X
&Y

XI7
XY
X}

A
AR
XX

“v

‘g
<D

/
Y X )

TakustralRe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

RALF BORNDORFER MARTIN GROTSCHEL ANDREASLOBEL

The Quickest Path to the Goal

To appear as Chapter 5 in Martin Aigner, Ehrhard Behrends (Editors) All Mathematics, American Mathematical Society, 2010.

Z1B-Report 10-21 (July 2010)



The Quickest Path to the Goal

Ralf Borndorfer* Martin Grotschel* Andreas Lobel*

July 11, 2010
Abstract. We provide an introduction into the mathematics of and with
paths. Not on the shortest, but hopefully on an entertaining path!
Keywords. shortest paths, combinatorial optimization, operations research

Mathematics Subject Classification (1991). 90C10

1 Historical Overture

The theme “paths” evokes associations with streets, transport, traffic ... and
mathematics! Here are four examples.

The Konigsberg bridge problem. In the year 1736 the mathematician,
astronomer and physicist Leonhard Euler (1707-1783) studied the simple and
at the same time mysterious sketch reproduced as Figure 1.

/‘//_

i

Fig. 1: The Konigsberg bridge problem.

1Zuse-Institute Berlin, TakustraRe 7, 14195 Berlin, Germany, http://www.zib.de


http://www.zib.de

55 be problem, whidy ought to be familiar, was the following: At Kdnigsberg in Prufiia there
i8 an ifland A, called ,the Kneiphof, and the river that flows by it divides into tiwo
3 »'%5 arm8 a8 indicated in Figure 1. Seven bridges, a, b, ¢, d, e, f and g, paff over the
(@ /: arms of the river. The queftion i3 whether one can Devife a round walf that pafes over
eady of thefe bridges eractly once. ¥ bave beard that fome deny thid poffibility, while others are doubtful,
and that nobody corroborated this. From this I frame the following very general problem: How from
the fbape of the river and it8 divifions into arms, and alfo the number of bridges, to determine whether
it i8 pofiible to paff over eady bridge epactly once, or not.

X\

et

s
@)
S

e

o,

This was the Kdnigsberg Bridge Problem. It was most unconventional: un-
doubtedly mathematical in nature, and yet so framed that it neither required the
calculation of a number, nor admitted a folution with the belp of numerical calculation. Euler called
this new mathematics without numbers, in which only the structure of the
configuration plays a role, but not size and form, Geometria situs, geometry of
position (he took the concept from a letter of Leibniz from the year 1679).

KOoNINGSBERGA.

Fig. 2: Graph. Fig. 3: Konigsberg 1736. Fig. 4: L. Euler.

Euler’s first step into this uncharted territory was an abstraction of genius.
From the map in Figure 1 he produced the diagram in Figure 2. In this graph
the islands have been transformed into formless nodes and the bridges into
lines (today we call them edges). When he studied this representation Euler
noticed that the number of edges that lead into a node, its degree, plays an
important réle. This quantity was the key to the solution, not only of the
Konigsberg, but even all bridge problems, through two wonderful results:

Theorem 1. The number of nodes with odd degree is even.

Theorem 2. There is a walk that traverses each edge exactly once if and only
if there are at most two nodes of odd degree.

To find such a walk one must identify a starting node and an end node, which
may, but need not, coincide.

Euler’s theorems were the first contributions to topology, as the geometry of
position is now called: more precisely, to the mathematical discipline now
called graph theory. The highest honor in mathematics is the naming of a
discovery after a person. The term FEuler tour for such a walk is one of these



references through which mathematicians today still honor Euler’s work. The
question remains for you, dear readers:

Exercise 1 (Solution in Section 6). Is there an Euler path over the Konigsberg
bridges?

The Hamiltonian circuit problem. In 1857 the Irish mathematician Sir
William Rowan Hamilton (1805-1865) invented the “Icosian Game”, see Fig-
ure 7, which resembles the Konigsberg Bridge Problem at first glance. In the
graph in Figure 5, whose nodes represent places such as Brussels, Canton,
Delhi to Zanzibar, one is to find a closed tour (a cycle) that visits each place
exactly once. Just try it! Try the “honeycomb” in Figure 6 beside it too: this
was invented at about the same time by Hamilton’s English colleague Thomas
Penyngton Kirkman (1806-1895). You will find a difference!

Exercise 2 (Solution in Section 6). Is there a closed tour in the Icosian Game?

Exercise 3 (Solution in Section 6). Is there a closed tour in the honeycomb?

Fig. 5: Graph of the Icosian Game. Fig. 6: The “honeycomb”.

Closed tours in graphs are called Hamiltonian circuits, and the question whether
a graph contains such a path is the Hamiltonian Circuit Problem (HCP for
short). What is astonishing about the HCP is that although the problem re-
sembles the Bridge Problem closely it admits no similar method of solution.
All known methods must reckon in the worst case with having to try all possi-
bilities by enumeration. The amazing reason for this is that in all probability
there is nothing better! Complezity theory shows that the HCP belongs to the
class of NP-complete problems, which are difficult in a way that can be made
mathematically precise. However, a conclusive proof of the inevitability of enu-
meration for NP-complete problems has not been found yet, despite intensive
research.

For special graphs one can do more, and develop specific algorithms. Hamilton
knew a method of solution for his Icosian game, and he could even prescribe the



Fig. 7: Icosian Game. Fig. 8: W.R. Hamilton. Fig. 9: T.P. Kirkman.

starting cities. His method was based on an “Icosian Algebra” that he invented,
which had to do with the symmetry properties of the icosahedron. Hamilton
sold his game for £25 to a games company in 1859, which marketed it under
the name “Around the World”. It was a shelf warmer, and no wonder. Just
the beginning of the instructions, where Hamilton explains why the Icosian
game takes place on a dodecahedron (see Figure 10), can take the fun away.
Hamilton knew something of mathematics, but clearly nothing of marketing!

L6600

Fig. 10: The Platonic solids: tetra-, hexa-, octa-, icosa-, dodecahedron.

The traveling salesman problem. An optimization variant of the HCP
is the Traveling Salesman Problem (TSP for short). One seeks the shortest
closed tour in a complete graph (with all imaginable edges) whose edges have
lengths. This is relevant for commercial travelers and automatic drilling ma-
chines, but the greatest importance of the TSP is as the benchmark problem
in combinatorial optimization. In contrast to the HCP the difficulty in the
TSP does not lie in finding a tour: In a complete graph with n nodes one may
choose from %(n — 1)! tours. Figure 11 indicates the true problem. One can
transform each HCP (here the honeycomb) into a TSP: A tour of length 0 ex-
ists if and only if the initial HCP admits a Hamiltonian circuit. This problem
transformation shows that the TSP is NP-hard. (NP-complete optimization

problems are called NP-hard.)

