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Abstract

The paper considers linear elliptic equations with regular Borel measures as in-
homogeneity. Such equations frequently appear in state-constrained optimal control
problems. By a counter-example of Serrin [18], it is known that, in the presence of
non-smooth data, a standard weak formulation does not ensure uniqueness for such
equations. Therefore several notions of solution have been developed that guarantee
uniqueness. In this note, we compare different definitions of solutions, namely the ones
of Stampacchia [19] and Boccardo-Galouët [4] and the two notions of solutions of [7]
and [2], and show that they are equivalent. As side results, we reformulate the solution
in the sense of [19], and prove the existence of solutions in the sense of [4], [7], and [2]
in case of mixed boundary conditions.
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1 Introduction

In this paper we investigate different notions of solution for linear elliptic partial differential
equations (PDEs) with measure valued right hand sides. Our study is motivated by the
analysis of state constrained optimal control problems, where such equations appear as
adjoint equations in first order optimality conditions. To be more precise, we consider the
following PDE with mixed boundary conditions

−∇ · aT ∇p = µΩ in Ω

ν · aT ∇p = µΓ on Γ
p = 0 on ∂Ω \ Γ,

(AE)

where Ω is a Lipschitz domain, Γ a relatively open part of its boundary with outward normal
ν, and a a uniformly elliptic, but non-smooth coefficient. Moreover, the inhomogeneities
µΩ and µΓ are regular Borel measures. The precise assumptions on the data will be made
at the end of this introduction.

Naturally, (AE) in its strong form is to be understood only formally, and several different
notions of weak solutions can be found in literature. We point out that the standard
definition of the variational formulation in the energy space H1(Ω) fails in case of (AE),
since H1(Ω) 6⊂ C(Ω̄) unless Ω ⊂ R. Therefore, an alternative definition of solutions with
a modified notion of weak formulations is necessary in case of (AE). In the present paper,
we will investigate four different definitions of weak solutions, namely the ones dating
back to Stampacchia [19] and Boccardo-Galouët [4] and two notions of solutions based
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on distributional derivatives. We will show that all these definitions are equivalent in the
sense that they yield the same unique solution to (AE). As a side result of this note, we
prove the existence of a solution of (AE) in the presence of mixed boundary conditions.
Concerning the definition of solutions in the spirit of Stampacchia, a corresponding result
was already proven in [13], but, up to our best knowledge, this was unknown in case of the
other notions of solutions.

Some words concerning the motivation for a detailed analysis of (AE) are in order.
Linear PDEs involving measures as inhomogeneity frequently appear in state-constrained
optimal control problems, see for instance [7] or [8] and the references therein. The reason
is that the state constraints have to be considered in a space that allows the associated
constraint set to have non-empty interior to guarantee the existence of Lagrange multipliers.
Often this space is chosen to be C(Ω̄), and the resulting Lagrange multipliers therefore
are only elements of M(Ω̄) = C(Ω̄)∗, where M(Ω̄) denotes the space of regular Borel
measures. These multipliers enter the adjoint equation in the right-hand side resulting in
an equation of the form (AE), see Section 1.2 below. Moreover, mixed boundary conditions
and non-smooth coefficients play an important role in various applications. We only cite
the references [17], [14], and [20], where corresponding examples are given.

Let us put our work into perspective. First, we point out that, according to the counter-
examples in [18] and [16], the homogeneous counterpart to (AE) may admit other solutions
outside the energy space H1, which satisfy the associated variational equality for a restricted
set of test functions. Due to the weak regularity of the inhomogeneity in (AE), one cannot
expect the solution to belong to H1 so that this simple uniqueness criterion fails in this
case. Therefore, several authors aimed to develop alternative criteria which ensure the
existence of a unique solution to (AE). We only mention the works of [19], [4], [16], and [13]
for linear elliptic equations with measures as inhomogeneity. Nonlinear equations involving
measures are investigated in [3] and [6]. While a concept of solutions for (AE) based on
the dual equation is developed in [19] and [13], the authors of [4] define the solution of
(AE) as the limit of solutions of regularized elliptic equations. In [16] both concepts are
compared showing that the two types of solutions are the same. In the optimal control
literature different notions of solutions to (AE) are common, see Casas [7] and Alibert and
Raymond [2]. While Casas developed a concept of very weak solutions for (AE) in [7], the
solution of [2] is defined as the solution of a (standard) variational equation and uniqueness
is guaranteed by imposing an additional formula of integration by parts. In this note, we
will show that both concepts carry over to the problem with mixed boundary conditions
and yield the same solution as the concept of Stampacchia [19].

The paper is organized as follows: after introducing the main assumptions and notation,
we give a short introduction in state-constrained optimal control motivating our analysis of
(AE). Then we turn to the notion of solution in the sense of Stampacchia [19] in Section 2.
This section also involves a modified definition of the Stampacchia solution and shows its
equivalence to the solution of Boccardo-Galouët. Afterwards Section 3 is then devoted to
the definitions of solutions in the sense of Casas [7] and Alibert and Raymond [2]. Section 3
can be read independently of Subsections 2.2 and 2.3. Finally, we summarize our findings
in a conclusion.

1.1 Preliminaries

Assumption 1.1. Throughout this paper, we impose the following quite mild assumptions
on the data in (AE):

• The domain Ω ⊂ Rd, d ≥ 1 is a bounded Lipschitz domain in the sense of [12,
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Chapter 1.2]. Moreover, Γ is a relatively open part of the boundary ∂Ω of Ω, and the
relatively closed complement ΓD := ∂Ω \ Γ is assumed to have positive measure.

