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Abstract

Applications which need exclusive access to a shared resource in dis-
tributed systems require a fault-tolerant and scalable mechanism to co-
ordinate this exclusive access. Examples of such applications include dis-
tributed file systems and master/slave data replication.

We present Flease, an algorithm for decentralized and fault-tolerant
lease coordination in distributed systems. Our algorithm allows the pro-
cesses competing for a resource to coordinate exclusive access through
leases among themselves without a central component. The resulting sys-
tem easily scales with an increasing number of nodes and resources. We
prove that Flease ensures exclusive access, i.e. guarantees that there is at
most one valid lease at any time.

1 Introduction

A broad range of applications require exclusive access to a shared resource in a
distributed system. A resource could be a file, a hard disk block or an exclusive
master role: Replicated file systems [1, 20, 21] have to ensure consistency of a
file’s replicas; shared-disk file systems [18, 19] must coordinate concurrent writes
to the same disk block and master/slave replication need a single master which
orders updates. The last example is particularly interesting as it is often used
to simplify the design of distributed systems [16]. For these applications we
need a mechanism to arbitrate which node gets access, i.e. who becomes the
temporary owner of a resource. Such an mechanism must be:

fault tolerant. If the owner of a resource crashes or is disconnected another
node should be able to become the new owner. Likewise, the mechanism itself
must not introduce a single point of failure to the system.

scalable. The mechanism must be able to automatically scale with number
of nodes and resources. This explicitly excludes any manual partitioning of the
system into smaller cells, we expect the mechanism to grow with the number of
nodes. Regarding the number of resources, this means that we don’t want to
artificially group resources into larger units. The resources should be as fine-
grained as necessary to avoid contention and to distribute the workload across
many machines.

Leases [10] are a mechanism to coordinate exclusive access which meets our
requirements. Leases are fault-tolerant locks that grant exclusive access to a
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resource for a limited pre-defined time span. If the process holding a lease
crashes, the resource becomes automatically available again as soon as the lease
expires. There is no need for complex failure detectors, the lease time-out serves
as an intrinsic failure detector based on real-time clocks available in all modern
computers.

We present Flease, an algorithm for decentralized, fault-tolerant lease coordi-
nation. Flease is built on top of a quorum-based distributed register [2] derived
from Paxos [12] and can tolerate message loss and the failure of a minority of
the participants. In contrast to the regular Paxos algorithm, our algorithm al-
lows processes to recover without using persistent state. As a fully decentralized
algorithm, Flease can coordinate a large number of fine-granular leases. Since
the nodes competing for the resource coordinate the leases among themselves,
Flease easily scales with the size of the system.

We continue the paper with an overview of related work on algorithms for
distributed lease coordination for various system models and centralized lock
services used in practical systems. We start the description of Flease with a
review of its underlying round-based register. We then construct a basic version
of Flease that does not include lease renewal and assumes perfectly synchronized
clocks. We further refine the algorithm to allows lease renewals. Finally, we
presents the full Flease algorithm for processes with loosely synchronized clocks
and illustrate how processes can recover without persistent state.

2 Related Work

Algorithms for distributed lease coordination have been developed and studied
for various system models.

Chockler and Malkhi [6] presented a fault-tolerant algorithm for timed asyn-
chronous systems with shared memory. They specifically designed their algo-
rithm for SAN-based file systems in which a shared memory is present. This
model is not applicable to shared-nothing architectures as used e.g. in dis-
tributed file systems exploiting commodity hardware.

A leader election algorithm for the timed asynchronous model is also pre-
sented by Fetzer et al. in [7]. This algorithm implements a leader election with
expiration time which is basically a lease. The algorithm is not fault-tolerant
and does not consider processes which recover after a crash.

An algorithm for truly asynchronous system was presented by Boichat et
al. [3]. However, due to the lack of time in asynchronous systems, their leases
approach works with logical time. This means that their variation of leases do
not guarantee exclusive access at a point in time. Rather, the goal of their
leases is to speed up the execution of algorithms in asynchronous systems by
reducing concurrency through a coordinator role. In a more general context,
Lampson [15] argued that consensus with Paxos can be made more efficient by
using a single master elected with a lease.

Flease is a simplified version of FaTLease [11] which uses regular consensus
with Paxos to agree on a lease owner. A scheme with instances similar to
Multipaxos [17] is used for continuous lease coordination. This results in a far
more complex algorithm compared to Flease. Distinguished renew-instances in
FaTLease ensure that a lease can be renewed by the owner even when other
processes try to acquire the lease.
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Another option for lease coordination is a central lock service. This central
service, however, doesn’t meet our requirements as it does not scale with the
number of resources in the system. The number of leases the lock service can
handle limits the size of the system and the granularity of the resources. In
practice, this approach is widely used at the cost of having very coarse-grained
resources [16].