All the same, NP-hard does not mean that trivial enumeration is the only
possibility for solution. One idea is to combine enumeration with empirically
efficient techniques known from experience to run in tolerable time for problems
up to a certain size. Branch & Bound, Branch € Cut and Branch € Price



Applegate et al. (2006)—’—7
Applegate et al. (2005) - 80
‘34 @ Applegate et al. (2004)
ll/ Applegate et al. (2001) 70
\‘ '/ Applegate et al. (1998) L 60
‘ \ ‘ Applegate et al. (1998)
“" R ‘-=§,\ Applegate et al. (1993) - 50
@A’@ N ﬁk@ Applegate et al. (1991) L 10
S T 2% ’7 Padberg & Rinaldi (1991)
NS LA // Grétschel & Holland (1991) L 30
\\ Padberg & Rinaldi (1987)
\ Crowder & Padberg (1980) - 20
\ Grétschel (1977) L 10
Dantzig at al. (1954) o
m‘ cities
leneths: 1 0 year %103
engthiis: 1950 1960 1970 1980 1990 2000 2010

Fig. 11: The HCP as TSP. Fig. 12: TSP world records.

are the main representatives of this type of algorithm. “Branch” stands for
enumeration, “Bound”, “Cut” and “Price” for various acceleration techniques.
Just tuned enumeration? From a complexity theory point of view, yes, but
enormously effective in the concrete case. Figure 12 shows the developments
with TSP. In 1991 the 666-city tour in Figure 13 was the limit of possibility.
Today one can solve this problem in seconds, and the world record, set in 2006
by the team-of-seven, David Applegate, Bob Bixby, Bill Cook, Vasék Chvétal,
Daniel Espinoza, Marcos Goycoolea and Keld Helsgaun, stands at 85,900 cities!
As against the 666 city problem there are 129x more cities, 16,660x more
edges, and 7.4 - 10348931 x more tours! Presently the same group is attempting
to find the shortest tour through all the 1,904,711 inhabited places of the world.
The length of the best tour found to date measures 7,516,043,366 m, and one
knows that the tour cannot be shorter than 7,511,705,615m: that is, one can
improve this result by at most 0.05%. The algorithmic progress is naturally
difficult to quantify. But certainly one cannot dispute that Branch & Co is
more than trivial enumeration.

An alternative is to accept “good” solutions, ones that differ from the (un-
known!) optimum by not more than a given percentage, in place of an exact
solution. But are there fast approximation algorithms with such performance
guarantees for NP-hard problems? Often yes! For euclidean TSPs (with bee-
line distances, still an NP-hard variant) the Indian mathematician Sanjeev
Arora discovered such a method in 1996, where the goodness can be stipulated
in advance. One can show that there can be no such method for TSPs in
general.

The shortest path problem. The oldest path problem known to us arises
from a classical source: Friedrich Schiller’s (1759-1805) play “Wilhelm Tell”.
For already by 1291 he could not just shoot well, but he could also optimize.
And only with this combination was he able to free Switzerland! After the



Fig. 13: The shortest journey round the world.

apple shot Tell found himself at the shore of Lake Lucerne, not far from Altdorf.
At all costs he had to reach the Hohle Gasse in Kiissnacht before the Bailiff
Hermann Gessler: see Figure 15. Schiller reports!:

Tell. Whidy i8 the neareft way to Arth and Kiifnadt?

Fischer. Zhe open route’s by Steinen. But my boy
Can bring you by a quider lef-nown way
Acroffl Lomwers.

Lowerz/G

)
Lake Lucerne

Fig. 14: F. Schiller. Fig. 15: Lake Lucerne. Fig. 16: W. Tell.

In this scene Tell solves a graph theoretic optimization problem. The shortest
path between two predetermined points (Altdorf and Kiissnacht) in a graph

!Translation taken from version of John Prudhoe, Manchester University Press 1970.



(the road system at the Vierwaldstétter See) with edge lengths (travel time)
is to be found. This is a Shortest Path Problem (Single Source Shortest Path
[problem|: SSSP for short, the second P being dropped). Tell has to deal
with a complicated variant with an extra constraint: The sum of the “arrest
coefficients” has to be kept below a safety margin. Literature and mathematics
— no way in contradiction!

*

Path problems arise everywhere in connection with networks: In route and
personnel planning, in logistics and project management, in the design of inte-
grated circuits, in the design of telecommunication networks, in routing tele-
phone calls and data, etc. Mathematics can help to lower costs, raise quality,
and plan quicker.

In this article we intend to illuminate several questions, methods and pos-
sibilities in the mathematical treatment of path problems. The examples of
passenger information in public transport and the planning of bus services form
the basis of our presentation. The prelude is the fundamental shortest path
problem and its treatment. For the real time planning of bus driver duties
the heavy Branch & Price cannon must be brought up. Shortest paths play
an important role there too. At the end there is a survey of the field, hints
for future reading, and the solutions to the problems posed in the text. Enjoy
your path through the mathematics of paths!

2 Combinatorics of Shortest Paths

2.1 Local Transport and Graph Theory

A shortest path problem familiar to everyone is choosing a route in public
transport. Figure 17 shows the example of the Berlin rapid transit network
(subways and commuter trains). 306 stations and 445 legs do not make the
decision easy. What should one optimize: time, legs, transfers, price? Let us
consider a model.

Definition 3 (Shortest path problem (SSSP)).

Given:  Graph G = (V,E) (node set V, edge set E)
nonnegative lengths or weights wy, for all edges uv € E
two nodes s and t

Sought:  a shortest path from s tot in G

The advantage of this abstraction is that the problem data may be interpreted
as needed. The edge lengths may be prices, legs, times, etc.: the mathematics
is the same. The versatility of the model goes even much further. By clever
variation of the lengths and manipulation of the structure one can reduce many



Fig. 18: Reduced rapid transit network.




variant problems to the basic model. We give three examples of such modeling
tricks.

Fare minimization in a zone system. Many public transport companies
have tariffs under which a supplementary fare is due for each new zone. Fig-
ure 19 shows an edge weighting for constant supplements (always the same).
More realistic, however, are decreasing zone supplements; we will investigate
this case in Section 2.3.

Node weights. One can “transfer” weights (costs, prices) at the nodes to the
edges. The formulae for this are indicated in Figure 20 (with special treatment
for start and goal).

Transfers. Figure 21 shows a treatment of transfer times at intermediate
stations as an example of a structural transformation.

@) @, )
e gl
+ +
—%N EC\] .
3 )
(S [ "
I I
2l g n
3 _ TyutT 3 M
uv — D)
Ty Ty
|
Fig. 19: Zone tariffs. Fig. 20: Node weights.  Fig. 21: Transfers.

Enthusiastic as one may be for such techniques, nevertheless: In modeling less
is often more. It is neither sensible nor necessary to underline every inessential
detail. Often the data available will set narrower limits than the power of the
algorithms!

We shall remain with the ‘Simple’, and “complete” the rapid transit example,
in which we assign the length 1 to each edge in Figure 17. The length of a path
is then the number of edges traveled. The path marked by == in Figure 17
from Alexanderplatz to Dahlem-Dorf (headquarters of the Zuse Institute), for
example, has a length of 15 (edges).