In addition, the set Ω∪Γ is regular in the sense of Gröger, cf. [11]. That is, for every
point x ∈ ∂Ω, there exists an open neighborhood Ux ⊂ Rd of x and a bi-Lipschitz
map Ψx : Ux → Rd such that Ψx(x) = 0 ∈ Rd and Ψx

(
Ux ∩ (Ω∪Γ)

)
equals one of the

following sets:
E1 := {y ∈ Rd : |y| < 1, yn < 0},
E2 := {y ∈ Rd : |y| < 1, yn ≤ 0},
E3 := {y ∈ E2 : yn < 0 or y1 > 0}.

• Let a be a Lebesgue measurable, essentially bounded function on Ω, taking its values
in the set of real d×d matrices, that additionally satisfies the usual (strong) ellipticity
condition

y · a(x) y ≥ α|y|2, y ∈ Rd, (1)

for almost all x ∈ Ω and some α > 0.

• The inhomogeneity in (AE) is a regular Borel measure µ ∈M(Ω∪Γ), whereM(Ω∪Γ)
is the space of regular Borel measures with its usual norm. Moreover, µΩ and µΓ

denote the restrictions of µ to Ω and Γ, respectively and · denotes the euclidean
scalar product in Rd.

Remark 1.2. In the case n = 2, there is a simple characterization of Gröger regular sets.
It is shown in [13] that for Ω ∪ Γ ⊂ R2 to be regular in the sense of Gröger it is necessary
and sufficient that Ω is a Lipschitz domain and ∂Ω \ Γ is a finite union of closed arc pieces
of ∂Ω, none of which degenerates to a single point. Unfortunately, there is no such simple
characterization in case of n = 3, cf. [13]. If however Ω ⊂ R3 is a Lipschitzian polyhedron
and Γ ∩ ∂Ω \ Γ is a finite union of line segments, it can be shown that Ω ∪ Γ is regular in
the sense of Gröger, see [13].

Some words addressing our notation are in order. If X is a Banach space, we write X∗

for its dual. The associated dual pairing will be denoted by 〈· , ·〉X∗ or 〈· , ·〉X and, if there
is no risk for misunderstanding, we sometimes neglect the index. If Y is another Banach
space, the space of linear and continuous operators from X to Y is denoted by L(X,Y ).

Next we introduce the function spaces that will be used throughout the paper. We
define

D(Ω) =
{
v|Ω : v ∈ C∞(Rd), supp v ∩ ∂Ω = ∅

}
(2)

DΓ(Ω) =
{
v|Ω : v ∈ C∞(Rd), supp v ∩ ΓD = ∅

}
(3)

C̃Γ(Ω) =
{
v ∈ C(Ω̄), v = 0 on ΓD

}
(4)

By the Riesz representation theoremM(Ω̄) ∼= C(Ω̄)∗, and we concludeM(Ω∪Γ) ∼= C̃Γ(Ω)
∗
.

The next lemma addresses a density result for C̃Γ(Ω).

Lemma 1.3. The set DΓ(Ω) is dense in C̃Γ(Ω).

Proof. See Lemma A.1.

Now, let 2 ≤ q < ∞ (this restriction will be imposed throughout the paper) be given,
and define q′ as the conjugate exponent via q′−1 + q−1 = 1. We define

W 1,q
Γ (Ω) = DΓ(Ω)

W 1,q

, W−1,q
Γ (Ω) := (W 1,q′

Γ (Ω))∗. (5)
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In the following, we write W 1,2
Γ (Ω) = H1

Γ(Ω) and, to simplify the notation, also W 1,q
Γ =

W 1,q
Γ (Ω) et cetera in case no confusion can arise. In view of a well-known Sobolev embedding

theorem, we have that for q > d, which will be always assumed in the following, it holds

E : W 1,q(Ω) ↪→ C(Ω̄)

By EΓ we denote the restriction of this embedding:

EΓ : W 1,q
Γ (Ω) ↪→ C̃Γ(Ω). (6)

By Lemma 1.3 these embeddings have dense range. Note that if v ∈W 1,q
Γ (Ω) then v|ΓD

= 0.
We pass now to define the bilinear form

a : W 1,q
Γ ×W 1,q′

Γ → R

(v, w) 7→ a(v, w) :=
∫

Ω

a∇v · ∇w dx.

and the continuous mapping

Aq : W 1,q
Γ →W−1,q

Γ

v 7→ Aqv :=a(v, ·),
(7)

where W−1,q
Γ := (W 1,q′)∗. Because of our assumption on the ellipticity of a(·, ·), we have

that a(v, v) ≥ α ‖v‖2H1
Γ
. Then Aq is injective, since Aqv = 0 implies 0 = a(v, v) ≥ α ‖v‖2H1

Γ
,

and thus v = 0. We notice that A2 : H1
Γ → H1

Γ is by the Lax-Milgram theorem even an
isomorphism. However, for q > 2 continuous invertibility of Aq depends on regularity of
the coefficients and the boundary. If Aq is an isomorphism, then we say that Aq enjoys
maximal regularity with respect to q.