The most prominent example is Google’s Chubby lock service [4, 5] which
is implemented using Paxos to replicate the lease database. Chubby is used
by other services at Google, e.g. for master election in the Google File System
(GFS) [9]. For file replication, the WheelFS [20] authors suggest to use a central
lock service for master-leases. The Frangipani [21] file system design included
a Paxos-replicated configuration service which issues locks to partition-masters,
similar to Chubby. Farsite [1], a distributed peer-to-peer file system, uses leases
for data and metdata access. To avoid contention on metdata entries, each field
of a metadata record has its own lease [8].

The Paxos algorithm [12, 13, 14] is a well studied algorithm that implements
consensus in the timed asynchronous system model. Due to its simplicity in
design and direct applicability to real-world systems it is widely used. The
Paxos algorithm relies on a quorum approach and is consequently able to tolerate
failure of a minority (up to dn+1

2 e out of n processes) processes. It is also able to
tolerate message loss and delay. The algorithm works in two phases in which a
proposer exchanges messages with all other processes in the system. During each
phase, all processes have to write their state to stable storage. The requirement
of persistent storage adds extra latency to the system that can be significant.
For the Flease algorithm we use the abstraction of a round-based register which
was derived from Paxos in a modularized deconstruction by Boichat et. al [2].

3 The Flease Algorithm

The main building block of Flease is a round-based register derived from Paxos
[2]. It has the same properties as Paxos regarding process failures and message
loss but assumes processes to be crash-stop as it lacks persistent storage. The
register implements a shared read-modify-write variable in a distributed system
which arbitrates concurrent accesses. The semantics of the register resembles
that of a microprocessor’s test-and-set operation.

Flease stores the currently valid lease in the register. If a process wants to
acquire the lease or wants to find out which process holds the lease, it starts by
reading the register’s value. If the register is empty or the lease stored in the
register has expired, the process creates a new lease and stores it in the register.
The currently valid lease, or the newly created lease, is returned as the result.

We start the presentation with this basic algorithm. The basic version as-
sumes perfectly synchronized clocks and does not allow leases to be renewed. In
a refined version we include lease renewal. For the final version we take care of
loosely synchronized clocks. Finally, we describe how the crash-stop register can
be turned into a crash-recovery register without persistent storage exploiting the
loosely synchronized clocks.
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3.1 System Model and Definitions

We assume a system model similar to the timed asynchronous model defined in
[7] with a finite and fixed set of processes Π = p1, p2..pn with each processes
making progress at its own speed. We also assume that each process pi has
access to a local (hardware) clock ci. These clocks exhibit a strictly monoton-
ically increase of the time they return, i.e. ci(t) < ci(t′) if t < t′. We require
that the processes maintain a loosely synchronized time, i.e. there is a known
upper bound ε on the drift between any two clocks. This means that the dif-
ference of the time reported by two clocks ci(t) and cj(t) at the global time
t is always less or equal ε. At any time t the following condition must hold:
∀pi, pj ∈ Π (ε ≥ |ci(t)− cj(t)|). Our assumption of loosely synchronized clocks
is a stricter requirement than the maximum known drift of the clock rates as
required by the timed asynchronous model. To simplify the presentation, we
start with an initial version of Flease that assumes perfectly synchronized clocks,
i.e. ε = 0. In the final version, we extend the algorithm to also consider loosely
synchronized clocks.

We assume the communication channels to be unreliable in the sense that
messages can be lost and delayed but are not altered or duplicated. To simplify
the presentation we start with a crash-stop model in which processes stop after
failing. For the final version of the algorithm, we extend this to a crash-recovery
model where processes recover and re-join the system after failing. We do not
assume that our processes have access to stable storage.

A lease is defined as a tuple λ = (pi, t). The lease is held by process pi and
is valid as long as ci(tnow) < t. A lease has expired if ci(tnow) > t with tnow as
the current time. We define the maximum time span of a lease to be valid as
tmax. For the system to make progress, we require that tmax > ε.

3.2 The Distributed Round-Based Register

The algorithm for the register is shown in figure 1. The register has two op-
erations: read(k) and write(k, v). k is a unique identifier generated by the
process initiating the operation. In Paxos k is the ballot number of the pro-
posal. We assume that there is total order on the values for k. v is the value
to be written to the register. Both operations either commit or abort. If read
commits, it returns the current value v of the register or ⊥ if the register is
empty. The full algorithm and proof of the following lemmas can be found in
[2].

Lemma R1. Read-abort: If read(k) aborts, then some operation read(k′)
or write(k′, ∗) was invoked with k′ ≥ k.

Lemma R2. Write-abort: If write(k, ∗) aborts, then some operation read(k′)
or write(k′, ∗) was invoked with k′ > k.