One can simplify such path length computations greatly at little cost. Figure 18
shows how amalgamating a sequence of edges with no transfer possibilities into
an edge with the corresponding length (a new edge of length k replaces k old
edges) one achieves a considerable reduction in the size of the problem: to
80 nodes and 122 edges. The price for this preprocessing is that now one can
compute shortest paths directly only between the end and interchange nodes
of the lines. But one can then derive all shortest paths easily by considering
cases. (The path from and to a node between two transfer-/ end nodes A and



B passes either through A or through B. The same holds for the other end
with nodes C' and D. So there are four cases: AC, AD, BC and BD.)

The reduction can be taken further. One can eliminate the gray/dashed trees
in Figure 18, where one has no choice. One can decompose the graph at the
black articulation nodes and so on. At some point overkill sets in, when the
cost of computation and implementation outweighs the usefulness. Even so:
The right dose of reprocessing is a must if one is to solve practical optimization
problems.

2.2 On the Tracks of Chance

The simplest approach to determining a shortest path is enumeration. But
which transport company would advise its passengers to do so? The number
of paths is too large. How large? Let us find out. Unfortunately there is no
formula for the exact number of paths in an arbitrary graph. This question is
too complex. Astonishingly, however, there is a formula for the “approximate
number of paths in an average graph with n nodes”.

A simple method of generating an “average” graph by coin tossing is shown
in Figure 22: For each of the (n? — n)/2 possible edges one flips a Euro coin.
‘Number’ accepts the edge, ‘Eagle’ rejects. We are tossing ‘German Euros’
with eagles.) This provides a realization of the random graph G, on n nodes.
Each realization may contain different edges, yet on the average one knows a
lot about this graph. For example, G,, has an expected number of (n? —n)/4
edges, a half of those possible, since each exists with probability 1/2.

V/ \
¢ EB T TD B fn)
1090.000 .

0 1(080-000 1
1 Q;; 1070.000 i

/\ — 1060.000 4
2 L% ¥ 1050000 -

e\ 40.000

I |(6 10
3 ’% é‘} é‘} — 1030-000 -
4 || Le|1s|1s 1020000 -
5 |2 e |22 la 1010-:000 - 1, 1000

0123 45 10! 102 10® 10 10° 105 107
Fig. 22: A random graph. Fig. 23: Combinatorial explosion.

Similarly one can compute the expected number of paths in G, between two
randomly chosen nodes s and t. First let us consider only the longest possible
(s,t)-paths, the Hamiltonian paths. These have n—1 edges. There are (n—2)!

10



such paths, one for each configuration of the n — 2 “inner” nodes. But not all
these paths exist in each realization of the random graph G,,. The first edge
exists in 1/2 of the cases, the first and the second in 1/4 of the cases, etc. All
n — 1 edges exist in 1/2"~1 of the cases. On average one can expect

(n—2)! n! 1 _nte™" 2mn

=1~ on-1 p(n—1) 201 n(n—1)
_<n>n*2 n?\/2mn ><n>n*2 Vn

2¢ 2n(n—1)e2 T \2¢ €2
(s,t)-paths of length n — 1. From Stirling’s formula
nl = n"e "V2mrn

the relative error of this approximation is smaller than 1% for n > 10. With a
little more algebra one can estimate the expected number E[p, ,| of all (s,?)-
paths in G,, (with 1 to n — 1 edges) as follows:

n—2
Elpn,| = <%> VP2 5 \/2mn

where p is the probability of the occurrence of an edge (p = 1/2 for coin
tossing). All these numbers have an order of magnitude of more than (cn)"~2
(c a constant). Figure 23 shows the enormous growth of such functions on a
doubly logarithmic scale. Already in our little rapid transit example with only
336 nodes and edge probability p = 445/ &;336 = (0.008 there are no fewer
than E[ps3e0.008] = 1.977 - 10°° paths to expect! This growth phenomenon is
known as the combinatorial explosion. There is no escaping it. The way out
is to search through the giant solution space purposively. Euler had already
recognized this:

n regard to the Kdnig8berq problem mwith the feven bridges, one could folve by an egact

enumeration of all pofiible paths; one would then Enow whether one fatified the condition,

ot none. This mobe of folution i8, however, becaufe of the large number of combinations,

too laborious and difficult; and moreover, could no longer be applied to other queftions
with very many bridges. If one were to egamine it in the way alluded to above one would find mudy
not in queftion; this i3 doubtlef the reafon why this route would be fo burdenfome. THIZ 8 why T
bave rvejected this method and loofed for anotber, to ready fo far a8 to eftablifly whether fudy a walf can
be found, or not; for  conjectured that fudy a method would be mudy fimpler.

2.3 Miinchhausen versus Archimedes

Euler’s advice, not to undertake superfluous computations, may well be applied
to the shortest path problem. Clearly many paths are not the shortest. The
shortest path from Alexanderplatz to Dahlem-Dorf does not pass through the
dark gray articulation node “Lichtenberg” in Figure 18, for the path Lichtberg-
Dahlem Dorf alone is already longer than 15 edges — or is it? Now we require

11



two shortest paths and the continuation of this argument is strongly reminis-
cent of the method invented by the Freiherr Karl Friedrich Hieronymus von
Miinchhausen (1720-1796) to pull himself out of the swamp by his own hair.

Fig. 24: Miinchhausen’s  Fig. 25: Archi-  Fig. 26: E.W. Dijkstra.
method. medes of Syracuse.

“Unfortunately” the liar-baron had invented the story only to entertain his
guests. We have to establish a firm foundation for a genuine shortest path
to emerge from the swamp. Here is one: The “empty path” of length 0 from
Alexanderplatz to itself. Do you find this somewhat sparse? Archimedes of
Syracuse (287-212) had another opinion! “Give me a place to stand and I will
move the Earth” said he. Might Archimedes’s point be preferable to Miinch-
hausen’s method?

The “flip book” Figure 27-32 shows how from an Archimedean point one can
makes the whole graph traversable by shortest paths. The method is based on
the concept of a distance mark (distance label) which for each (reached) node
states the length of the shortest path so far discovered. The paths themselves
form a shortest path tree.

Initialization. The node “Alexanderplatz” is temporarily marked with dis-
tance 0.

Figure 27. The node Alexanderplatz for the moment has the smallest tem-
porary distance mark and is selected. The node cannot be reached by a shorter
path. The temporary distance mark for Alexanderplatz is therefore made per-
manent.

Figure 28. The nodes neighboring Alexanderplatz are marked with the dis-
tances to them, and the edges are entered into the shortest path tree. The
marking and tree are temporary. (There may be shorter paths that do not
come directly from Alexanderplatz.)

12



2
) 152 s
-{3 Siond e O30, 1

Fig. 27: Dijkstra’s algorithm (0).

6 %{ﬁf\
4 5

4 2
1? 516§@

Ol%@lo 2%93@ i

)—l

Fig. 29: Dijkstra’s algorithm (2).

“Al**
\ )5{5@\
6

\4 i 5

A
2\2?2%)/ éfz

50102~ @3-,

— I
=~
,_.

