ, z)
we repeat this step and gain uγ(ξ, 0) on the interval (δ, 2δ) and so on. This
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z = 0

z = −a

Ω

ξ = 0 ξ = δ

Γ Γδ

(γξ, γ̃(z + a)) (γδ + γ̃(ξ − δ), γ̃(z + a))

(γξ, z) (γδ + γ̃(ξ − δ), z)

(γξ, γ̃z) (γδ + γ̃(ξ − δ), γ̃z)

Figure 4.10: Extension of scattered field into the right exterior domain.
The near field simulation provides the Dirichlet data of the PML solution
uγ̃ on the line Γ with ξ = 0. We use this data to compute the complex
continuation uγ,γ̃ of the scattered field usc in the right exterior domain with
complex coordinates as given above.

way we are able to evaluate the complex deformed Rayleigh–Sommerfeld
integral on the truncated integration interval [0, jδ].

For the numerical computation of uγ,γ̃ we choose a discretization of the
interval [0, δ] so that uγ(ξ, 0) allows for an accurate evaluation of the complex
deformed Rayleigh–Sommerfeld integral. The PML discretization in ξ > δ
is inherited from the near field simulation. This guarantees that the PML
truncation error is of the order of the near field accuracy. The computational
costs for computing uγ,γ̃(ξ, 0) in the interval [0, δ] decrease the smaller δ > 0
is chosen.

4.7.1 Waveguide notch

With this test example we want to verify the accuracy of the exterior do-
main evaluation formula. The geometry and the material parameters to the
scattering problem are given in Figure 4.11 The incoming field uinc is the y–
polarized fundamental mode of the waveguide which is used as the reference
field within the entire exterior domain.

We used a cross–section computational domain Ω = [−1, 1] × {0} ×
[−2.6, 0]. For test purposes we used evaluation points (xp, zp) in the exterior
domain with zp = 2 and x ∈ [−11, 11]. The angles θl/r as given in Figure 4.11
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x

z

z = −1

z = −1.6

(1, 0)

(−1,−2.6)

uinc

Ω w

Figure 4.11: Waveguide notch: The upper half space consists of air. The
lower half space is glass with permittivity ǫg = 10.05. A waveguide (black
layer) with thickness dwg = 0.2 and permittivity (ǫwg = 11.45) is buried
in the glass with a distance 0.4 to the air layer. The incoming field uinc is
the y–polarized fundamental mode of the waveguide with ω = 2π/1.55. The
propagation of the waveguide mode is disturbed by a notch of width w = 0.5.

are in the range [0, 80 ◦].
In Figure 4.12 and 4.13 we compare the exterior domain values uext with

a quasi–exact solution. The quasi–exact solution uQE was obtained on a
sufficiently large computational domain containing all evaluation points. In
the near field simulations we used third order finite elements. We observe
an excellent agreement of uext with uQE. Both data uext and uQE are polluted
by a finite element discretization error. As can be seen from Figure 4.13 the
relative error |uext−uQE|/|uext| decreases under an uniform mesh refinement.

4.7.2 Point source above material interface

This example serves as a verification of the Fourier transform computation
by means of a complex deformation. As a source we place a dipole at position
(xd, zd) = (0,−1.5) in the computational domain (Figure 4.14). We solve the
Helmoltz equation

−∇µ−1∇Ey − ω2ǫEy = δ(x− xd, z − zd), (4.22)

with ω = 2π/λ0 and λ0 = 1.55.
The regularity of Ey is poor and a finite element discretization of Ey

would suffer from a slow convergence. To cure that we use the subtraction
approach, see Awada et al. [9], Wolters [113] and [119]. We split the field Ey

into a singular field Ey,s and a correction field Ey,c that is Ey = Ey,s + Ey,c.
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Figure 4.12: Waveguide notch: Field values in the exterior domain com-
puted by the complex deformed Rayleigh–Sommerfeld integral. Quasi–exact
values are marked with + and ×.

The singular field Ey,s is the Green’s function to the Helmholtz equation in
a homogeneous space with ǫd = ǫ(xd, zd) and µd = µ(xd, zd) :

−∇µ−1
d ∇Ey,s − ω2ǫdEy,s = δ(x− xd, z − zd).

Ey,s is analytically available (cf. equation (1.26)). The correction field Ey,c

satisfies the above Helmholtz (4.22) but with the right hand side replaced by

fc = ∇(µ−1 − µ−1
d )∇Ey,s + ω2(ǫ− ǫd)Ey,s.

fc is equal to zero in a vicinity of the dipole position. Hence the correc-
tion field Ey,c is sufficiently smooth for an accurate discretization with finite
elements.

The function fc is possibly non–zero in the entire space R2. To suppress
arising source terms in the PML we prefer to compute the correction field
Ey,s only in the interior domain. In the exterior domain Ωext we still use the
total field Ey = Ey,s + Ey,c. This yields additional boundary terms on the
interface ∂Ω of the computational domain to the exterior domain stemming
from the coupling condition

Ey|∂Ω =Ey,s|∂Ω + Ey,c|∂Ω

µ−1∂nEy|∂Ω =µ−1∂nEy,s|∂Ω + µ−1∂nEy,c|∂Ω.
(4.23)
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Figure 4.13: Waveguide notch: Error of exterior domain values uext to the
quasi–exact solution uQE for different refinement levels of the finite element
mesh.
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z = −1.6

(1, 0)

(−1,−2.6)

Ω

Figure 4.14: Point source above material interface: The material prop-
erties are as in Figure 4.11 but we removed the waveguide and the upper
glass layer. No incoming field is prescribed. Instead a source dipole is placed
above the material interface.
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We already encountered such a coupling condition when prescribing the in-
coming field in a scattering problem in the scattering Problem 3.1. The
numerical treatment of (4.23) is analog to that case.

The Fourier transform in x to the solution Ey(x, z) of the above Helmholtz
equation (4.22) is analytically given by Weyl’s representation formula of a
diverging spherical wave together with Fresnel’s formula:

Êy(kx, z) =
ieikz(z−zd)

4πkz

(
1 + e2·ikzdI

na cos(ϑa) − ng cos(ϑg)

na cos(ϑa) + ng cos(ϑg)

)
(4.24)

with kz =
√
k2

0 − k2
x, dI = 0.1 (distance point source to the interface),

ng =
√
ǫgµg (refractive index glass), na = 1 (refractive index air), ϑa =

atan2(kx, kz) and ϑg = asin(sin(ϑa)na/ng).
The Fourier transform has singularities at kx = ±k0. We are only able to

compute the band-limited Fourier transform which corresponds to upward
traveling waves. This is not a severe restriction because in most scattering
experiments one is only interested in the far field image. Hence, evanescent
waves with |kx| > k0 do not play any role. Furthermore, the scattered wave
typically passes an optical system (microscope, projector, etc.). Only those
Fourier modes with |kx| ≤ NA · k0 enter the optical system where NA is the
numerical aperture of the optical system. In our numerical experiment we
restricted the Fourier transform evaluation to |kx| ≤ 0.9·k0 which corresponds
to a numerical aperture of NA = 0.9.

The computed Fourier transform is given in Figure 4.15. To validate
the accuracy and efficiency of the method we studied the convergence of the
Fourier integrals with a growing integration interval [0, ρ]. We simultaneously
reduced the finite element discretization error by a successive uniform mesh
refinement.

Figures 4.16 and 4.17 give the results to this convergence study for kx/k0 =
0 and kx/k0 = 0.88, respectively. In both cases we observe an exponentially
fast convergence of the complex deformed Fourier integrals with growing ρ
until a saturation is reached. This saturation limit is caused by the finite
element discretization error and therefore decreases under an uniform mesh
refinement. As expected, the exponential convergence rate diminishes for the
larger value kx/k0 = 0.88 compared to kx/k0 = 0.

We also computed the Fourier transform without the complex deforma-
tion techniques by setting σ = 0, see again Figures 4.16 and 4.17. The con-
vergence is very slow without applying a complex deformation in accordance
with the theoretical convergence behavior ∼ 1/

√
ρ/λ0.