Lemma R3. Read-write-commit: If read(k) or write(k, ∗) commits, then
no subsequent read(k′) can commit with k′ ≤ k or write(k′′, ∗) can commit
with k′′ ≤ k.
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Algorithm 1 round based register from [2]
readi ← 0
writei ← 0
vi ←⊥

procedure read(k)
send (READ,k) to all processes in Π
wait until received (ackREAD,k,∗,∗) or (nackREAD,k)

from dn+1
2 e processes

if received at least one (nackREAD,k) then
return (abort,⊥)

else
select the [ackREAD,k,k′,v] with the highest k′

return (commit,v)
end if

end procedure

procedure write(k,v)
send (WRITE,k,v) to all processes in Π
wait until received (ackWRITE,k) or (nackWRITE,k)

from dn+1
2 e processes

if received at least one (nackWRITE,k) then
return abort

else
return commit

end if
end procedure

upon receive (READ,k) from pj

if writei ≥ k or readi ≥ k then
send (nackREAD,k) to pj

else
readi ← k
send (ackREAD,k,writei,vi) to pj

end if
end upon

upon receive (WRITE,k,v) from pj

if writei > k or readi > k then
send (nackWRITE,k) to pj

else
writei ← k
vi ← v
send (ackWRITE,k) to pj

end if
end upon
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Lemma R4. Read-commit: If read(k) commits with v and v 6=⊥, then some
operation write(k′, v) was invoked with k′ < k.

Lemma R5. Write-commit: If write(k, v) commits and no subsequent write(k′, v′)
is invoked with k′ ≥ k and v 6= v′, then any read(k′′) that commits, commits
with v if k′′ > k.

3.3 The basic Flease algorithm

Algorithm 2 The basic algorithm
procedure GetLease(k)

if read(k) = (commit, λ) then
if λ =⊥ or λ.t < tnow then

λ← (pi, tnow + tmax)
end if

if write(k,λ) = commit then
return (commit,λ)

end if
end if
return (abort,⊥)

end procedure

The basic version ofFlease is shown in algorithm 2. The GetLease proce-
dure returns either the currently valid lease or a new lease with the local process
as the lease owner.

Property L1. Lease invariant: If a process p decides λ = (p, t) then any other
process will decide λ until tnow > t. This is similar to the agreement property of
consensus but allows hosts to decide a different value after the lease has timed
out.

Proof by contradiction: Assume two processes pi and pj decide two different
values λ = (p, t) and λ′ = (p′, t′) with λ 6= λ′, t > tnow and t′ > tnow, i.e. two
different leases which are valid at the same time. Without loss of generality, we
assume that k′ > k and that pi decides λ after committing GetLease(k). Af-
terwards pj decides λ′ after committing GetLease(k′). Following Algorithm 2,
pj must commit read(k′) before calling write(k′, λ′). The read-abort property
of the register (lemma R1) ensures that the read will commit because k′ > k.
Due to the write-commit property of the register (lemma R5), the read will
commit with λ as this value was previously written by pi. Depending on the
value of λ.t, process pj will take one of the two decisions:

Case 1: λ.t ≥ tnow (the lease λ is still valid)
According to the algorithm, pj will write(k′,λ) and decide λ′ = λ. How-
ever, this is a contradiction to the assumption that λ′ 6= λ.

Case 2: λ.t < tnow (the lease λ has expired)
In this case, pj would write(k′,λ′) and decide λ′ 6= λ but is allowed
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to do so as we require pj to decide λ only until tnow > λ.t. This is a
contradiction to the assumption that t > tnow and t′ > tnow.

3.4 Including Lease Renewals

With the basic version (algorithm 2), the lease owner will lose its lease when
the old lease has timed out and the new lease is being coordinated. During
this time, which takes at least two message round trips, there is no lease and
consequently the resource cannot be accessed. To avoid these interruptions, the
owner of a lease should be allowed to extend the lifetime of the lease as long as
the original lease is still valid. Algorithm 3 shows an extended version of the
basic algorithm which includes lease renewals.

Algorithm 3 The extended algorithm with lease renewal
procedure GetLease(k)

if read(k) = (commit, λ) then
if λ =⊥ or λ.t < tnow then

λ← (pi, tnow + tmax)
else if λ.p = pi then

λ← (pi, tnow + tmax)
end if

if write(k,λ) = commit then
return (commit,λ)

end if
end if
return (abort,⊥)

end procedure

To allow lease renewal we need to relax the lease invariant to require the
processes to output the same lease owner, not necessarily the same lease timeout.