3

o
" (X
“ ID 1

6 4
3 R 6#2?&1\2%
L

2 2
,O]Ql() 2-@3®-, 1.

Fig. 31: Dijkstra’s algorithm (4).

Figure 29.

Fig. 32: Dijkstra’s algorithm (5).

The node “Jannowitzbriicke” with the distance mark 1 cannot be

reached by a shorter path. This pivotal observation provides the second fixed
Archimedean point. The node Jannowitzbriicke is selected, the marking and
edge are made permanent in the shortest path tree.

Figure 30. The temporary distance marks of the neighbors of the node Jan-
nowitzbriicke are refreshed (label update). Two new nodes are discovered and

temporarily marked.

Figure 31.

As in step 0 the node “Friedrichstrafse”

is selected with the

presently smallest temporary label 2. Label and shortest path edge are made

permanent.

Figure 32.

On the distance-update of the neighbor nodes three new nodes

are temporarily marked. The distance to a temporarily marked node decreases
from 5 to 4. Marks and shortest path tree are correspondingly refreshed.

End. The computation ends when the goal node, here the (black) “Heidel-
berger Platz”, is marked permanent (or when all nodes are marked permanent).



Fig. 33: A shortest path tree.

Try it out! You will obtain marks and a tree as in Figure 33. (The shortest
path tree may look a little different, because of free choices at the same distance
labels.) The tree contains a surprise: Instead of reaching Heidelberger Platz in
11 edges, as in Figure 17, one can also do so in 10, and so reach Dahlem-Dorf
in 14 instead of 15 edges. Did you know this?

*

The pseudocode in Figure 34 is a general description of this process. d(v) and
pred(v) are arrays for distance marks and predecessor nodes on the shortest
path from the start s. The set of permanently marked nodes is denoted by
T (tree), and §(v) is the list of neighbors of the node v. Also, w(u,v) is the
length of the edge from u to v.

This process is called Dijkstra’s algorithm after its inventor, the Dutch math-
ematician Edsger Wybe Dijkstra, who first proposed it in 1959. The first node
marking algorithm was actually that of the American mathematician L.R. Ford
Jr., of 1956, and Dijkstra added the concept of the permanent marking of nodes
and the specification of a rule for choosing them from this; Ford’s algorithm
marked in an arbitrary sequence. A small but fine difference for its efficiency!
With its permanent marking Dijkstra’s algorithm saves work in enumeration,
in that all paths are discarded if their starts are not contained in the growing
shortest path tree.

14



1 algorithm Dijkstra

2 forall v €V do d(v) < oo;

3 d(s) « 0; pred(s) <« s; T « {s};

4 while (T # ()) do

5 determine v € T such that d(v) = minyepr d(u);
6 T — TU{v};

7 forall u € 6(v) do

8 if d(u) > d(v) + w(v,u) then

9 d() « d(v) + w(v,u); pred(u) « v;
10 endif

11 endforall

12  endwhile

13 endalgorithm

Fig. 34: Dijkstra’s algorithm.

Flezibility is another plus of Dijkstra’s algorithm. We give three examples.

Directed graphs. The process functions without alteration also for any di-
rected graph (digraph, for short), whose arcs may, like one way streets, be
traversed in only one direction.

Zone systems with decreasing zone supplements (Section 2.1) can be
handled by adding the extra cost appropriately when updating the distances.

Timetables require time marks and a corresponding search for transfers.

Company URL (http://)
Berliner Verkehrsbetriebe www.fahrinfo-berlin.de/Fahrinfo
Deutsche Bahn www.bahn.de

Norddeutsche Verkehrsbetriebe www.efa.de

Table 1: Passenger information on the Internet.

Passenger information systems such as those mentioned in Table 1 are all based
on Dijkstra’s algorithm. Only the “Mathematics Inside” can often hardly be
recognized with all the surfaces and visualizations. Naturally this is not so for
the readers of this article!

2.4 Runtime Law for Algorithms

Theorem 4 (Runtime of Dijkstra’s algorithm).

Digkstra’s algorithm can be implemented on a Random Access Machine (com-
puter type with address arithmetic: RAM for short) so that the computing time
for a graph with n nodes requires O(n?) operations.

15



1 algorithm Dijkstra

2 forall veV do d(v) « oo; T(v) < 0; nx O(1) = O(n)
3 d(s) < 0; pred(s) « s; O(1)
4 forever do nx

5 min_d « oo; 0o(1)

6 forall w €V do nx

7 if T(u) = 0 && d(u) < min_d then 0O(1)

8 min_d < d(uw); v « u; 0O(1)

9 endif

10  endforall nx O(1) = O(n)

11 if min_d = oo then break; 0O(1)

12 T(v) « 1; 0O(1)

13 forall u € é(v) do nx

14 if d(w) > d(v) + w(v,u) then 0O(1)

15 d(u) « d(v) + w(v,u); pred(u) «— v; o(1)

16 endif

17 endforall nx O(1) = O(n)

18 endforever nx O(n) =0(n?)
19 endalgorithm O(n?)

Fig. 35: Runtime of Dijkstra’s algorithm.

Figure 35 shows a suitable implementation. The code indicates that one can
determine the computing time as one advances row by row (repetitions in loops
are counted multiply) and tots up. How this computation is performed, and
what Theorem 4 means in detail, is the concern of the remainder of this section.

O-Notation is a concept for comparing the rates of growth of functions.
g(n) = O(f(n)) < there is a constant C' with g(n) < C - f(n) for all n,

i.e. g(n) = O(f(n)) (read: g is of the order of f) means that up to multipli-
cation by a constant g(n) is always < f(n). The most important calculation
rules here are

01) +0(1) =0(1), O1)+0(n)=0(n), O@)+0(n)+0(n2)=0mn)

etc.; for a polynomial the highest power determines the order (whence the
name). This “Landau O” was invented by the number theoretician Paul Gustav
Heinrich Bachmann (1837-1920) and popularized by Edmund Georg Hermann
Landau (1877-1938).

The size of the input data can be measured according to the O-notation.
If one stores a graph such as in Figure 22 in an adjacency matriz, coding
Number and Eagle by the whole numbers 1 and 0 of type int, there is a storage
) 2 ) )
requirement of *—- - sizeof (int) bits. The value sizeof (int) is a hardware
dependent constant, the bit length of a whole number. Data structures and

16



—ROLORUTISY~J00O
T T N T Y T N

nlnn
n

123456789 n/100

Fig. 36: E.G.H. Landau. Fig. 37: Polynomial functions.

hardware lead to different storage requirements. Most variations do not affect
the order of the storage needed (as it depends on n), but affect only constants
like sizeof (int). For a graph with n nodes the storage need is at most of the
order of magnitude O(n?) (bits).

Worst case analysis. The cost of thinking in terms of orders of magnitude
is that one must always reckon for the worst case, both for input data and
runtime.