1.2 The adjoint equation for state constrained optimal control

In order to motivate our study of partial differential equations with measures, we exem-
plarily consider the following linear quadratic optimal control problem with pointwise con-
straints on the state:

min j(y, u) :=
1
2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω)

s.t. a(y, v) =
∫
Ω

u v dx ∀ v ∈ H1
Γ

and y(x) ≤ 1 a.e. in Ω


(P)

with given α > 0 und yd ∈ L2(Ω). It is well known that the derivation of first-order necessary
conditions for problems of this type requires to consider the pointwise state constraints in a
space Y whose topology allows the set {y ∈ Y : y(x) ≤ 1 a.e. in Ω} to contain an interior
point (also known as Slater point), cf. e.g. [7]. This is clearly the case if Y ↪→ C̃Γ(Ω), and
indeed, under the hypotheses made in Assumption 1.1, the unique solution of the state
equation in (P) is continuous, cf. Theorem 2.9 below. Thus we can introduce a linear and
continuous control-to-state-mapping S : L2(Ω) → C̃Γ(Ω), and the reduced optimization
problem reads

(P) ⇔

{
min j(E2Su, u)
s.t. (Su)(x) ≤ 1 ∀x ∈ Ω ∪ Γ,
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where E2 : C̃Γ(Ω) ↪→ L2(Ω) is the associated embedding operator. By means of the gener-
alized Karush-Kuhn-Tucker theory, one shows in a standard way the existence of an adjoint
state p ∈ L2(Ω) and multiplier µ ∈M(Ω ∪ Γ) ∼= C̃Γ(Ω)

∗
such that the following first-order

optimality system is satisfied (cf. [7, Theorem 5.2])

p+ αu = 0 (8a)
p = S∗(E∗2 (Su− yd)− µ) (8b)

〈µ , Su〉M(Ω∪Γ) = 0, (Su)(x) ≤ 1 ∀x ∈ Ω ∪ Γ (8c)

〈µ , v〉M(Ω∪Γ) ∀ v ∈ C̃Γ(Ω), v(x) ≥ 0 ∀x ∈ Ω ∪ Γ. (8d)

The crucial question is now how to interpret the abstract operator equation in (8b). If
Aq enjoys maximal regularity, then S = EΓA

−1
q Ẽ, where EΓ is defined as in (6) and

Ẽ : L2(Ω)→W−1,q
Γ is the embedding operator.

Consequently, we obtain S∗ = Ẽ∗(A−1
q )∗E∗Γ with A∗q : W 1,q′

Γ →W−1,q′

Γ , and therefore p
solves the weak formulation of (AE) associated to the operator A∗q , cf. Theorem 2.1 below.
If however Aq is not longer maximal regular, then the situation changes and another notion
of weak solutions associated to S∗ is required. In the following, we will see that different
notions of solutions exist and show that they are all equivalent in the sense that they deliver
the same unique solution.

2 Solutions in the sense of Stampacchia

Our first approach to unique solvability of (AE) starts with the observation of the dual
nature of this problem. The associated analysis proceeds in three steps. First, we formulate
(AE) as an equation involving an adjoint operator A∗q , then we show bijectivity of the pre-
adjoint Aq in an ‖ · ‖∞ setting, and finally, we conclude bijectivity of A∗q via the closed
range theorem of functional analysis. We demonstrate this procedure for the comfortable
case when Aq is maximal regular:

Theorem 2.1. For some q > d assume that Aq as defined in (7) enjoys maximal regularity.
Then the equation

a(v, p) =
∫

Ω

v dµΩ +
∫

Γ

v dµΓ ∀v ∈ DΓ (D0)

has a unique solution p ∈W 1,q′

Γ .

Proof. Since q > d, EΓ : W 1,q
Γ ↪→ C̃Γ(Ω) exists as a continuous embedding (cf. (6)), and

thus by density of DΓ in W 1,q
Γ , (D0) is equivalent to the operator equation

〈Aqv, p〉W 1,q′
Γ

= 〈µ,EΓv〉C̃Γ(Ω) ∀v ∈W 1,q
Γ

or, involving adjoint operators: A∗qp = E∗Γµ, where E∗Γ inherits continuity from EΓ. By our
assumption of maximal regularity, Aq is an isomorphism, and hence by the closed range
theorem, A∗q is an isomorphism as well. Thus, p := (A∗q)−1E∗Γµ is the unique solution of
(D0).

Remark 2.2. It is important to observe that our theorem only states uniqueness of p in the
space W 1,q′

Γ for the particular choice q for which Aq enjoys maximal regularity. If there is
q̂ > q such that Aq̂ lacks maximal regularity, then there may be some p̂ ∈W 1,q̂′

Γ that solves
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(D0), as well. Thus, for uniqueness the proper choice of space of candidates plays a decisive
role. This has already been pointed out in the work of Serrin [18]. Serrin constructed a
Dirichlet problem with discontinuous coefficient a, and a pathologic solution w 6∈ H1

0 , such
that a(v, w) = 0 forall v ∈ D. By [16] it is possible for every q′ < 2 to construct a problem
with a pathologic solution w ∈W 1,q′

0 . A similar counter-example can be found in [10].

Remark 2.3. Due to the results of [11], Aq is always maximal regular for some q > 2.
This means, provided that d = 2, i.e., in the two-dimensional setting, we always find some
q > d such that Aq enjoys maximal regularity. However, for each q > 2, there exists a
problem such that Aq is not maximal regular, as the above mentioned counter-examples
demonstrate. Therefore, in the important case d = 3, it is in general impossible to find a
suitable choice of q.

For the rest of the paper, we will consider the much more delicate case, where Aq lacks
maximal regularity for all q > d. In this case, the lack of surjectivity of Aq inhibits a
direct application of the proof technique in Theorem 2.1. Therefore we will next define a
”surjective variant” of Aq by considering Aq in a modified domain contained in the next
definition.