For illustration, we want to use the gained Fourier transform to recon-
struct the near field at z = 0 by an inverse Fourier transform. Since we only
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Figure 4.15: Computed Fourier transform of a scattered field to a point
source located above a material interface.
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Figure 4.16: Point source above material interface: Convergence of the
computed Fourier transform at kx/k0 = 0 with growing integration interval.
“ref.” denotes the finite element refinement level. σ is the PML damping
factor used in the complex deformation of the Fourier integral.
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Figure 4.17: Point source above material interface: Convergence of the
computed Fourier transform at kx/k0 = 0.88.

have the band–limited Fourier transform

ûNA(kx, 0) = χ[−k0·NA,k0·NA](kx) · û(kx, 0)

we are not able to reconstruct the true near–field. Instead of this, the inverse
Fourier transform gives the image as seen by a perfect 1 : 1 projection system
with numerical aperture equal to 0.9. Figure 4.18 gives the results. The true
near–field was computed on a sufficiently enlarged computational domain.

4.7.3 Point source near waveguide’s tip

We deal with the geometry as given in Figure 4.19. Now, the dipole is placed
close to the waveguide’s tip. A quasi–analytic solution to this problem is not
known.

We again use the subtraction approach to compute the singular solution
to this problem as explained in the previous example. Figure 4.20 shows
the computed band–limited Fourier transform ûNA to this problem. The
computed near field and the image gained by the inverse Fourier transform
are shown in Figure 4.21.

Due to the lack of an analytic solution to this problem we want to cross-
check the computed image by an alternative way to construct the image: We
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Figure 4.18: Point source above material interface: Image compared to
true near–field. A perfect reconstruction is not possible due to the truncation
of the Fourier transform.
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Figure 4.19: Point source near waveguide’s tip: The material properties
are as in Figure 4.11. In the right exterior domain we removed the waveguide
and the upper glass layer. No incoming field is prescribed but a dipole is
placed in front of the waveguide tip.



4.7. NUMERICAL EXAMPLES 119

−4 −2 0 2 4

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−8 Fourier transform (z=0)

k
x

F
(u

)

 

 

real
imag

Figure 4.20: Point source at waveguide’s tip: Computed Band–limited
Fourier transform. An exact solution to this problem is not available.
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Figure 4.21: Point source above material interface: Image compared to
true near–field at z = 1.Values marked with ◦ are computed by an alternative
approach without the usage of the Fourier transform (cf. equation 4.25).
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use the convolution theorem for the inverse Fourier transform to compute
the image by

uI(x, 0) =

∫ ∞

−∞

χ[−k0NA,k0NA](kx) · û(kx, 0)eikxxdkx

=
1

2π

∫ ∞

−∞

u(x′, 0)
2 sin(NA · k0(x− x′))

x− x′
dx′.

(4.25)

We remark that this integral needs a careful definition within the distribu-
tion theory, see for example Rudin [94, p. 166]. However, we commit the
“integration”–crime and evaluate equation (4.25) numerically. The used near
field data u(x, 0) were computed on an enlarged computational domain with
|x| ≤ jλ0. Outside this interval we set u(x, 0) = 0. This way we compute the
following approximate image

uI,j(x, 0) = (χ[−k0NA,k0NA](χ[−jλ0,jλ0]u(·, 0))∧)∨, (4.26)

where ’ ∧’ and ’ ∨’ denote the Fourier transform and the inverse Fourier trans-
form, respectively. From the convergence study in the previous example we
expect a slow convergence of the approximate image uI,j towards the im-
age uI. Indeed, for j = 20 the approximate image uI,20(x, 0) is qualitatively
in a good agreement with the image uI(x, 0) we obtained directly from the
band–limited Fourier transform, cf. Figure 4.21.

4.7.4 Glass fiber tip

This example serves the verification of the exterior domain evaluation formula
(4.4) in three space dimensions. We deal with a 3D configuration as given
in Figure 4.19. As explained in Section 2.5 we can exploit the rotational
symmetry of the geometry to restrict the computational domain on a cross
section given in Figure 4.23.

The incoming field is the fundamental propagating mode of the glass fiber.
Hence, only the first Fourier mode is non-zero.

The incoming field is strongly confined within the glass fiber core. We
have chosen the radial dimension of Ωext,2 large enough, cf. Figure 4.23, so
that the amplitude of the incoming field is smaller than the machine accuracy
outside Ωext,2. This way, it is sufficiently accurate to couple in the light only
on the interface of the computational domain with Ωext,2, cf. Figure 4.23. In
the next chapter, when dealing with multiply structured exterior domains, we
will get rid of this restriction, and we will be able to shrink the computational
domain to the size of the glass fiber in radial direction.



4.7. NUMERICAL EXAMPLES 121

Einc

x

z

Figure 4.22: Glass fiber with pointed end face. For the precise geometry
and material definitions we refer to Figure 4.23
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Figure 4.23: Cross section of glass fiber end face (scales are in µm). The

glass has a refractive index ng =
√

2.113. The surroundings consist of air.
The incoming glass fiber mode has a vacuum wavelength λ0 = 1.55.
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Figure 4.24: Glass fiber tip: Normalized field values (Ex–component)
in the exterior domain computed with the exterior domain evaluation for-
mula (4.4). Quasi–exact values are marked with + and ×. The z-coordinate
of the evaluation point was chosen equal to 8.

In the numerical experiment we compared the exterior domain values
computed by means of formula (4.4) with a quasi-exact solution obtained on
an enlarged computational domain. Figure 4.24 confirms the accuracy of our
exterior domain evaluation formula in three space dimensions. This is further
validated by Figure 4.25, which shows the relative error in dependence on
the evaluation point position and the used finite element order. As expected,
the error in the exterior domain evaluation error decreases with the finite
element order.
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Figure 4.25: Glass: Field error of exterior domain values Eext to the
quasi–exact solution EQE for different finite element orders.
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Chapter 5

Multiply structured exterior

domains

We have learned in the previous chapter how to exploit the PML solution for
a field evaluation in the exterior domain. In this chapter we follow up the
idea to consider the field within the PML not only as an artificial quantity
only introduced for numerical purposes. This will help us to tackle scattering
problems with exterior domains more complicated structured than regarded
so far. For example we want to discuss a scattering problem as sketched in
Figure 5.1. The exterior domain in this 2D setting is differently layered on
the left and right horizontal half space. We assume that an incoming plane
wave Einc hits the scatterer from above. What makes this scattering problem
difficult?

To give the answer we recall that in the scattering problem formulation
(Problem 2.1 , Chapter 2) we need to know a reference field Eref which
satisfies Maxwell’s equations in the entire exterior domain and which com-
prises the incoming plane wave. Such a reference field is easily constructed
when the stratifications in the left and right horizontal domain coincide. In
this simpler case one solves a 1D scattering problem for a stack layout in
z–direction. To construct a reference field Eref for the more sophisticated
situation in Figure 5.1 one might fix a reference configuration as given in
Figure 5.2 and might try to determine the reference field Eref . However, from
a numerical point of view the computation of the reference field Eref in this
situation is not easier than solving the original scattering problem! To over-
come this we will extend the scattering problem formulation from Chapter 2
to the situation of multiply structured exterior domains in this chapter.

Furthermore, the exterior domain evaluation and the far field extraction
need also a revision to cover the case of multiply structured exterior domains.
This is done in the section after next. To anticipate the discussion we mention
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Eout

Einc

x
z

Figure 5.1: 2D scattering problem with complicated exterior domain. The
exterior domain has different layered media on the left and right side. An
incoming field Einc gives rise to an outgoing field Eout. The incoming field Einc

is typically a plane wave. In the standard scattering problem formulation we
need to find a reference field Eref which comprises the incoming field and
which satisfies Maxwell’s equations in the entire exterior domain. It is non–
trivial to construct such a field Eref , cf. Figure 5.2.