The random access machine (RAM) is a type of computer that per-
forms only the four elementary operations: +,— (addition), %,/ (multiplica-
tion), <,>,= (comparison) and « (assignment). Random access means that
there are no limitations on storage access. (The important subtleties of this
definition are explained in Mehlhorn’s book — see the References.) The RAM-
model levels hardware and system differences in microprogramming: counting
the elementary operations gives the number of CPU-cycles needed on a real
computer.

The runtime of a program on a RAM is the number of elementary op-
erations performed. One can show that this simplified measure really does
determine the order of magnitude of the CPU cycles. (This holds for today’s
computers: there will be different laws for the parallel computers of the fu-
ture!) The greatest advantage of this concept is that the order of magnitude
of the runtime is also independent of the implementation details: A command
here or there, or even ten times as many, makes no difference. This invariance
allows one to speak of the runtimes of algorithms instead of the runtimes of
implementations.

*

A worst case analysis for Dijkstra’s algorithm is shown in Figure 35: The com-
plete runtime is O(n?). This polynomial function presents a different behavior
from the (super-)exponential functions in Figure 23 that describe the runtime
for enumeration. This quality jump is the quantitative basis for the superiority

17



of Dijkstra’s algorithm. The linear scale in Figure 37 shows that there are also
clear differences in the polynomial domain. The quantum jumps in the growth
behavior are a great incentive to reducing the order of the runtime. Dijkstra’s
algorithm offers potential here. With better list and heap data structures one
can reduce the runtime relatively easily to O(mInn) (for m < n?/Inn), where
m is the number the edges. Data structures even more finely tuned to this
purpose, such as “Fibonacci heaps”, free further potential. Faster than O(m) is
impossible because one needs this much time to read the data. Is there an op-
timal SSSP-algorithm with this runtime? The Danish mathematician Mikkel
Thorup showed in 1996 that this is actually possible! There is, however, a
little catch: The process is based on an “atomic heap” data structure proposed
by the American mathematicians Michael L. Fredman and Daniel E. Willard,
applicable for n > 2122 Although 212% — O(1) this constant is so large that
the algorithm is not implementable! What next? Thorup proposes a “slimmer”
variant, where the runtime is “worsened” to O(InC +m+nlnlnlnn) (C is the
largest edge weight). As you can see: The topic SSSP remains to be developed!

2.5 Limited Resources

Shortest path problems rarely appear in pure form. Even for Tell there were
constraints on the form of the paths. Resource constraints are a useful frame-
work. Such models envisage, along with the objective function, a number of
resources, to be used along the edges. At the nodes the constraints restrict the
forms of the incoming paths to admissible states of resource use. We give two
examples.

Time windows are intervals [a,, b,] at the nodes v € V' that restrict the use
of a time resource t,,, for traversing the edge uv € E.

Path length constraints are handled like time windows. When the term
length is applied to a resource one speaks of weight in the objective function.

Fig. 38: Resource Graph.

18



Shortest path problems with (discrete) resource constraints can be reduced
by a transformation to the directed standard form (cf. Page 15). Figure 38
illustrates this principle for a variant of the S-Bahn example with length con-
straints: To find the shortest paths with exactly 3 edges starting from Alexan-
derplatz. A unit of edge resource is consumed along each edge. At each
node v in the original graph there are four possible admissible resource states
R, = {0,1,2,3} (an incoming path has already “used” 0, 1, 2 or 3 edges).
The transformation builds four copies from each original node, one for each
resource state. In Figure 38 the copies are arranged in four planes 0-3. Di-
rected arcs join copies of nodes whose originals are neighbors; the arcs always
run “upwards” from the lower to the higher numbered plane, the weights are
the same as for the original edges. The (resource)state digraph so constructed
has the property that the shortest paths from Alexanderplatz in Plane 0 to the
nodes in Plane 3 correspond exactly to the shortest paths with 3 edges in the
original graph. The directed arcs prevent longer paths arising from “jumping
back”.

This construction works generally for discrete resource states R,. From one
node v in the original graph one generates |R,| copies in the state digraph,
joined by arcs according to the possible resource consumptions. Then the
runtime of Dijkstra’s algorithm is O((3", <y |Ry|)?). This quantity is in general
not polynomial in the number n of nodes of the initial digraph. Only in special
circumstances, e.g. when )y, |R,| is polynomial in n, do we have polynomial
runtimes. One calls such a runtime behavior pseudopolynomial.

The construction of the state digraph offers room for improvement. The idea
is to perform the transformation only implicitly and to work in the original
digraph with several marks per node. These Multilabel SSSP algorithms require
less storage space, and often (as in the timetable example of Page 15) the
runtime is also more favorable.

Exercise 4 (Solution in Section 6). Why does an n plane transformation not
deliver a polynomial algorithm for the Hamiltonian Circuit Problem?

3 Combinations of Paths

After the shortest path problem the next level is the simultaneous planning
of several paths. The typical difficulty is to make the ‘“right detour” occasion-
ally. We will not try to provide a survey of covering, packing and partitioning
problems for paths, but only to describe the best known types. We restrict
ourselves here to a representative example: Branch & Price methods for Set
Partitioning Models in Bus Driver Scheduling.

19



3.1 Duty Scheduling ’Light’

As of 31 December 2006 the Berliner Verkehrsbetriebe (BVG) deploys 1,310
buses, driven by about 4,000 bus drivers. During the year there were 403.8
million passenger journeys on 147 lines with a total length of 1,656 km. With
these numbers it is clear that buses and drivers must be employed as efficiently
as possible. This is not so simple. In particular, a driver’s duty is subject
to complicated regulations: among others, to ensure sufficient breaks. But
these necessary breaks should not lead to further waiting times, with duties so
unfavorable to the timetable that drivers may be available but no journeys are
to be made. Moreover, one wants to devise the most convenient duties for the
workers and, e.g., keep small the number of split duties that require people to
come in to work twice in a day.

Fig. 39: Simplified duty scheduling problem.

Figure 39 illustrates a simplified duty scheduling problem: To service trips 1-6
between the termini A, B and C. The trip times are indicated by the time
bar at the bottom edge of the figure. Trip 1 begins at 7 o’clock and ends at
10 o’clock, etc. We need to specify duties to cover these trips, and agree on the
following rules. The driving time is not to exceed 7 hours, and there should
be no break of more than 3 hours between two trips. The costs of a duty are
determined as the duty length (that is, driving time plus break resp. transfer
times) and an additional supplement of 2 hours per shift. The 1-2-3 duty,
shown by an unbroken line in Figure 39, is permitted, with a driving time of 7
hours and 0 hours between trips; its cost is 3+ 3+ 1+ 2 = 9. Similarly, duty
4-5-6, shown by a dashed line, with driving of 3 hours and changes of 0 hours,
is also admissible; its cost is 1 +1+ 142 = 5. Together these two duties form
a schedule with a total cost of 9 + 5 = 14, with all the trips covered.