Definition 2.4. We define the subspace Dq of H1
Γ(Ω):

Dq := {v ∈ H1
Γ(Ω) : ∃ cv ≥ 0 with |a(v, w)| ≤ cv ‖w‖W 1,q′

Γ
∀w ∈ H1

Γ}. (9)

This space is often called maximal domain of Aq. Some observations about Dq are
contained in the following remark.

Remark 2.5. Let Dq be defined as in (9). The following facts hold:

1. It is clear from the definition of a that W 1,q
Γ ⊂ Dq ⊂ H1

Γ.

2. Aq enjoys maximal regularity (and thus Theorem 2.1 applies), if and only if W 1,q
Γ =

Dq.

3. The density of DΓ in H1
Γ implies

Dq = {v ∈ H1
Γ : ∃ cv ≥ 0 with |a(v, ϕ)| ≤ cv ‖ϕ‖W 1,q′

Γ
∀ϕ ∈ DΓ}.

Since H1
Γ is dense in W 1,q′

Γ , the definition of Dq implies that, for every v ∈ Dq, there
is a unique continuous extension f (v) ∈ W−1,q

Γ of a(v, ·) ∈ H−1
Γ . Moreover, it is easily seen

that f (v) is linear in v so that we can introduce an extended bilinear form

ā : Dq ×W 1,q′

Γ → R

(v, w) 7→ ā(v, w) := 〈f (v) , w〉
W 1,q′

Γ

This bilinear form fulfills

ā(v, w) = a(v, w) ∀ v ∈ Dq, w ∈ H1
Γ,

and can also be written in the explicit form

ā(v, w) = lim
wk→w

∫
Ω

a∇v · ∇wk dx ∀ v ∈ Dq,∀w ∈W 1,q′(Ω),

where wk is an arbitrary sequence in H1
Γ that converges to w in W 1,q′ . By definition of

Dq the limit on the right hand side only depends on w, but not on the particular sequence
wk → w.



7

Remark 2.6. One can in general not expect ā to be expressed in form of a Lebesgue
integral since Dq 6⊂ W 1,q

Γ unless Aq enjoys maximal regularity. This type of extension of
integral expressions is also used in other branches of mathematics. Two important examples
are the Fourier-Plancherel transform as continuous extension of the Fourier transform and
the Itô integral for Brownian processes.

Based on the bilinear form ā, we introduce the following mapping:

Definition 2.7. The linear mapping from Dq to W−1,q
Γ induced by the bilinear form ā is

denoted by
Āq : Dq →W−1,q

Γ

v 7→ ā(v, ·).
(10)

For Āq, we find

Lemma 2.8. The operator Āq : Dq →W−1,q
Γ is bijective.

Proof. Injectivity follows just as for Aq. By construction of Dq as maximal domain, Āq

inherits surjectivity from A2.

2.1 Solutions via a limit from

The question of continuity of Āq depends on the topology we use for Dq. Since W 1,q
Γ ⊂ Dq

and the inclusion is in general strict, see [13], we cannot use ‖·‖W 1,q
Γ

. However, by bijectivity
of Āq, we can equip Dq with an initial topology by assigning to each element of Dq the norm
of its image:

‖v‖Dq
:=
∥∥Āqv

∥∥
W−1,q

Γ
. (11)

This automatically makes Āq an isomorphism. Moreover, (Dq, ‖ · ‖Dq
) is complete, since

W−1,q
Γ , i.e. the image space of Āq, is complete and Āq is an isomorphism. To make the

definition of Āq and Dq useable for the discussion of (AE), we need the following regularity
result proven in [13, Thm. 3.3]:

Theorem 2.9. Let q > d. Then under Assumption 1.1 there is a continuous, compact,
and dense embedding Eq : Dq ↪→ C̃Γ(Ω).

Proof. In [13, Thm. 3.3] is shown that Dq is contained in a space of Hölder continuous
functions, which is compactly embedded into C̃Γ(Ω) by the Arzéla-Ascoli theorem. Density
follows from Dq ⊃ DΓ, and Lemma 1.3.

Observe that this theorem holds under weaker assumptions than maximal regularity for
q > d, from which we might also conclude continuity of solutions via the Sobolev embedding
(6). From now on, we fix a q > d such that the assertion of Theorem 2.9 holds. With this
result at hand, we can define our first notion of solutions:

Definition 2.10. Let µ ∈ M(Ω ∪ Γ) be given. A function p ∈ W 1,q′

Γ (Ω) is a solution of
(AE), if the equation

ā(v, p) =
∫

Ω

v dµΩ +
∫

Γ

v dµΓ ∀ v ∈ Dq (D1)

is satisfied.
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Remark 2.11. Let us shortly comment this definition. Suppose we would choose the space
of test functions to be the smaller space W 1,q

Γ , then equation (D1) would read simpler:

a(v, p) =
∫

Ω

v dµΩ +
∫

Γ

v dµΓ ∀ v ∈W 1,q
Γ (12)

because on W 1,q
Γ , we have a = ā by definition so that we would avoid the limit expression.

However, (12) is not suitable for a definition of solutions in W 1,q′

Γ since there is no uniqueness
of the solution in this setting, as the counter-examples of Serrin [18] and Prignet [16]
demonstrate. The reason is basically that W 1,q

Γ is not dense in (Dq, ‖ · ‖Dq
). Therefore the

definition with test functions in Dq is necessary. The drawback of the Definition 2.10 is that
it is in general not possible to express equation (D1) through a limit relation that preserves
the structure of the bilinear form as a Lebesgue integral. More precisely, by definition of ā,
(D1) is equivalent to

lim
pk∈H1

Γ
‖pk−p‖

W
1,q′
Γ
→0

∫
Ω

a∇v · ∇pkdx =
∫

Ω

v dµΩ +
∫

Γ

v dµΓ ∀ v ∈ Dq, (13)

but, by the passage to the limit for k →∞ in the above equation, the bilinear form might not
longer be expressed by a Lebesgue integral since Dq 6⊂ W 1,q

Γ . Another different definition
of solution which tries to overcome this drawback is discussed separately in the Subsection
2.3.