Eref

x
z

Figure 5.2: Reference field Eref for scattering problem as sketched in
Figure 5.1. The reference field Eref comprises the incoming plane wave and
the outgoing waves scattered off this reference configuration. Unfortunately,
the reference field Eref is numerically not available in this case.
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that the distinction of the scattered field and the reference field in the far
field regime gets more involved as we briefly explain here.

Recall that the actual far field consists of the scattered field Esc and
the outgoing waves of the reference field Eref . The scattered field gives rise
to a continuous Fourier spectrum. In case of an uniformly layered exterior
domain the contribution of the reference field to the Fourier spectrum is
discrete for an incoming plane wave Einc = Ê exp(ik · x). More precisely the
reference field Eref has a δ–distributed Fourier spectrum at kinc,⊥. For the
multiply structured exterior domain the situation changes. Firstly, there is no
canonical choice to fix the reference field as in Figure 5.2. The precise position
of the end face of the most upper right layer is arbitrary. Secondly, the
contribution of the reference field Eref to the Fourier spectrum also contains
a continuous part. When changing the reference field Eref the continuous
spectrum Esc also changes. To avoid these ambiguities we therefore want
to base our consideration concerning the Fourier spectrum computation on
the total field Esc + Eref . This requires to deal with the discrete part of the
Fourier spectrum numerically.

5.1 Scattering problems with multiply struc-

tured exterior domains

We aim at a generalization of the scattering formulation Problem 2.1 in
Chapter 2 for the case of multiply structured exterior domains as motivated
above. As a general guideline we need to keep in mind that all quantities we
use are numerically available. To satisfy this demand we sacrifice the con-
struction of a single reference field Eref and allows for a piecewise definition
of reference fields Eref,1, . . . ,Eref,N defined on a decomposition of the exterior
domain into sub-domains that is Ωext = Ωext,1 ∪ · · · ∪ Ωext,N .

Once the reference fields Eref,1, . . . ,Eref,N are fixed the scattered field Esc,j

on the exterior sub–domain Ωext,j is defined as the difference of the reference
field Esc,j and the total field that is Esc,j = Etot −Eref,j. Each scattered field
Esc,j fulfills Maxwell’s equations on the sub–domain Ωsc,j. On the interface
Γi,j = Ωext,i ∩ Ωext,j the scattered fields Esc,i and Esc,j as well as the field
derivatives µ−1∇× Esc,i, µ

−1∇× Esc,j jump. More precisely we have that

(Esc,i − Esc,j) × n = (Eref,j − Eref,i) × n,

(µ−1∇× Esc,i − µ−1∇× Esc,j) × n = (µ−1∇×Eref,j − µ−1∇×Eref,i) × n,

where n denotes the normal on the interface Γi,j. Switching to the exterior
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calculus notation we arrive at the following coupled system of equations,

dµ−1de − ω2εe = 0 in Ω, (5.1a)

dµ−1desc,j − ω2εesc,j = 0 in Ωext,j , (5.1b)

(e − esc,j)|Ω∩Ωext,j
= eref,j |Ω∩Ωext,j

, (5.1c)

(µ−1de − µ−1desc,j)|Ω∩Ωext,j
= µ−1deref,j|Ω∩Ωext,j

, (5.1d)

(esc,i − esc,j)|Γi,j
= (eref,j − eref,i)|Γi,j

, (5.1e)

(µ−1desc,i − µ−1desc,j)|Γi,j
= (µ−1deref,j − µ−1deref,i)|Γi,j

. (5.1f)

Since we know the reference fields eref,i and eref,j all quantities on the right
hand side of the above system of equations are numerically available.

The first two lines (5.1a) and (5.1b) state that the fields meet Maxwell’s
equations. Line three and four enforce the matching condition between the
field e in the interior domain and the scattered field esc,j on the coupling
boundary between the interior domain and the jth exterior domain. Special
attention deserve the last two lines which realize the jump of the scattered
fields esc,i and esc,j across a common interface Γi,j . The interface Γi,j is in-
finitely extended so that the jump conditions in the last two lines give rise
to additional right hand side terms within the exterior domain. In the next
section we will introduce perfectly matched layers for the above system. Not
surprisingly, the right hand side of the arising PML system will result from
the interior–exterior domain coupling as well as from a complex stretched
version of the jump matching condition on Γi,j .

We refer to Figure 5.3 for an illustration of the principle ideas in case of the
2D example from Figure 5.1. As in Figure 5.3 we regard the differently strat-
ified left and right exterior domains separately and introduce two reference
solutions Eref,1 and Eref,2. The reference solution Eref,1 solves Maxwell’s equa-
tions for infinite media with the same stratification in the z–direction as the
left exterior domain. To construct Eref,1 we only need to solve a Helmholtz
equation in one space dimension for the given incoming plane wave Einc.
Eref,2 is defined accordingly by using the stratification of the right exterior
domain.

A possible splitting of this multiply structured 2D domain is shown in
Figure 5.4. The interface Γ1,2 is given by the thick dashed lines. We have
some freedom in fixing the position of the interface Γ1,2. As a constraint we
must only assure that Eref,1 and Eref,2 are solutions to Maxwell’s equations
in Ωext,1 and Ωext,2, respectively. Later in the PML method we will use this
freedom to improve the exponential decay of the complex deformed jump
Eref,j −Eref,i which enters the right hand side of our scattering problem (5.1)
in the equations (5.1e) and (5.1f).
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Eref,1 Eref,2

x
z

Figure 5.3: Choice of different reference fields for the split exterior domains.
Eref,1 and Eref,2 are solutions to Maxwell’s equations in the different layered
media for a prescribed illuminating plane wave.

Esc,1 Esc,2

Ωext,1 Ωext,2

x
z

Figure 5.4: Exterior domain Ωext split into two separated exterior sub–
domains Ωext,1 and Ωext,2. On each of the sub–domains we define scattered
fields Esc,1, Esc,2 as the difference of the total field Etot and Eref1, Eref2,
respectively. Additional coupling conditions on the boundary Γ1,2 = Ωext,1 ∩
Ωext,2 are needed.
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5.2 PMLs for multiply structured exterior do-

mains

In Chapter 3 we explained in greater detail how to define a complex co-
ordinate stretching which served as the starting point for the definition of
perfectly matched layers. Especially, we carefully justified the step from a
real coordinate stretching to a complex coordinate stretching by using a ho-
motopy parameter which helped us to show the equivalence of the original
scattering problem and the complex stretched version with arguments from
complex function theory of one variable.

In this section we extend the PML concept to scattering problems with
multiply structured exterior domains as given in the system of equations (5.1).
Our goal is to derive a weak formulation of the system of equations (5.1) with
PMLs. Many of the steps one has to perform to derive this weak formulation
follow directly from the basic PML ideas. We therefore skip the details here
and directly define the complex continuations eγ,j of the scattered fields esc,j

for a given PML path parameter γ. In the same way we define the complex
continuation of the reference fields eref,γ,j and the pulled back material tensor
εγ and µγ .

In the system of equations (5.1) for the scattering problem with multiply
structured exterior domains various field matching conditions must be taken
into account, see equations (5.1c)–(5.1f). For notational purposes we find
it more convenient to give up the special role of the interior domain Ω and
introduce the following notations Ω0 = Ω and Ωj = Ωext,j. According to that
we define eγ,0 = e|Ω0 and set eref,γ,0 equal to zero. This way the complex
stretched version of the system of equations (5.1) can now be written as
follows

dµ−1
γ deγ,j − ω2εγeγ,j = 0 in Ωj , (5.2a)

(eγ,i − eγ,j)|Γi,j
= (eref,j − eref,γ,i)|Γi,j

, (5.2b)

(µ−1
γ deγ,i − µ−1

γ deγ,j)|Γi,j
= (µ−1

γ deref,j − µ−1
γ deref,γ,i)|Γi,j

, (5.2c)

with j = 0, . . . N and i < j.We remark that this system is similar to a domain
decomposition formulation for a partial differential equation with multiply
domains [91, equation 1.4.27].