For such a small example with simple rules the scheduling is simple. In reality
there are very many duty elements to cover. The duties have to conform to
complicated rules such as those in Figure 40, an example of a European Union
rule. A further difficulty is that the rules and objectives change regularly (be-
cause of company agreements, political guidelines, etc.). One can imagine the
complications this brings to a proper scheduling. The danger in this situation
is that one may, with ad hoc methods, develop a complex and confusing model
that will not lend itself easily to changes, and may deliver solutions of doubtful

20



CounciL ReEguraTiON (EEC) No 3820/85 oF 20 DECEMBER 1985 ON THE HARMONISATION OF
CERTAIN SOCIAL LEGISLATION RELATING TO ROAD TRANSPORT.

SECTION V Breaks AND REsT PERIODS
ARTICLE 7.

(1) AFTER 4.5 HOURS’ DRIVING, THE DRIVER SHALL OBSERVE A BREAK OF AT LEAST 45 MINUTES,
UNLESS HE BEGINS A REST PERIOD.

(2) THIS BREAK MAY BE REPLACED BY BREAKS OF AT LEAST 15 MINUTES EACH DISTRIBUTED
OVER THE DRIVING PERIOD OR IMMEDIATELY AFTER THIS PERIOD IN SUCH A WAY AS TO COMPLY
WITH THE PROVISIONS OF PARAGRAPH 1.

(3) BY WAY OF EXCEPTION FROM PARAGRAPH 1, IN THE CASE OF NATIONAL CARRIAGE OF PAS-
SENGERS ON REGULAR SERVICES MEMBER STATES MAY FIX THE MINIMUM BREAK WITHIN AT NOT
LESS THAN 30 MINUTES AFTER A DRIVING PERIOD NOT EXCEEDING FOUR HOURS. SUCH EXCEP-
TIONS MAY BE GRANTED ONLY IN CASES WHERE BREAKS IN DRIVING OF OVER 30 MINUTES COULD
HAMPER THE FLOW OF URBAN TRAFFIC AND WHERE IT IS NOT POSSIBLE FOR DRIVERS TO TAKE A
15 MINUTE BREAK WITHIN 4.5 HOURS DRIVING PRIOR TO A 30 MINUTE BREAK.

Fig. 40: From the EU Break Regulations for Bus Drivers.

quality. We present the mathematical alternative in the following section.

3.2 Duties and Paths

The first step towards a better method is the development of a mathematical
model. For this, duties are represented as paths in an appropriate scheduling
graph that “cover” the trip elements. One speaks of a “path covering problem”.

Fig. 41: Shift planning graph; (t;;,¢;j) = (driving time, costs).

Figure 41 shows the construction for the example of Figure 39. For each trip
element ¢ there are two nodes ¢ and 4’, to denote the start and finish of the trip.
Also two “artificial nodes”, s and ¢, are introduced to represent the start and
finish of the duty. The nodes are connected by arcs representing the possible
transitions between the events. The arcs are marked by number pairs (t;5, ¢;;),

21



c6

c7

c8

c9

c10
Cc11
c12
c13
C14
€15
c16
c17
c18
€19
€20
€21
c22
€23
Cc24
c25
€26
c27
c28
c29
€30
€31
c32
€33
C34
€35
€36
c37

553333896 7809456 45491011127 8 9 56 51112128 9 9 612 9
1. .. .. N rr11. ... .. 111....1.
1 1.1111. ... .. rr11111...... 111. .1
1 11001110001 .11111.11.11.111

1. .. .. 1..1..11..1..1..111111111111

1. .. .. 1..1.1.1..1..1.1.11.11.1111
..... 1.....1..1.11. 1..1.11.11.11111

Table 2: All duties.

where ¢;; is the driving time on going from node i to node j, and ¢;; is the
cost.

The duty scheduling graph is so constructed that every admissible duty corre-
sponds to a path from s to ¢: but not exactly the converse. For an (s,t)-path
to correspond to a duty the sum of the driving times on its arcs must not
exceed 7. With respect to the resource “driving time” the duties correspond
to resource constrained paths, as discussed in Section 2.5. Please note, dear
reader, that the second scheduling rule, restricting the break between duties
to at most 3 hours, can be treated in a very simple way, by introducing, or
not introducing, arcs into the scheduling graph. For example, the arc 1’4 must
be removed since it represents an illegal change from the end of trip 1 to the
beginning of trip 4 with a gap of 4 hours. In all, a schedule corresponds to a
set of driving time constrained (s,t)-paths with all the trip elements covered
exactly once. That is, we aim at a “path covering” at minimal total cost. The
question remains: how can one find the right paths?

3.3 Set Partitioning Models

The starting point for a solution to this question is a conceptional enumeration
of all duties. Table 2 lists the results in a compressed form. Each column
stands for one of 37 possible duties. Above, for each duty j the cost coefficient
c; is listed. Then follows the trip incidence vector a.; (here - is a placeholder
for an index). It specifies which trips the duty j implements (1) or does not
implement (.). Row 4 thus belongs to trip i, i = 1,...,6. The duties 1-2-3 and
4-5-6 appear in columns 19 and 28.

This preparation makes it easy to formulate the duty scheduling problem as
an integer program, a model type of discrete optimization. Figure 42 shows
the program in the “LP-format” accepted by many code packages. For each

22




duty the program holds a 0/1 decision variable x; (Binaries, see also Table 2)
for implementation of a duty j (x; = 1) or nonimplementation (z; = 0). The
objective function row (obj) totals the costs of the incorporated duties, and is
to be minimized (Minimize). Each of the 6 equations (c1-c6) ensures that of
all the duties that cover a trip element exactly one will be implemented (ci
belongs to trip 7). The solutions of this program correspond exactly to the
possible duty schedules. Since the trips have to be partitioned into duties one
calls this type of integer program a Set Partitioning Problem: SPP for short.

Minimize
obj: + 5x1 + 5x2 +3x3 +3x4 +3x5 + 3x6 +8x7 +9x8 + 6x9 +7x10
+ 8x11 + 9x12 +4x13 +5x14 4+6x15 + 4x16 +5x17 4+4x18 + 9x19 +10x20
+11x21 4+12x22 47x23 +8x24 +9x25 + 5x26 46x27 +5x28 +11x29 +12x30
+12x31 + 8x32 +9x33 +9x34 46x35 +12x36 +9x37
Subject To
cl: x14x7+x84+x19+x20+x21+x22+x29+x30+x31+x36=1
c2: x24x7+x9+x10+x11+x12+x194+x20+x21+x22+x23+x24+x25+x32+x33+x34+x37=1
c3: x3+x8+x9+x13+x14+x15+x19+x23+x24+x25+x26+x27+x29+x30+x32+x33+x35+x36+x37=1
cd: x4+x10+x13+x16+x17+x20+x23+x26+x27+x28+x29+x30+x31+x32+x33+x34+x35+x36+x37=1
ch: xb+x114+x14+x16+x18+x21+x24+x26+x28+x29+x31+x32+x34+x35+x36+x37=1
c6: x64+x12+x154+x17+x18+x22+x25+x27+x28+x30+x31+x33+x34+x35+x36+x37=1
Binaries
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20
x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 x37
End

Fig. 42: A set partitioning problem.