Theorem 2.12. For each µ ∈ M(Ω ∪ Γ), there is a unique solution of (AE) in the sense
of Definition 2.10. It is also a (possibly non-unique) solution of (12).

Proof. Equation (D1) can be expressed as

〈Āqv, p〉Dq
= 〈µ,Eqv〉C̃Γ(Ω) ∀v ∈ Dq,

or, involving adjoints Ā∗qp = E∗qµ. Since Āq is an isomorphism, it follows by the closed range
theorem that Ā∗q is an isomorphism, too. Hence, p = (Ā∗q)−1E∗qµ is the unique solution of
(AE) in the sense of Definition 2.10. Clearly, if p satisfies(13), then also (12).

Remark 2.13. The solution of (D1) induced by the above theorem, is in the spirit of [19]
(cf. also [13, Section 6.2]). Thus we will frequently term it as solution of Stampacchia in
the following.

Remark 2.14. We may reduce the space of test functions Dq in (D1) to a smaller subspace.
Since D is dense in W−1,q

Γ , and Āq is an isomorphism,

Dq := Ā−1
q (D) =

{
v ∈ Dq : Āqv ∈ D

}
is a dense subspace of Dq. So in (D1) and also in the definitions that follow, Dq may be
replaced by the dense subspace Dq. However, even for this smaller space Dq 6⊂W 1,q

Γ .

2.2 Well-posedness and solutions of Boccardo-Galouët

The next lemma shows that p is well posed with respect to perturbations of µ.

Lemma 2.15. Assume that µk ∈M(Ω∪Γ) converges to µ ∈M(Ω∪Γ) in the weak∗ sense.
Let pk be the solutions of (D1) with respect to µk. Then pk → p strongly in W 1,q′

Γ and p
solves (D1) with right hand side µ.
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Proof. Since the embedding Eq : Dq ↪→ C̃Γ(Ω) is compact, so is its adjoint E∗q : C̃Γ(Ω)
∗ →

D∗q . Hence weak∗ convergence µk ⇁ µ implies strong convergence E∗qµk → E∗qµ. Hence by

continuous invertibility of Ā∗q , we obtain pk → p in W 1,q′

Γ , and by continuity Ā∗qp = E∗qµ.

Based on this lemma, we can now turn to an alternative notion of solutions to (AE) in
the sense of Boccardo-Galouët [4], who defined p as limit of H1

Γ-solutions pk of (12) for a
sequence µk of smooth right-hand sides that converges to µ inM(Ω∪Γ) in the weak∗ sense
(cf. also [16]):

Corollary 2.16. Let µ ∈M(Ω∪Γ) be given. Then there exists a sequence (fk)k∈N ⊂ L2(Ω)
converging weakly∗ to µ, i.e.

lim
k→∞

∫
Ω

fk v dx→ 〈µ , v〉M(Ω∪Γ) ∀ v ∈ C̃Γ(Ω).

Moreover, there is a unique element p ∈W 1,q′

Γ such that A−1
2 fk → p in W 1,q′

Γ . In addition,
p solves (12) with right hand side µ and is a solution in the sense of Definition 2.10.

Proof. The density of L2(Ω) inM(Ω∪Γ) w.r.t. the weak∗ topology follows from the assertion
of Proposition A.2. Let pk := A−1

2 fk ∈ H1
Γ. Then, in view of ā(v, pk) = a(v, pk) for all

v ∈ Dq and all k ∈ N, pk also solves (D1) with right-hand side fk. Thus, the result is an
immediate consequence of Lemma 2.15.

Remark 2.17. The equivalence of the Stampacchia solution to the solution of Boccardo-
Galouët was already shown in [16] for the case of homogeneous Dirichlet boundary condi-
tions.

Remark 2.18. Lemma 2.15 and Corollary 2.16 are essential for numerical path-following
methods applied to state-constrained problems. These methods usually construct a se-
quence of smooth approximations of µ. Thus the results ensure that their adjoint states
will converge to the correct weak solution.

2.3 Uniqueness in a tailored subspace

We consider here again the notion of solution given in Definition 2.10 and look at possibilities
of getting rid of the limit expression ā. The idea is to consider the operator Āq in a different
topological setting. To this end we embed Dq densely into C̃Γ(Ω) and thus equip Dq with
the norm ‖·‖∞. To avoid confusion, let us denote this space by D̃q. Note that, by Theorem
2.9, we know that the embedding Eq : D̃q ↪→ C̃Γ(Ω) is well defined for q > d and dense. In
this setting, we reconsider Āq as the operator

Ãq : C̃Γ(Ω) ⊃ D̃q →W−1,q
Γ

v 7→ Ãqv := ā(v, ·),
(14)

This definition is identical to (10) from an algebraic point of view. The only difference is
that D̃q is now embedded and retopologized by C̃Γ(Ω).