To bring the above system (5.2) into variational form we apply the wedge
product with a test function ϕ ∈ Hloc(curl,∪j≥0Ωj) on the domain–wise de-
fined Maxwell’s equations (5.2a) and use the partial integration formula (1.45).
Together with the matching condition of the Neumann data in equation (5.2c)
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this yields the preliminary variational equation

N∑

j=0

∫

Ωj

dϕ ∧ µ−1
γ deγ,j − ω2ϕ ∧ εγeγ,j =

N∑

i=0

N∑

j=i+1

∫

Γi,j

ϕ ∧ (µ−1
γ deγ,i − µ−1

γ deγ,j)

=

N∑

i=0

N∑

j=i+1

∫

Γi,j

ϕ ∧ (µ−1
γ deref,γ,j − µ−1

γ deref,γ,i).

(5.3)

Due to the jump of the Dirichlet data across an interface Γi,j the piecewise
combination of the fields eγ,j is not contained in Hloc(curl,∪j≥0Ωj). As usual
we therefore add supplemental fields near the interfaces Γi,j to enforce con-
tinuity.

To construct these supplemental fields we use sufficiently smooth func-
tions χj : ∪iΩi → [0, 1] such that χj = 1 on ∂Ωj and χj(x) = 0 when
dist(x,Ωj) > δ. We now define the field eγ on ∪j≥0Ωj by

eγ|Ωj
= eγ,j +

∑

k<j

χk

∏

k′<k

(1 − χk′)(eref,γ,j − eref,k)

= eγ,j + Ij(eref,γ,1, . . . , eref,γ,j)

(5.4)

and will show that eγ ∈ Hloc(curl,∪j≥0Ωj). As a convention the product over
an empty set is equal to one. We agree that this definition looks tricky but
we need to cope with the situation of edges or corner points where several
domains Ωj intersect.

We have to prove that eγ is continuous across an interface Γi,j with i < j.
Let us denote ẽγ,j = eγ|∂Ωj

. It is sufficient to show that ẽγ,j |Γi,j
= ẽγ,i|Γi,j

.
We will make use of the equality

∏

k′<i

(1 − χk′) +
∑

k<i

χk

∏

k′<k

(1 − χk′) = 1 (5.5)

which we will prove at the end of this section. We have

ẽγ,j − ẽγ,i = eγ,j +
∑

k<i+1

χk

∏

k′<k

(1 − χk′)(eref,γ,j − eref,γ,k)

− eγ,i −
∑

k<i

χk

∏

k′<k

(1 − χk′)(eref,i − eref,γ,k),
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where we truncated the first sum from the original range k < j in defini-
tion (5.4) to k < i + 1, because χi = 1 on Γi,j. Rearranging the terms and
using χi = 1 on Γi,j, again, yields

ẽγ,j − ẽγ,i = eγ,j − eγ,i +
(∏

k′<i

(1 − χk′) +
∑

k<i

χk

∏

k′<k

(1 − χk′)
)
(eref,γ,j − eref,γ,i)

= eγ,j + eref,γ,j − eγ,i − eref,γ,i,

where the last equation follows from the partition of unity property in (5.5).
With the Dirichlet matching condition equation (5.2b) we see that the last
line is equal to zero and so the continuity of eγ across interfaces Γi,j is shown.

We are now in the position to define the variational form in Hloc(curl,Ω∪
Ωext) by inserting eγ,j = eγ−Ij(eref,γ,1, . . . , eref,γ,j) into the preliminary varia-
tional equation (5.3). We recall that Ω∪Ωext = ∪j≥0Ωj . As detailed in Chap-

ter 3 we restrict the PML system to a bounded domain Ω∪Ω
(ρ)
ext = Ω∪j≥1Ω

(ρ)
ext,j

with PML thickness ρ.

Problem 5.1 (scattering problem with multiply structured exterior domain
using PML). Regard an admissible geometry Ω ⊂ R3, which allows for a
non–overlapping decomposition of the exterior domain Ωext = ∪j≥1Ωext,j. Let
reference fields eref,j ∈ Hloc(curl,Ωext,j) be given which satisfy Maxwell’s equa-
tions in Ωext,j, that is,

∫

Ωext,j

dϕ ∧ µ−1deref,j − ω2ϕ ∧ εeref,j =

∫

∂Ωext,j

ϕ ∧ µ−1deref,j

for all test functions ϕ ∈ H(curl,Ωext) with compact support. For a given
PML path ξ̂γ, a given thickness of the sponge layer ρ and with the notations

above we seek e
(ρ)
γ ∈ H(curl,Ω ∪ Ω

(ρ)
ext) such that

∫

Ω∪Ω
(ρ)
ext

dϕ ∧ µ−1
γ de(ρ)

γ − ω2ϕ ∧ εγe
(ρ)
γ =

N∑

j=1

∫

∂Ω∩∂Ωext,j

ϕ ∧ µ−1
γ deref,γ,j +

N∑

i=1

N∑

j=i+1

∫

Γi,j

ϕ ∧ (µ−1
γ deref,γ,j − µ−1

γ deref,γ,i) +

N∑

j=1

∫

Ω
(ρ)
ext,j

(
dϕ ∧ µ−1

γ dIj(eref,γ,1, . . . , eref,γ,j) −

ω2ϕ ∧ εγIj(eref,γ,1, . . . , eref,γ,j)
)

(5.6)
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for all ϕ ∈ H(curl,Ω ∪ Ω
(ρ)
ext).

Remarks 5.1

i) The variational equation (5.6) can be interpreted as Maxwell’s equa-
tions in variational form with anisotropic material tensor and additional
source terms on the interfaces of two adjacent sub–domains (first and
second right hand side term) and within the exterior domain (last right
hand side term). Therefore equation (5.6) allows for a discretization
with finite elements in a standard way.

ii) The interpolation operators Ij are readily implemented in the finite el-
ement context. From the defining equation (5.4) one sees that on a
common interface Γi,j with i < j the field values of the domain Ωi are
privileged. For an ansatz function which corresponds to a boundary node
of the sub-domain Ωj one simply interpolates the difference eref,j −eref,i,
where i is the minimum index so that Ωi shares the considered ansatz
function.

iii) The additional right hand side terms have support in the entire trun-

cated exterior domain Ω
(ρ)
ext. To keep the PML truncation error small it

is therefore inevitable to assure an exponential decay of these additional
source terms with the distance to the interior–exterior domain coupling
boundary ∂Ω. The additional right hand side terms are caused by the
piecewise selection of the reference fields eref,j. From the above varia-
tional equation (5.6) and with the definition of the interpolation operator
Ij in equation (5.4) one observes that only the jumps eref,j −eref ,i across
interfaces enter the right hand side terms. One must guarantee that the
jump eref,j−eref ,i is an outgoing wave on the common interface Γi,j. If this
is the case, a complex stretching yields exponentially damped right hand
side terms in the PML. The actual decay rate of the additional terms
depends on the present reference fields and the sub-domain decomposi-
tion. The prescribed incoming field einc is canceled out in the difference
eref,j − eref,i in any case, because all reference fields share the same pre-
scribed incoming wave einc. However, this is not sufficient to guarantee
that eref,j −eref,i is outgoing on Γi,j. To see this, we refer to the example
at the end of the previous section. We assumed that the incoming field is
a plane wave with wave vector (kx, 0, kz). For a non-zero kz the splitting
in Figure 5.4 is suitable. But the splitting in Figure 5.5 gives rise to ex-
ponentially growing right hand side terms in the PML if kx 6= 0. Indeed,
on the upper part of the interface Γ1,2 the jump ∆Eref,1,2 = Eref,2−Eref,1
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∆Eref,1,2 Einc

Ωext,1

Ωext,2

Γ1,2x
z

Figure 5.5: Inappropriate splitting. The complex continuation of the
jump ∆Eref,1,2 = eref,2 − eref,1 grows exponentially with the distance to the
computational domain.

is a plane wave with wave vector (kx, 0,−kz). Hence, a PML based com-
plex continuation in the x–coordinate, x→ (1 + iσ)x, results in a jump
field which grows like exp(σx) in the PML.