Any serious code will solve problems with 37 variables and 6 equations like
lightning. Our solver needs less than a millisecond to find the solution and
show that it is optimal. We already know the result: x19 = x93 = 1, the other
variables being 0.

Real scheduling does not go so easily. With 2,000 trip elements there are at
least (2'{)000) > 10%° duties, and one can no longer enumerate them. Was all
this set partitioning for nothing? Certainly not! But we must say farewell to
the idea that to solve a model we have to write it down completely. Only a
few duties are relevant to the optimal solution (in the example, just 2), the
numerous others (here 35) are only ballast at the end. Again, as Euler said: 3f
one tere to eramine it in the way alluded to above one would find mudy not in queftion; thid i3 doubtlef

the reafon why this route would be fo burbenfome.

3.4 Plans = Paths + Prices + Programs

The fundamental idea for solving larger set partitioning problems is astonish-
ingly simple: Start with a (however cleverly generated) small set of duties and
generate the missing duties as needed. This column generation is the most
important component of all Branch & Price algorithms. The decisive trick is
to generate the columns in a way that guarantees an improvement. We shall
now give an impression of how this works.

Initialization. We need some solution to start from, so we choose the ex-
pensive, but always possible, “ls disposition” 1 = -+ = xg = 1 with cost

23



5+5+3+3+34+3 =22, in which every trip is handled by its own driver. The
6 incidence vectors a.;—a.¢ and the costs c1—cg are all that currently is known
for the SPP of Figure 42.

BTRAN. The backward transformation is a cost centre computation: The
total cost is apportioned from the duties to the trips “caused”. (Shadow-) prices
m; for the trips result. These prices are found as solutions of the equations
Z?:1 a;jm; = ¢ for all duties j with z; = 1. In the example these are the

equations
m =b=¢ (price equation duty 1)
o =5=cy (price equation duty 2)
3 =3=c3 (price equation duty 3)
Ty =3=¢ (price equation duty 4)
Ts  =3=cp (price equation duty 5)
6 =3 =cg (price equation duty 6).

The solution is my = w9 = 5, M3 = My = 75 = W = 3.

Pricing. This step is an investment appraisal: One looks for alternative
duties which undercut the shadow price. The difference, the reduced cost, does
exactly this. The formula for the reduced cost ¢; of duty j is

6
Ej = Cj — Zaijm. (1)
=1

Determining a duty with negative reduced costs is — and so we come back
to the paths — a shortest path problem with resource constraints. Figure 43
shows the digraph. In order that the reduced costs will correspond to path
lengths the prices are transferred, as in Figure 20, to the arcs pointing out from
the starting node of the trips. The prices go into formula (1) with negative
sign so are subtracted. Thus we have negative arc weights. SSSP algorithms
have difficulties with negative weights, which hinder the permanent marking
of nodes (one can lower the cost on a path, and indeed SSSPs with negative
weights are AN/P-hard). In our case this is not so: In an acyclic digraph (without
directed cycles) Dijkstra’s algorithm works with negative arc weights too, if one
marks the nodes in the correct sequence (a topological order) “from front to
back”.

For the proper calculation one needs marks for the driving time ¢ already
consumed (which can take the valuest = 0,1,2,...,7) at the nodes, in addition
to the distance marks. The result is presented in the Table in Figure 43. In
row t, t = 0,...,7, it holds the lengths of the shortest paths with a driving
time to the respective nodes of at most ¢t. The computation of the paths
proceeds by rows in the sequence of increasing time marks. The entry —4 in
position (3,t) shows that there is an (s,t)-path with a driving time of 3 units
and reduced cost of —4. Backtracking the calculation shows that this is for

24



the path s44’55'66't, corresponding to duty No. 28, that is, to the duty 4-5-6.
This duty has a cost of 24+ 1414 1 = 5, while the sum of the shadow prices
for the trips 4, 5 and 6 it contains has the value 3 + 3 + 3 = 9. The difference
5 — 9 = —4 is precisely the reduced cost.

Y,

0,071, -2) (Uo,o):

Fig. 43: Column generation.

FTRAN. The forward transformation is a production assessment: The new
duty 28 is to replace several old duties. How is clear: duty 28 replaces the
duties 4, 5 and 6; the new solution is x1 = 9 = x3 = x93 = 1. The costs are
c1+co+cg+cogs=5+5+4+3+5 =18, asaving against the value 22 of the
previous solution of ¢og = —4.

Optimality criterion. Now that the total cost has sunk from 22 to 18 the
shadow prices have to be adjusted for the next iteration. Subsequently one
seeks an improved duty and builds it into the solution. And so the costs sink
further. This proceeds until there are no paths with negative length. It is
shown in linear optimization theory that: If the reduced costs of all duties are
nonnegative then the current solution is optimal. This stopping criterion is
the signal to finish the computation. The optimal solution has been found!

Runtime. An important question arises: How many iterations must be per-
formed, how many duties will be generated? If one does it right, not very
many. The second author has developed a theory of polynomial equivalence
of separation and optimization (here applied dually) together with the Dutch
mathematician Alexander Schrijver and the Hungarian mathematician Laszlo
Lovéasz which shows that one can succeed with a polynomial number of du-
ties. These results are the theoretical foundation of the empirical efficiency of
column generation.

Branch & Price. Together with a few technical problems we have sup-
pressed a difficulty in our presentation so far. This is the fact that incorpo-
rating a newly determined duty into a solution often cannot be effected by a

25



swap. A mathematical expedient is to allow “fractional solutions” too, where
fractions of tours appear. Such a solution has no meaning in the real world.
It is merely an intermediate result in a computation at the end of which there
should be an integer solution. But what if the column generation (the Price in
Branch & Price) terminates with a fractional optimal solution? Then an inte-
ger solution can be guaranteed only with a downstream enumeration (Branch),
and this generally leads to an exponential total runtime.

One is often lucky and column generation provides a integer solution quickly.
This is not the rule, but often, with simple heuristics, one can construct integer
solutions from fractional ones, the objective functions being close (in the ideal
case they are the same). In between is the duality gap in which the unknown
optimum lies. The size of the gap, in ignorance of the exact optimum, is a
measure of the quality of a heuristic solution. Statements of this sort are
important in assessing possible savings.

*

The authors have developed a duty schedule optimization system DS-OPT
with the help of column generation methods. It has been integrated into the
planning system ivu.plan (formerly called MICROBUS 2) of IVU Traffic Tech-
nologies AG, and is employed by many transport companies here and abroad,
also by BVG. Mathematics has been able to contribute to making public trans-
port more attractive and to remain affordable.

4 Outlook

Discrete optimization, and with it the mathematics of paths, has experienced
an upswing over sixty years. Today good models, algorithms, and a general
theory are available.

Unfortunately their application does not always reflect the state of the mathe-
matics. In contrast to the permeation of the methods of the differential calculus
into technical engineering disciplines, discrete methods remain exotica in plan-
ning, logistics, decision support, and supply chain management. There are
many reasons: The sizes of discrete models, lack of acquaintance with the nec-
essary mathematics, or even skepticism concerning the mathematics in many
planning circles, and a lack of interest in optimization because of monopolistic
structures in important fields such as public transport.