In order to define an adjoint operator for Ãq in this setting we define the set

D(Ã∗q) := {w ∈W 1,q′

Γ : ∃ cw so that ā(v, w) ≤ cw ‖v‖∞ ∀ v ∈ D̃q}.
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For each w ∈ D(Ã∗q) the linear functional f (w) : v 7→ ā(v, w) is well defined and continuous
on D̃q, and thus has a unique continuous extension to a functional f̄ (w) ∈ C̃Γ(Ω)

∗
. Then

we can define the adjoint operator (see e.g. [5, Section II.6]) via

Ã∗q : W 1,q′

Γ ⊃ D(Ã∗q)→ C̃Γ(Ω)
∗

w 7→ Ã∗qw := f̄ (w),

which satisfies:

〈v, Ã∗qw〉C̃Γ(Ω) = 〈Ãqv, w〉W 1,q′
Γ

= ā(v, w) ∀ v ∈ D̃q, w ∈ D(Ã∗q). (15)

The definition of D(Ã∗q) yields a second notion of solutions:

Definition 2.19. Let µ ∈M(Ω∪Γ) be given. A function p ∈ D(Ã∗q) ⊂W 1,q′

Γ is a solution
of (AE), if it satisfies

a(v, p) =
∫

Ω

v dµΩ +
∫

Γ

v dµΓ ∀ v ∈ DΓ. (D2)

In comparison to Definition 2.10, the space of solutions has been restricted here, which,
as we will see, allows us to dispense with the limit formulation ā(·, ·).

Remark 2.20. Let us compare the definition of D(Ã∗q) to the following, seemingly similar
definition:

D̂ := {w ∈W 1,q′

Γ : ∃ cw so that a(v, w) ≤ cw ‖v‖∞ ∀ v ∈W
1,q
Γ }.

The only difference is a more restricted choice of test-variables v, which allows to use
a instead of ā. Clearly, D(Ã∗q) ⊂ D̂, and the counter-examples of [19] imply that this
inclusion may be strict in general.

In order to show existence and uniqueness of solutions in the sense of Definition 2.19 we
need some auxiliary results.

Lemma 2.21. If p ∈ D(Ã∗q) and µ ∈ C̃Γ(Ω)
∗
, then

Ã∗qp = µ ⇔ a(v, p) = 〈µ, v〉C̃Γ(Ω) ∀v ∈ DΓ.

Proof. By (15) Ã∗qp = µ is equivalent to

〈Ãqv , p〉W 1,q′
Γ

= 〈µ, v〉C̃Γ(Ω) ∀ v ∈ D̃q.

By Lemma 1.3, DΓ is dense in C̃Γ(Ω) and thus in D̃q giving in turn that the above equation
is equivalent to

〈Ãqv, p〉W 1,q′
Γ

= 〈µ, v〉C̃Γ(Ω) ∀ v ∈ DΓ.

Now our assertion follows from a(v, p) = 〈Ãqv, p〉W 1,q′
Γ

, if v ∈ DΓ.

Thus, we have reduced our problem to the study of invertibility of Ã∗q . To this end, we
first show closedness and invertibility of Ãq, and then conclude the same for Ã∗q .

Lemma 2.22. The operator Ãq : C̃Γ(Ω) ⊃ D̃q →W−1,q
Γ continuously invertible and closed.
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Proof. Since D̃q is the maximal domain of Ãq, continuous invertibility of Ãq is a direct

consequence of Theorem 2.9. To conclude closedness, let un ∈ D̃q, with un
C̃Γ(Ω)→ u for some

u ∈ C̃Γ(Ω) and Ãqun := fn
W−1,q

Γ→ f for some f ∈ W−1,q
Γ . We must show that u ∈ D̃q and

Ãqu = f .
Since fn → f , and Ãq has a continuous inverse, it follows un = Ã−1

q fn → Ã−1
q f . By

assumption u = limun it follows that u = Ã−1
q f , and thus Ãqu = f and in particular

u ∈ D̃q.

Lemma 2.23. The adjoint operator Ã∗q : W 1,q′

Γ ⊃ D(A∗q)→ C̃Γ(Ω)
∗

is continuously invert-
ible.

Proof. First, we show that Ã∗q is bijective. Since Ãq is densely defined, closed, and surjective,
Ã∗q is injective (cf. [5, Cor. II.17]). To show the surjectivity of Ã∗q , we use the closed range
theorem for closed operators [5, Thm. II.20]: if Ãq is closed, Ker(Ãq) = {0}, and Rg(Ãq)
is closed, then Ã∗q is surjective. While Ãq is closed by Lemma 2.22, the last two conditions
are satisfied, since Ãq is bijective.

It remains to show that the inverse of Ã∗q is continuous. To this end, observe that Ã∗q
as an adjoint operator is closed (cf. [5, Prop. II.16]). Then the open mapping theorem for
closed operators, see [21, Thm. IV.4.4], implies that (Ã∗q)−1 : C̃Γ(Ω)

∗ → W 1,q′

Γ is indeed
continuous.

Now we are in the position to prove the main result of this subsection:

Theorem 2.24. For every µ ∈ M(Ω ∪ Γ), there exists a unique solution in the sense of
Definition 2.19, which coincides with the solution in the sense of Definition 2.10.

Proof. By Lemma 2.21, (D2) is equivalent to Ã∗qw = µ in C̃Γ(Ω)
∗
. Hence, the continuous

invertibility of Ã∗q : W 1,q′

Γ ⊃ D(Ã∗q)→ C̃Γ(Ω)
∗

by Lemma 2.23 yields the result.
Due to (15), the unique solution of (AE) in the sense of Definition 2.19 also satisfies

(D1) and therefore coincides with the solution from Definition 2.10.