Property L2. Lease invariant: If a process p decides λ = (pl, t) then any
other process will decide λ′ = (p′

l, t
′) with p′

l = pl and t′ ≥ t until tnow > t.
The proof by contradiction is similar as the proof for property L1. However,

we assume that two processes pi and pj decide two different values λ = (pl, t) 6=
λ′ = (p′

l, t
′) with t > tnow and t′ > tnow and pl 6= p′

l, i.e. two different leases
which are valid at the same time and have different lease owners. Depending
on the value of λ.t, process pj will take one of the three decisions:

Case 1: λ.t ≥ tnow (lease λ is still valid)

Case 1a: λ.p 6= pj (pj does not hold the lease)
Same as case 1 in proof of lemma 1.

Case 1b: λ.p = pj (pj holds the lease)
According to the algorithm, pj will write(k′,λ′) and decide λ′ with
p′

l = pl and t′ > t. However, this is a contradiction to the assumption
that p′ 6= p.
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Case 2: λ.t < tnow (the lease has expired)
In this case, pj would write(k′,λ′) and decide λ′ but is allowed to do so
as we require pj to decide λ only until tnow > λ.t. This is a contradiction
to the assumption that t > tnow and t′ > tnow.

3.5 Allowing Processes to Recover

The round-based register assumes a crash-stop model as it does not use persis-
tent storage to recover the register content after a crash. In order to allow the
register to recover from a crash, the values for k must be stored on stable storage
for each read(k) and k as well as v must be stored for write(k, v). Thus, the
state of the register on each node i comprises of the three values readi, writei

and vi.
With leases we can exploit the fact that leases expire: In our algorithm, an

empty register or a register with a lease that has expired are equal. Therefore,
we can turn the register into a crash-recovery model for our leases. We require
a recovering process to wait until tmax has passed, before it can rejoin the
system. During this waiting period, the process is not allowed to participate
in lease coordination and must not send messages. By waiting until tmax has
passed, we can guarantee that any lease which was in the register when the
process crashed has timed out.

A second problem with crash-recovery is that we have to ensure that the
register will abort a read or write with k′ if k′ is smaller than the k used
for the previous read and/or write operation (lemmas R1 and R2). However,
a process which recovered from a crash has lost its complete state which also
includes the readi and writei. To guarantee that any k′ used after such a crash
is larger than the maximum k seen before the crash, we take again advantage of
synchronized clocks. We use the current time as the ballot number and therefore
guarantee that k′ > k always holds. To distinguish messages sent at the same
time, we use a ballot number k = (t, idp) with idp being a unique process id.

3.6 Final Algorithm with Loosely Synchronized Clocks

An algorithm based on perfectly synchronized clocks is of little practical use.
To make Flease suitable for real-world use, we extend it to work with loosely
synchronized clocks as in FaTLease. As mentioned earlier, we expect host clocks
to be loosely synchronized, i.e. the difference between any two clocks does not
exceed a certain maximum.

Algorithm 4 is an extended version of the algorithm with lease renewal (Fig.
3) which also takes the clock skew into account. We introduce a safety period
sp between the time when the lease expires and when a new lease can be issued.
During the safety period it is unknown if the current lease holder still considers
the lease to be valid or expired due to the clock skew. However, after ε time, any
host can safely assume that the lease has expired on all hosts and can execute
the regular algorithm 3.

It is easy to see that the algorithm is correct regarding the lease invariant
as this part is identical to algorithm 3.

Crash-Recovery with Loosely Synchronized Clocks. Since we assume
that ε < tmax, we can also guarantee k′ > k in the case of loosely synchronized
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Algorithm 4 The full Flease algorithm for loosely synchronized clocks
procedure GetLease(k)

if read(k) = (commit, λ) then
if λ.t < tnow and λ.t+ ε > tnow then

wait for ε
return GetLease(k′) . with k′ > k

end if

if λ =⊥ or λ.t < tnow then
λ← (pi, tnow + tmax)

else if λ.p = pi then
λ← (pi, tnow + tmax)

end if

if write(k,λ) = commit then
return (commit,λ)

end if
end if
return (abort,⊥)

end procedure

clocks. However, the process with the fastest clock (i.e. maximum c(t)) will
always acquire the lease. To circumvent this problem, we consider time-ranges
for comparison rather than just the timestamps. As long as |t − t′| ≤ ε we
consider the messages to be equal and use the process id and a random value
to distinguish the messages.

4 Discussion

We have presented Flease, a decentralized and fault-tolerant algorithm for lease
coordination in distributed systems. Our proofs demonstrate that Flease guar-
antees the exclusiveness of leases.

Compared to coordinating leases with Paxos, Flease offers the same fault-
tolerance and cost in terms of messages and message round-trips. However, it is
more efficient as it does not require persistent storage consuming less resources
on the hosts it is executed on. This is particularly important in distributed file
systems and databases which require the maximum I/O performance. For these
systems, Flease offers a scalable alternative to centralized lock services.
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