This state of affairs is changing. The performance of computers and processes
is now at a useful level, and is improving. Monopolies are being dissolved.
There is a chance of bringing discrete methods into planning and logistics.
Our vision is that Computer Aided Scheduling (CAS) will assume the same
significance in logistics as CAD and CAM in production. The possibilities
lie to hand: cost cutting, quality improvement, planning tempo and flexibil-

26



ity, scenario analyses, etc. Set partitioning models have proved their value in
scheduling in public transport, and are already the industry standard in the
competitive air transport. Scheduling of all the vehicles of concerns such as
the BVG (the fourth largest public transit company in the world) is possible
with multicommodity flow methods. One can no longer imagine doing with-
out methods for solving path problems in telecommunications network design.
Where next? The future will show!

5 Further Reading

You have acquired a taste for discrete optimization and want to know more
about the mathematics of paths? This section gives a list of articles for further
reading, sorted by topics, many of which can be downloaded from the Internet.

Shortest paths. The articles of the 9th DIMACS Implementation Challenge
— Shortest Path give a survey on the newest research results on shortest paths.
They are available at http://www.dis.uniromal.it/“challenge9/papers.
shtml.

Transportation problems. Our article Alcuin’s Transportation Problems
and Integer Programming in Volume 2 of the book Charlemagne and his Her-
itage: 1200 Years of Civilization and Science in Europe by Paul Leo Butzer,
Hubertus Th. Jongen and Walter Oberschelp, published in 1998 by Brepols,
Turnhout, Belgium, gives an entertaining introduction to mathematical trans-
port optimization, based on the well-known wolf-goat-cabbage problems that
Charlemagne and his chief counsellor Alcuin of York invented 1200 years ago in
order to improve the teaching of Mathematics in Franconian schools. The arti-
cle is available on the Internet at http://www.zib.de/ZIBbib/Publications/
as ZIB Preprint SC 95-27.

The Konigsberg Bridge problem. Don’t miss out on reading Leonhard
Euler’s article (of the same name) of 1736! An English translation was pub-
lished in 1953 under the title Leonhard Fuler and the Koenigsberg Bridges
in Scientific American, Volume 189, pages 66-70, edited by J.R. Newman.
The Latin original is available from the Euler archive at http://www.math.
dartmouth.edu/~euler/docs/originals/E053. pdf.

Traveling salesman problem. Martin Grétschel’s and Manfred Padberg’s

article The Optimized Odyssey, published in 2001 in AIROnews, Volume VI,

No. 3, pages 6-9, available on the Internet at http://www.zib.de/groetschel/
pubnew/paper/groetschelpadberg2001la.pdf, informs about the most famous

optimization problems. The latest news is reported in the 606 page book The

Traveling Salesman Problem: A Computational Study by David Applegate,

Robert Bixby, Vasek Chvatal and William Cook. It was published by Prince-

ton University Press in 2007.

27


http://www.dis.uniroma1.it/~challenge9/papers.shtml
http://www.dis.uniroma1.it/~challenge9/papers.shtml
http://www.zib.de/ZIBbib/Publications/
http://www.math.dartmouth.edu/~euler/ docs/originals/E053.pdf
http://www.math.dartmouth.edu/~euler/ docs/originals/E053.pdf
http://www.zib.de/groetschel/pubnew/paper/groetschelpadberg2001a.pdf
http://www.zib.de/groetschel/pubnew/paper/groetschelpadberg2001a.pdf

Public transport. Vehicle scheduling and duty scheduling in public trans-
port is described by Ralf Borndorfer, Martin Grétschel and Marc Pfetsch in
the article Public transport to the fORe, published in 2006 in OR/MS Today,
Volume 33, No. 2, pages 30-40. The article is available online at http://www.
lionhrtpub.com/orms/orms-4-06/frtransport.html.

Algorithmic Graph Theory. The books Graph Theory with Applications
by Adrian Bondy and U.S.R. Murty, published in 1976 by Elsevier Science,
New York, and Graph Theory by Reinhard Diestel, published in 2005 by
Springer Verlag, Berlin, are excellent references. Both books are available on-
line at http://www.ecp6. jussieu.fr/pageperso/bondy/books/gtwa/gtwa.
html and at http://www.math.uni-hamburg.de/home/diestel/books/graph.
theory/GraphTheoryIII.counted.pdf, respectively.

Linear Programming. We recommend the books Linear Programming by
Vasek Chvatal, published in 1980 by Freeman, New York, and Linear Pro-
gramming: Foundations and Extensions by Robert Vanderbei, published in
2007 by Springer Verlag. The latter book is available online at http://www.
princeton.edu/ rvdb/LPbook/onlinebook.pdf.

Complexity, Runtime, Computers. Kurt Mehlhorn’s books Data Struc-
tures and Efficient Algorithms, Volumes 1-3, published in 1984 in the EATCS
Mongraphs series by Springer Verlag, Berlin, are a standard reference. These
books are out of print, but available online at http://www.mpi-inf.mpg.de/
“mehlhorn/DatAlgbooks.html.

6 Solutions to the Questions

Euler tour. Four nodes have odd degree. By Theorem 2 there is no Euler
tour.

Icosian game. Two original Hamilton cycless BCPNMDFKLTSR
QZXWVJHGandBCPNMDFGHXWVJKLTSRQ Z

Honeycomb. There is no Hamiltonian circuit. The honeycomb is bipartite
(two colorable): All edges lead from nodes with even number (g) to odd (u)
nodes. A Hamiltonian circuit would have the form gugu ... g u and thus an
even number of nodes. But the honeycomb has 13 nodes.

HCP as SSSP, page 19. Node repetitions can occur in the original graph.

28


http://www.lionhrtpub.com/orms/orms-4-06/frtransport.html
http://www.lionhrtpub.com/orms/orms-4-06/frtransport.html
http://www.ecp6.jussieu.fr/pageperso/bondy/books/gtwa/gtwa.html
http://www.ecp6.jussieu.fr/pageperso/bondy/books/gtwa/gtwa.html
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.counted.pdf
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/GraphTheoryIII.counted.pdf
http://www.princeton.edu/~rvdb/ LPbook/onlinebook.pdf
http://www.princeton.edu/~rvdb/ LPbook/onlinebook.pdf
http://www.mpi-inf.mpg.de/~mehlhorn/DatAlgbooks.html
http://www.mpi-inf.mpg.de/~mehlhorn/DatAlgbooks.html

	Historical Overture
	Combinatorics of Shortest Paths
	Local Transport and Graph Theory
	On the Tracks of Chance
	Münchhausen versus Archimedes
	Runtime Law for Algorithms
	Limited Resources

	Combinations of Paths
	Duty Scheduling 'Light'
	Duties and Paths
	Set Partitioning Models
	Plans = Paths + Prices + Programs

	Outlook
	Further Reading
	Solutions to the Questions