Remark 2.25. At first glance Definition 2.19 appears to be more comfortable than Defi-
nition 2.10, since the equation can be written in a form involving a Lebesgue integral and
smooth test functions. However, the solution in the sense of Definition 2.19 is only unique
in D(Ã∗q), and there may be other solutions in W 1,q′

Γ . So, in other words, a non-standard
test space in (D1) has been exchanged by a non-standard solution space in (D2).

3 Solutions based on Distributional Derivatives

As anticipated in the introduction, we now turn to different notions of solutions to (AE)
that are commonly used in the optimal control literature. The first definition of solutions
dates back to Casas [7], while the second notion of solutions was introduced by Alibert
and Raymond in [2]. As we will see in the following, both notions of solutions are in
fact equivalent to the Stampacchia solution in the sense that they yield the same (unique)
solution. Both concepts rely on the distributional divergence and distributional normal
trace defined in the following:
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Definition 3.1. (Distributional derivatives)

1. The distributional divergence of a function ω ∈ L1
loc(Ω; Rd) is defined in a standard

way by

〈−divω , ϕ〉D′ :=
∫
Ω

ω · ∇ϕdx ∀ϕ ∈ D,

where D is given as in (2), equipped with the standard notion of convergence. Fur-
thermore we define the set

Wdiv(Ω; Rd) := {ω ∈ L1(Ω; Rd) :
∃µ ∈M(Ω) : 〈divω , ϕ〉D′ = 〈µ , ϕ〉M(Ω) ∀ϕ ∈ D},

For convenience, we identify divω = µ if ω ∈Wdiv(Ω; Rd) in the following.

2. The distributional normal trace on Γ of an element ω ∈Wdiv(Ω; Rd) is given by

〈ν · ω , ϕ〉D′Γ :=
∫
Ω

ω · ∇ϕdx+ 〈divω , ϕ〉M(Ω) ∀ϕ ∈ DΓ,

where DΓ is again the set given in (3) endowed with the same notion of convergence
as D.

Note that this formula represents a generalized formula of partial integration. Clearly,
if ω ∈ C1(Ω; Rd), then the distributional divergence and normal trace coincide with the
divergence and normal trace of ω in a classical sense.

3.1 Very weak solutions

In the following subsection, we introduce the concept of very weak solutions for (AE) that
is also used in [7]. Here, we extend the concept to the case of mixed boundary conditions
by using a technique which is similar derivation of Stampacchia solutions in Section 2.1.
As in Section 2.1, we again restrict the operator A2 to a domain V which continuously
embeds into C̃Γ(Ω). By endowing V with the initial topology, the arising operator is again
continuously invertible and, by the closed range theorem, this gives continuous invertibility
of its adjoint. The space V thus plays a similar role as Dq in Section 2, and we define it
with the help of distributional divergence and normal trace as follows:

Definition 3.2. For q > d let 1 < r, s < ∞ and their conjugate exponents r′, s′ be given
by

1
s

=
1
q

+
1
d
⇔ 1

s′
=

1
q′
− 1
d

and
1
r

=
1
q

d

d− 1
⇔ 1

r′
=

1
q′
− 1
q(d− 1)

We introduce the linear space V by

V := {v ∈ H1
Γ : ∃ g1 ∈ Ls(Ω) : 〈div a∇v , ϕ〉D′ =

∫
Ω

g1 ϕdx ∀ϕ ∈ D,

∃ g2 ∈ Lr(Γ) : 〈ν · a∇v , ϕ〉D′Γ =
∫
Γ

g2 ϕds ∀ϕ ∈ DΓ}

For every v ∈ V , we identify div a∇v = g1 ∈ Ls(Ω) and ν · a∇v = g2 ∈ Lr(Γ) in the
following. Since div a∇v ∈ Ls(Ω), we have a∇v ∈ Wdiv(Ω; Rd). Therefore the normal
trace in the sense of Definition 3.1, 2 is well defined.
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In the following, we use the notation

Ls,r := Ls(Ω)× Lr(Γ)

and Ls′,r′ is defined analogously. The choice of s and r is motivated by the following
observation: There exists a continuous and dense Sobolev embedding and trace operator

EL : W 1,q′

Γ ↪→ Ls′,r′

w 7→ (w, τΓw).
(16)

For the definition of the trace operator τΓ on Lipschitz domains and the associated trace
theorem, we refer to [15, Chap. 2, Thm. 4.2]. The next lemma shows that we can define V
similarly to Dq in (9):

Lemma 3.3. The space V can equivalently be defined by

V =
{
v ∈ H1

Γ : ∃ cv ≥ 0 with |a(v, w)| ≤ cv
(
‖w‖Ls′ (Ω) + ‖τ w‖Lr′ (Γ)

)
∀w ∈ H1

Γ

}
.

Proof. We denote by M the set in the assertion of the lemma. First, let us show V ⊂M . By
definition of the distributional derivative and normal trace we find for an arbitrary v ∈ V

|a(v, ϕ)| = |〈ν · a∇v , ϕ〉D′Γ − 〈div a∇v , ϕ〉M(Ω)|
≤ ‖div a∇v‖Ls(Ω) ‖ϕ‖Ls′ (Ω) + ‖ν · a∇v‖Lr(Ω) ‖ϕ‖Lr′ (Ω) ∀ϕ ∈ DΓ.