We have postponed to show the partition of unity property in equa-
tion (5.5),

∏

k′<i

(1 − χk′) +
∑

k<i

χk

∏

k′<k

(1 − χk′) = 1,

which we now prove by induction of i. For i = 0, the equation is satisfied due
to the convention that the product over an empty index set is equal to one.
For the induction step i→ i+ 1, we split

∏

k′<i+1

(1 − χk′) +
∑

k<i+1

χk

∏

k′<k

(1 − χk′) = (1 − χi)
∏

k′<i

(1 − χk′) +

χi

∏

k′<i

(1 − χk′) +
∑

k<i

χk

∏

k′<k

(1 − χk′)

Combining the first and the second terms yields the expression
∏

k′<i

(1 − χk′) +
∑

k<i

χk

∏

k′<k

(1 − χk′),

which is equal to one due to induction hypothesis, so that (5.5) is shown for
any i ≥ 0.
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u = uref,1 + usc,1 u = uref,2 + usc,2

x
zz = 0

Ωext,1 Ωext,2
Γ1,2

Σ1 Σ2

Figure 5.6: 2D setting for Fourier transform computation. We want to
compute the Fourier transform of a scalar field u on the hyperplane z = 0.
Since u is the total field the Fourier transform u∧(kx, 0) is singular for |kx| ≤
k+, where k+ is the wave number in the upper half space.

5.3 Fourier transform with singular spectrum

We tackle now the vexed question on how to extract the angular spectrum
representation (far field pattern) to the optical field e above a structure with
a multiply structured exterior domain. We assume that the entire scatterer
is contained in the lower half space z < 0. Hence for z > 0 the material pa-
rameters µ+ and ε+ are positive scalars. As usual we define the wave number
in the upper half space by k+ = ω

√
µ+ǫ+. We have learned in Section 4.6

that the far field pattern is essentially the Fourier transform ê(k⊥, 0) for
‖k⊥‖ < k+ on the hyperplane z = 0. In real world applications the Fourier
spectrum is further truncated by an aperture to ‖k⊥‖ < NA · k+, where
NA ≤ 1 is called numerical aperture.

We adopt the notation of the previous section. Additionally we set Σj =
{x ∈ Ωext,j | z = 0}. For the sake of a simpler notation we develop the essential
ideas only for the scalar wave equation in two space dimensions and change
the notation for the fields from e to u.

The situation we have in mind is sketched in Figure 5.6. There, the
reference fields uref,1 and uref,2 are solutions to the 1D Helmholtz equation
for a stack layout to an incoming plane wave

uinc(x) = Aince
i(kx,incx−kzz),

with kz =
√
k2

+ − k2
x,inc. For z > 0 the reference solutions split into an down-
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ward traveling wave (incoming) and a upward traveling wave (outgoing), that
is

uref,j(x, z) =Aince
i(kx,incx−kzz) +Bje

i(kx,incx+kzz).

The scattered fields usc,1 and usc,2 do not solve the Helmholtz equation
in the upper half space. Indeed, they are discontinuous across the inter-
face Γi,j. When regarded separately the Fourier spectrums of usc,1 and usc,2

do not carry any useful information on the optical field in the upper half
space. We therefore consider the Fourier transform of the outgoing field
uout(x, z) = u(x, z) − uinc(x) on the hyperplane z ≥ 0. The field uout com-
prises the outgoing waves of the reference fields uref,j. Hence, the Fourier
transform ûout(kx, 0) is not a continuous, bounded function for |kx| ≤ NA ·k+

and requires therefore a careful treatment in the distributional sense.

By the definition of the Fourier transform we have

u∧out(kx, 0) =
1

2π

∫ ∞

−∞

uout(x, 0)e−ikxxdx

=
1

2π

2∑

j=1

∫ ∞

−∞

χΣj
(x)uout(x, 0)e−ikxxdx.

Our final goal is to compute the “image” field uNA(x) given by the inverse
Fourier transform of u∧out(kx) limited to the band |kx| ≤ NA · k+,

uNA(x) = (χ[−NA·k+,NA·k+](kx) · u∧out(kx, 0))∨(x). (5.7)

This formula describes intuitively what we aim to do. But a precise definition
in the distributional sense is required. Since u∧out only exists as a tempered
distribution the multiplication with the non–smooth characteristic function
χ[−NA·k+,NA·k+] is not trivially defined (cf. Rudin [94, Theorem 7.13]). To
adopt to this, we replace the characteristic function χΣj

by

χΣj ,ǫ(x) =

{
0, x 6∈ Σj

e−ǫ|x|, x ∈ Σj

for ǫ > 0. Later we will discuss the limit ǫց 0.

To gain a numerically feasible expression we insert

uout(x, 0)|Σj
= usc,j(x, 0) + uref,j(x, 0) − uinc(x, 0)
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into the above integral over Σj . This yields

1

2π

∫ ∞

−∞

χΣj ,ǫ(x)uout(x, 0)e−ikxxdx =

1

2π

∫ ∞

−∞

χΣj ,ǫ(x)usc,j(x, 0)e−ikxxdx +

1

2π

∫ ∞

−∞

χΣj ,ǫ(x)(uref,j(x, 0) − uinc(x, 0))e−ikxxdx.

(5.8)

Both integrals on the right hand side are regular Fourier transforms which
we denote by

u∧c,ǫ(kx) =
(
χΣj ,ǫ(x)usc,j(x, 0)

)∧
(kx),

u∧s,ǫ(kx) =
(
χΣj ,ǫ(x)(uref,j(x, 0) − uinc(x, 0)

)∧
(kx).

In the following we will drop the sub-index “ǫ” for the case ǫ = 0. The sub–
indices “c” and “s” stand for continuous and singular, respectively, as we will
explain soon.

We first consider u∧c,ǫ. We want to deal with the corresponding integral
in the above equation (5.8) by the complex deformation technique we have
developed in Section 4.6 of the previous chapter. To do so, we restrict kx to
the relevant spectrum |kx| ≤ NA·k+.We further need to make the assumption
that there exist a κ > NA · k+ and a constant C such that

|uγ,j(x, 0)| ≤ Ce−κIm(γ)x.

This is a requirement on the decay rate of the PML solution. Then, the
Fourier integral u∧c,ǫ can be replaced by an absolutely convergent integral
which involves the PML solution uγ,j(x, 0), cf. equation (4.20). The complex
deformed integral has an exponentially fast convergence rate independently
of ǫ. Hence, the Fourier transform u∧c,ǫ(kx) is continuous for |kx| < κ. This
allows to define the band limited Fourier transform as

u∧NA,c(kx) = χ[−NA·k+,NA·k+](kx)u
∧
c (kx).

Transforming back to the physical space by applying the inverse Fourier
transform yields

uNA,c(x) = (u∧NA,c)
∨(x). (5.9)

We now turn to the second Fourier integral u∧s,ǫ. The corresponding inte-
gral in the above equation (5.8) (second term on the right hand side) involves
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the reference field and is only defined in the distributional sense. We have
that

uref,j(x, 0) − uinc(x, 0) = Bje
ikx,incx.

For the sake of a simpler notation we henceforth assume that Σj = [0,∞).
This way, the considered integral is essentially the Fourier transform of the
function h(x)ei(kx,inc+iǫ)x, where h(x) denotes the Heaviside step function. For
ǫ = 0 we have

(
h(x)eikx,incx

)∧
(kx) =

1

2
δ(kx − kx,inc) −

i

2π
P.V.

1

kx − kx,inc
,

see for example Benedetto [14]. Here, “P.V.” denotes the Cauchy principal
value.

But this is not our final result because it remains to discuss the restriction
of the Fourier spectrum to the band |kx| ≤ NA · k+. It is tempting to define
the band–limited Fourier transform as

u∧NA,s(kx) = χ[−NA·k+,NA·k+](kx)u
∧
s (kx).

However, the multiplication of the tempered distribution u∧s with the non–
smooth characteristic function χ[−NA·k+,NA·k+] is not properly defined, as we
already mentioned above. To understand the implications in greater detail
we retreat to ǫ > 0. We compute

u∧s,ǫ(kx) =
1

2π

∫ ∞

0

Bje
ikx(inc)xe−ǫxe−ikxxdx

=
1

2π

Bj

i(kx − k
(inc)
x − iǫ)

.

Now, we are allowed to form the product

u∧NA,s,ǫ = χ[−NA·k+,NA·k+]u
∧
s,ǫ.

We do not discuss the convergence of u∧NA,s,ǫ for ǫց 0 in the weak∗–topology
of tempered distributions. Instead, we apply the inverse Fourier transform
on u∧NA,s,ǫ and discuss the convergence

lim
ǫց0

(u∧NA,s,ǫ)
∨(x) = uNA,s(x) (5.10)

in the physical space. To give a motivation we recall that the “image”–field

uNA(x) = uNA,s(x) + uNA,c(x)
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Re(kx)

Im(kx)

r

C

kx,inc − iǫ

NAk+−NAk+

Figure 5.7: Contour integrals in the complex kx–plane for the evaluation
of the inverse Fourier transform.

is the relevant output of a scattering experiment.
To study the convergence in equation (5.10) we use classical arguments

from function theory, see for example Young [115]. We have that

(u∧NA,s,ǫ)
∨(x) =

−iBj

2π

∫ NA·k+

−NA·k+

1

kx − kx,inc − iǫ
eikxxdkx

We start with the case |k(inc)
x | < NA ·k+. Applying Cauchy’s integral theorem

with contours in the complex kx–plane as depicted Figure 5.7 yields

(u∧NA,s,ǫ)
∨(x) =

−iBj

2π

∫

C

1

s− kx,inc − iǫ
eisxds +

−iBj

2π

(∫ kx,inc−r

−NA·k+

1

kx − kx,inc − iǫ
eikxxdkx +

∫ NA·k+

kx,inc+r

1

kx − kx,inc − iǫ
eikxxdkx

)
.

(5.11)

For a fixed r > 0 we are allowed to perform the limit process ǫց 0. Setting
ǫ = 0, the first integral over the semicircle C is equal to Bj/2 exp(ikxx)
independently of r. The second and third integral diverge as r ց 0, but the
sum of both remains finite. In this context, the Cauchy principal value is
defined as the sum two integrals. For |k(inc)

x | < NA · k+ we have shown that

uNA,s(x) =
Bj

2
eikxx +

−iBj

2π
lim
rց0

(∫ kx,inc−r

−NA·k+

1

kx − kx,inc
eikxxdkx +

∫ NA·k+

kx,inc+r

1

kx − kx,inc
eikxxdkx

)
.

(5.12)
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For the case |k(inc)
x | > NA · k+ the limit process ǫց 0 is trivial. We have

uNA,s(x) =
−iBj

2π

∫ NA·k+

−NA·k+

1

kx − kx,inc
eikxxdkx. (5.13)

Both formulas (5.12) and (5.13) undesirably diverge for (NA · k+) ր
|kx,inc|. This mirrors the mathematical difficulties we had to define the prod-
uct of a distribution with a non–smooth function.

However, equations (5.12) and (5.13) are useful when |kx,inc ±NA · k+| is
sufficiently large. What sufficiently large means depends on the type of the
application. To explain this, we need to make some deeper considerations on
the physical background of scattering problems. Especially, we will take into
account that one deals with two length scales in a scattering problem. The
scatterer has a microscopic length scale with feature sizes in the dimension
of the wavelength. On the other hand, the scatterer and the aperture are
millions of wavelengths apart. So, the aperture (or the optical system in
general) has a macroscopic length scale.

The misbehavior of equations (5.12) and (5.13) for kx,inc near ±NA · k+

is not a flaw of our analysis but reflects the breakdown of our idealized scat-
tering modeling. We used a monochromatic plane wave Aince

i(kx,incx−kzz) as
the incoming field. But from a physical point of view this is not a reasonable
model in a macroscopic sense, e.g., the energy transported by an ideal plane
wave is infinite. A realistic incoming wave like a laser beam is a superposition
(Fourier integral) of plane waves. This way the scalar Ainc is replaced by a
function ainc(kx) centered near kx,inc. Accordingly, the scalar Bj is transfered
to a function bj(kx) and we need to integrate the expressions in equations
(5.12) and (5.13) over kx,inc. With this smoothing our mathematically diffi-
culties with the divergent integrals disappear.

The applicability of this smoothing approach depends on the physical
situation. Firstly, the precise form of the function bj(kx,inc) is often un-
known due to thermal fluctuation, etc. Then we need further arguments
from statistics. For this topic we refer to the comprehensive book by Man-
del and Wolf [72] which also covers statistical fluctuations in the angular
frequency ω.

Secondly, for imaging systems as used in micro-lithography applications
the function bj(kx) is extremely concentrated near kx,inc.Also here, the precise
form of the function bj(kx) is unknown, but let us assume that we can write
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bj(kx) = Bjψ(kx) with

∫

|kx,inc−kx|≤∆

ψ(kx)dkx = 1,

∫

|kx,inc−kx|>∆

ψ(kx)dkx ≪ 1,

with ∆ ≪ k+. For ∆ ց 0 the function ψ converges to the δ-distribution
at kx,inc. This way we regain our idealized model with a plane wave as the
incoming field. For a small but finite value of ∆, the incoming field still looks
like a beam from the macroscopic point of view. But near the scatterer the
incoming field looks like a plane wave over a distance of a huge number of
wavelengths.

It is still in front of us to explain what happens when kx,inc is close to
NA · k+. Conversely, one verifies that for |kx,inc ± NA · k+| > ∆, the precise
shape of the function ψ(kx) does not matter in the equations (5.12) and
(5.13) because ∆ ≪ k+, and we can perform the limit process ∆ ց 0. But
this is not the case when |kx,inc±NA ·k+| < ∆. Then, the precise form of the
function ψ(kx) matters. Since ψ(kx) is typically unknown, statistics comes
into play at this point again. In brief, the critical scenario, |kx,inc±NA ·k+| <
∆, cannot be treated without taking the incoherence of the light source into
account. But this is out of the scope of this thesis and we again refer to
Mandel and Wolf [72].

5.4 Numerical examples

Before we start with the discussion of the numerical examples we comment
on the computation of the inverse Fourier transform with a spectrum defined
in the distributional sense only. In the discussion of the singular Fourier
spectrum in Section 5.3 we first mollified the Fourier transform by introducing
a small perturbation ǫ and discussed the limit ǫ ց 0 afterward. A possible
way for a numerical evaluation is to use a finite but small value for ǫ. Doing
so, it is necessary to cautiously monitor arising round–off errors.

When the Fourier transform is defined as a Cauchy principal value, more
accurate and stable approaches are available. In our implementation we
followed Noble [86] and used an even–order Gauss–Legendre formula for the
principal value integral evaluation. To improve the efficiency of the numerical
integration the usage of an adaptive integration method is advisable, see
Deuflhard and Hohmann [38].



142 CHAPTER 5. MULTIPLY STRUCTURED EXTERIOR DOMAINS

x

z

(2, 0)

(−2,−1.45)

Ωext,1

Ωext,2

Ω

Γ1,2

Figure 5.8: Plane wave diffraction by a semitransparent half-plane. The
lower domain is a glass substrate with ǫg = 2.34273636. The upper domain
consists of air. A semi-transparent screen with height h = 0.65 and ǫs =
−0.923115 + 5.204948i is placed on top of the glass substrate in the right
infinite half-space.

5.4.1 Diffraction of a plane wave by a semitransparent

half–plane

With this simple example we want to verify our scattering problem approach
for multiply structured exterior domain. Moreover, we will validate the
Fourier transform computation in the presence of a non-trivial distributional
spectrum.

Figure 5.8 gives the geometry of this example. The structure is illu-
minated from below by a y–polarized plane wave with vacuum wavelength
λ0 = 1.26 propagating in the direction (sin(α), 0, cos(α))T. The actual value
of the incident angle α is given below.

The exterior domain was split into two compartments Ωext,1 and Ωext,1

as shown in Figure 5.8 in the simulation. The structure consists of two
differently layered media. The reference fields eref,1 and eref,2 are the solutions
to Maxwell’s equations in the left hand side and right hand side layered
media, respectively.

In the upper half space, the reference fields eref,1 and eref,2 are plane
waves with different amplitudes but with the same propagation direction
(sin(β), 0, cos(β))T. The incident angle α was chosen so that β = 30 ◦.

We compared the solution emult obtained with our new approach to eper,L

and etr,L, where eper,L was computed on an enlarged computational domain
with range [−L,L] in x and with periodic boundary conditions in x–direction.
For the computation of etr,L we also increased the computational domain ac-
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Figure 5.9: Plane wave diffraction by a semitransparent half-plane: Con-
vergence of eper,L and etr,L towards emult. The solution emult was obtained on
a small computational domain with our new method. For the computation of
eper,L and etr,L we increased the computational domain to the range [−L,L]
in x. For eper,L periodic boundary conditions in x were used, whereas for etr,L

semi-transparent layer was truncated to fit into the enlarged computational
domain.

cordingly, but truncated the semi-transparent top layer to the computational
domain and used transparent boundary conditions in x–direction. From
physical insight one expects that eper,L, etr,L converges to emult within Ω
with a growing computational domain size L. Actually, scattering off a mul-
tiply structured exterior domain is traditionally simulated by using a large
value L. Figure 5.9 approves the convergences

lim
L→∞

eper,L = emult

lim
L→∞

etr,L = emult.

The relative differences eper,L −emult and etr,L −emult on top of Ω are plotted
in the L2–norm. We observe a clear but very slow convergence of eper,L,
etr,L to emult. This justifies our new approach and shows the tremendous
performance gain compared to the traditional approach.

We now turn to the Fourier transform evaluation. The practically relevant
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Figure 5.10: Plane wave diffraction by a semitransparent half-plane: Com-
puted image fields for a numerical aperture NA = 0.9.

field is the image

eNA(x) = (χ[−NA·k0,NA·k0](kx)(emult(x, 0))∧(kx))
∨,

where k0 = 2π/λ0 is the wavenumber in the air–filled, upper domain. This
image is formed by a perfect 1 : 1 projection system with numerical aperture
NA. We will again compare eNA(x) to the images formed by the periodified
problem and the truncated problem,

eNA,per,L(x) =(χ[−NA·k0,NA·k0](kx)(eper,L(x, 0))∧(kx))
∨,

eNA,tr,L(x) =(χ[−NA·k0,NA·k0](kx)(etr,L(x, 0))∧(kx))
∨.

We learned in Section 5.3 of this chapter that the image formation is ill-
conditioned when the numerical aperture coincides with sin(β) = 0.5.

Figure 5.10 gives the image fields for NA = 0.9, where eNA is compared
to eNA,per,L and eNA,tr,L with L = 5200λ0. All three fields are in a good agree-
ment. More quantitatively, Figure 5.11 shows the convergences of eNA,per,L

and eNA,tr,L to eNA with growing computational domain size L.
We repeated the image formation for a smaller numerical aperture NA =

0.45. In this case, we observe much larger differences between eNA and
eNA,per,L or eNA,tr,L, cf. Figure 5.12. Even for a 4000 times enlarged compu-
tational domain for the artificially periodified problem significant derivations
are present. Nevertheless, Figure 5.13 affirms the convergences of eNA,per,L

and eNA,tr,L to eNA with a growing computational domain size L.
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Figure 5.11: Plane wave diffraction by a semitransparent half-plane: Con-
vergence of eNA,per,L and eNA,tr,L to eNA with growing computational domain
size L. (NA = 0.9)
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Figure 5.12: Plane wave diffraction by a semitransparent half-plane: Com-
puted image fields for a numerical aperture NA = 0.45.
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Figure 5.13: Plane wave diffraction by a semitransparent half-plane: Con-
vergence of eNA,per,L and eNA,tr,L to eNA with growing computational domain
size L. (NA = 0.45)

5.4.2 Oblique line crossing

This 2D example is a test for the PML method applied to a scattering prob-
lem with a fairly complicated, multiply structured exterior domain. The ge-
ometry parameters are given in Figure 5.14 which is a true–to–scale plot. The
incoming field is a y–polarized plane wave with vacuum wavelength λ = 1.93
and normalized amplitude which travels in the (−1/

√
2, 0, 1/

√
2)T–direction.

The exterior domain is split into three compartments as shown in Fig-
ure 5.14. The reference fields eref,1, eref,2 in Ωext,1 and Ωext,2, respectively,
are constructed in a straightforward way: In both cases, we extend the half
infinite structures so that layered media are formed, cf. Figure 5.15. As ref-
erence fields eref,1, eref,2 we use the exact solutions for a field propagation in
layered media with prescribed incoming plane wave einc. The difference field
eref,1−eref ,2 is outward radiating on the interface Γ1,2, so that the right hand
side terms stemming from the matching condition on Γ1,2 are exponentially
damped when applying a complex continuation.

The construction of the reference field eref,3 is more involved. The trivial
choice eref,3 = einc gives rise to coupling terms on Γ1,3 and Γ2,3 which grow
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Figure 5.14: Oblique line crossing: The structures painted in dark gray are
semitransparent with permittivity ǫl = 5.995184+3.00384i and are infinitely
extended within the exterior domain. The background consists of air.
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Figure 5.15: Oblique line crossing: Construction of reference fields eref,1

(right plot) and eref,2 (left plot). In both cases, the reference field is a solution
to Maxwell’s equations in layered media with prescribed incoming plane wave
einc.
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Figure 5.16: Oblique line crossing: Isoline plots of the computed field Ey.
The figure on the left shows the real part. In the right figure the intensity
log(|Ey|2) is plotted.

exponentially when the PML method is applied. To circumvent this we use

eref,3 = einc + (eref,1 − einc) + (eref,2 − einc)

= eref,1 + eref,2 − einc.

Surely, eref,3 is a solution to Maxwell’s equations in Ωext,3. Moreover, since
(eref,1 − einc) and (eref,2 − einc) are outward radiating in Ωext,3, we infer that
the incoming part of eref,3 is equal to einc as desired. The field jump on Γ1,3

is given by

eref,3 − eref,1 = eref,2 − einc,

which is the outgoing part of eref,2. Hence, the coupling terms on Γ1,3 are also
exponentially damped under a complex continuation. The damping property
of eref,3 − eref,2 on Γ2,3 is shown just as well. Hence, the PML formulation as
posed in Problem 5.1 applies.

The computed field is shown in Figure 5.16. The left plot shows the real
part of the total field Ey within the computational domain. The intensity
|Ey|2 is given in the logarithmic plot on the right, where we labeled some
isolines corresponding to small intensities.
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Figure 5.17: Oblique line crossing: Convergence of the computed field
within the computational domain for successive finite element mesh refine-
ments.

In our simulation we used the adaptive PML method as described in
Chapter 3. The actual damping rate of the PML method depends on the
coupling terms arising on the interfaces Γ1,2, Γ1,3 and Γ2,3. Hence, a proper
and automatic adaption of the PML thickness is indeed required for an opti-
mal choice of the PML discretization parameters. In Figure 5.16 we observe
no disturbances near the coupling interfaces Γ1,2, Γ1,3 and Γ2,3.

Figure 5.17 shows the finite element convergence. We used second order
finite elements and refined the mesh uniformly. In Figure 5.17, we observe
an excellent agreement with the theoretical convergence behavior of finite el-
ements. We remark that the PML discretization was automatically adapted
during the refinement process, so that this example demonstrates the accu-
racy of our adaptive PML method again.

For a further validation we increased the computational domain to ΩL =
[−4, L]×{0}× [−L, 4] and truncated the infinite lines to fit into ΩL. For this
setting, the exterior domain is homogeneous and the standard PML method
applies for the computation of the scattering of the prescribed incoming plane
wave einc by the truncated structures. This yields the fields etr,L. From
physical insight we expect that

lim
L→∞

etr,L = emult,
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Figure 5.18: Oblique line crossing: Convergence of etr,L towards emult. The
solution emult was computed on the computational domain Ω in Figure 5.15
applying our new method. For the computation of etr,L we increased the
computational domain diameter with the parameter L and truncated the
infinite structures to fit into the enlarged computational domain.

where emult is the solution obtained with our new PML method for multiply
structured exterior domains. This is indeed approved in Figure 5.18 which
shows the truncation error

‖etr,L − emult‖L2(Ω).

For the computation of etr,L we used fourth order finite elements and refined
the mesh sufficiently, so that the finite element approximation error was
suppressed.

As in the previous example, we observe a clear but very slow convergence
of etr,L to emult. This justifies our new approach for the numerical treatment
of scattering problems with multiply structured exterior domains again. The
performance gain in this example is tremendous. Without the new method
we are forced to increase the diameter of the computational domain by a
factor larger than 20 to reach a relative accuracy of 10−2.

5.4.3 Plane wave scattering off glass cone

The geometry of this 3D example is shown in Figure 5.19. The geometry
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Figure 5.19: Infinite glass cone. The apex angle of the glass cone is equal

to 40 ◦. The glass has a refractive index ng =
√

2.113. The surroundings
consist of air. The cone is illuminated by a plane wave from above with
incidence angle equal to 45 ◦.

exhibits a rotational symmetry. After transforming the problem to cylin-
der coordinates (r, φ, z), it is possible to separate this type of 3D scattering
problem into discrete Fourier modes with respect to the φ coordinate, cf.
Section 2.5. The solution expands into a sum

e(r, φ, z) =
∞∑

n=−∞

en(r, z)einφ.

Each of the fields en(r, z) satisfies a Maxwell scattering problem on a two di-
mensional cross section domain sketched in Figure 5.20. In classical notation,
we have




∂r

in
∂z


× µ−1(r)




∂r

in
∂z


×




Er

Eφ

Ez


− ω2ε(x)




Er

Eφ

Ez


 =0,

which is precisely of the same form as the 2D Maxwell’s equations (2.8), but
with transformed tensors

ε(r) = εdiag([ r, 1/r, r ]), µ(r) = µdiag([ r, 1/r, r ]).

To fix the incoming field en,inc(r, z) for the nth cross section problem we utilize
the Jacobi-Anger formula to decompose the incoming plane wave into Fourier
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Figure 5.20: Infinite glass cone: cross section computational domain.

modes, see Colton and Kress [32, p. 32]. Since the series ‖en,inc(r, z)‖ decays
quickly with n, it is possible to truncate the above Fourier mode expansion
in a numerical simulation.

Figure 5.20 also shows the used splitting of the multiply structured ex-
terior domain. The incoming light is a solution to Maxwell’s equations in
the sub-domain Ωext,1 only. Within Ωext,2 the incoming field is set equal to
zero. One verifies that the arising coupling terms on the interface Γ1,2 decay
exponentially with the distance to the computational domain.

Carrying out numerical experiments as in the previous example – check-
ing convergence with the finite element refinement level, comparing with
scattering off a truncated but large cone – one again validates the accuracy
of the method. Since the convergence plots resemble those of the previous
example too much, they are not presented here. Instead, it is time to give
an illustrative false color plot of the field amplitude |e(x, y, z)|. We refer to
the title page of this thesis.



Zusammenfassung

In dieser Arbeit wurden numerische Konzepte zur Berechnung der Licht-
ausbreitung in kompliziert strukturierten optischen Bauteilen weiter- und
neuentwickelt. Neben der Berechnung des Nahfeldes, das heißt der Berech-
nung der Lichtverteilung in einem kleinen Ausschnitt eines optischen Bautei-
les, stand die Entwicklung einer Darstellungsformel im Vordergrund, die es
erlaubt, das elektromagnetische Feld auch außerhalb dieses eigentlichen Re-
chengebietes auszuwerten. Im Einzelnen wurden folgende Aspekte behandelt:

Lichtstreuprobleme werden mathematisch durch die Maxwell’schen Glei-
chungen auf dem gesamten Raum beschrieben. Die Einschränkung auf ein
endliches Rechengebiet erfordert mathematisch die Formulierung geeigneter
Randbedingungen für das Rechengebiet. Dabei ist es entscheidend, ein ma-
thematisches Kriterium für die Unterscheidung von ein- und auslaufenden
Wellen bereitzustellen. In dieser Arbeit wurde dies konsequent mit Hilfe der
sogenannten Polbedingung bewerkstelligt. Dies knüpft an bisherige Arbeiten
zur skalaren Helmholtzgleichung an. Auf diese Weise wurde eine klare Pro-
blemstellung für komplizierte Streuprobleme gegeben, deren mathematische
Lösungstheorie nach wie vor unvollständig ist.

Die Perfectly-Matched-Layer Methode (PML) ist sehr weit verbreitet, um
ein Streuproblem numerisch auf ein endliches Rechengebiet zu beschränken.
Es wurde in dieser Arbeit der tiefe Zusammenhang zwischen der Polbedin-
gung als theoretisches Konzept und der PML Methode erhellt. Auf Grundlage
dessen konnte eine integrale Darstellungsformel der Streufeldlösung im Au-
ßenraum motiviert werden, die es erlaubte, eine adaptive PML Methode zu
entwickeln. Die Adaptivität ist wichtig für einen effizienten Einsatz der PML
Methode in relevanten Ingenieursproblemen, da kleine Änderungen der phy-
sikalischen Umgebungsparameter große Auswirkungen auf die numerischen
Steuerungsparameter nach sich ziehen können. Es konnte gezeigt werden,
dass mit der adaptiven PML Methode kritische Probleme akkurat numerisch
gelöst werden können, bei denen bisherige Implementierungen der PML Me-
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thode zu großen Fehlern führten.

Ein weiterer wichtiger Aspekt dieser Arbeit war die Bereitstellung einer
Außenraumlösungsformel auf Grundlage der berechneten Innenraumdaten
und den zusätzlichen PML Freiheitsgraden. Dies stellt einen großen techni-
schen Fortschritt dar, weil in einem Streuexperiment häufig die Fernfelddaten
entscheidend sind. Bisherige Ansätze zur Berechnung der Fernfelddaten be-
schränkten sich auf einfache Geometrien, wie etwa den homogenen Raum
oder geschichtete Außenräume. Für komplizierter strukturierte Außenräume
musste man sich bislang mit approximativen Resultaten zufrieden geben, die
man nur durch Vergrößerung des Rechengebietes kostspielig verbessern konn-
te.

Abschließend wurde gezeigt, wie die PML Methode erweitert werden
kann, damit auch mehrfach strukturierte Außenräume behandelt werden
können. Der Begriff “mehrfach strukturierter Außenraum” wurde in dieser
Arbeit geprägt und soll zum Ausdruck bringen, dass der Außenraum mehrere
halb–unendliche Strukturen besitzt, die es unter anderem verhindern, analy-
tische Lösungen der Maxwell’schen Gleichungen zu Lichtquellen im Außen-
raum zu finden. In diesem Sinne liegt für solche Geometrien auch keine nume-
risch brauchbare Beschreibung des einfallenden Lichts vor, was aber bislang
Voraussetzung für die mathematische Beschreibung eines Streuproblems war.
Entsprechend wurde die Streuproblemformulierung auf den Fall mehrfach
strukturierter Außenräume erweitert. Dabei wurde an klassische Arbeiten
von Sommerfeld und Wiener–Hopf angeknüpft, die allerdings nur idealisier-
te Strukturen behandeln konnten, wie zum Beispiel einen halbunendlichen,
infinitesimal dünnen, lichtundurchlässigen Schirm. Es wurde des Weiteren
gezeigt, wie auch für mehrfach strukturierte Außenräume eine Außenraum-
und Fernfeldauswertung erfolgen kann.
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