Hence, by density of DΓ in H1
Γ, it follows that V ⊂M . On the other hand, if v ∈M , then

|〈div a∇v , ϕ〉D′ | = |a(v, ϕ)| ≤ cv‖ϕ‖Ls′ (Ω) ∀ϕ ∈ D,

and the Hahn-Banach theorem yields the existence of g1 ∈ Ls(Ω) such that 〈div a∇v , ϕ〉D′ =∫
Ω
g1 ϕdx for all ϕ ∈ D. Thus a∇v ∈ Wdiv(Ω; Rd), and as above we identify div a∇v with

g1. Consequently its distributional normal trace is well defined and one finds∣∣∣〈ν · a∇v , ϕ〉D′Γ − ∫
Ω

(div a∇v)ϕdx
∣∣∣ = |a(v, ϕ)| ≤ cv

(
‖ϕ‖Ls′ (Ω) + ‖τ ϕ‖Lr′ (Γ)

)
∀ϕ ∈ DΓ.

Hence the Hahn-Banach theorem again gives the existence of (g̃1, g2) ∈ Ls,r so that

〈ν · a∇v , ϕ〉D′Γ −
∫
Ω

(div a∇v)ϕdx =
∫
Ω

g̃1 ϕdx+
∫
Γ

g2 ϕds ∀ϕ ∈ DΓ.

By testing the above equation with ϕ ∈ D we immediately find that div a∇v = g̃1 and
consequently 〈ν · a∇v , ϕ〉D′Γ =

∫
Γ
g2 ϕds which implies M ⊂ V .

On V we can define the linear operator

AV : V → Ls,r

v 7→ (−div a∇v, ν · a∇v).

As in the proof of Lemma 3.3, the definition of the distributional derivative and the normal
trace implies

〈AV v, ϕ〉Ls,r
=
∫
Ω

(− div a∇v)ϕdx+
∫
Γ

(ν · a∇v)ϕds

=
∫
Ω

a∇v · ∇ϕdx = a(v, ϕ) ∀ϕ ∈ DΓ.

(17)

We thus conclude:
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Lemma 3.4. AV : V → Ls,r is bijective.

Proof. By (17) we see that AV is a restriction of the bijective operator A2 : H1
Γ → H−1

Γ

and, by Lemma 3.3, V is its maximal domain with respect to the range space Ls,r.

Just as we did with Dq in Section 2.1, we endow V with the norm

‖v‖V = ‖AV v‖Lr,s = ‖ div a∇v‖Ls(Ω) + ‖ν · a∇v‖Lr(Γ),

which makes AV an isomorphism and V a Banach space.

Lemma 3.5. There is a continuous embedding

EV : (V, ‖ · ‖V ) ↪→ (Dq, ‖ · ‖Dq ),

which satisfies the equation
E∗LAV = ĀqEV . (18)

Proof. By (16) the adjoint E∗L : Ls,r ↪→ W−1,q
Γ exists, and thus E∗LAV v ∈ W−1,q

Γ for all
v ∈ V . This implies that there exists a continuous mapping EV := Ā−1

q E∗LAV : V → Dq,
which satisfies (18). It remains to show that EV v = v for all v ∈ V . By (18) we have

a(v, ϕ) = 〈AV v,ELϕ〉Ls,r
= 〈ĀqEV v, ϕ〉W 1,q′

Γ
= a(EV v, ϕ) ∀ϕ ∈ DΓ.

This implies EV v = v in view of the injectivity of A2.

In particular, V is continuously embedded in C̃Γ(Ω) by Theorem 2.9. Now we can
conclude existence and uniqueness of very weak solutions of (AE):

Theorem 3.6. The equation∫
Ω

(−div a∇v)p dx+
∫
Γ

(ν · ∇v)t ds =
∫

Ω

v dµΩ +
∫

Γ

v dµΓ ∀v ∈ V (D3)

has a unique solution (p, t) ∈ Ls′,r′ . Moreover, we have p ∈ W 1,q
Γ and t = τp, and p

coincides with the solution in the sense of Definition 2.10.

Proof. Equation (D3) can be written as 〈AV v, (p, t)〉Ls′,r′ = 〈µ,EqEV v〉C̃Γ(Ω) for all v ∈ V ,
or

A∗V (p, t) = E∗V E
∗
qµ, (19)

where Eq : Dq → C̃Γ(Ω) was defined in Theorem 2.9. By the closed range theorem,
A∗V : Ls′,r′ → V ∗ is an isomorphism, because AV is one. This yields existence of a unique
couple (p, t) ∈ Ls′,r′ such that (D3) is fulfilled.

Now let p̃ be the solution of (D1), i.e.

Ā∗q p̃ = E∗qµ. (20)

Then inserting (20) into (19) yields A∗V (p, t) = E∗V Ā
∗
q p̃. From Lemma 3.5 we conclude

A∗V EL = E∗V Ā
∗
q , and hence A∗V (p, t) = A∗V ELp̃. Thus (p, t) = ELp̃, which implies p = p̃ a.e.

in Ω and t = τ p̃ a.e. on Γ by definition of EL.

Remark 3.7. Notice the analogy to Section 2: we replaced W−1,q
Γ by Ls,r and Dq by V .



15

3.2 Solutions in the sense of Alibert and Raymond

This subsection is devoted to a notion of solutions to (AE) introduced by Alibert and
Raymond in [2]. The basis for this definition is the variational formulation (D0) which
is not sufficient to obtain uniqueness. To guarantee the uniqueness of solutions, Alibert
and Raymond additionally required a certain formula of integration by parts (see (23)
below). However, their analysis does not account for mixed boundary conditions which are
incorporated here. In addition, we will show that this notion of solutions coincides with
ones defined before.

Let us first recall the space for solutions of (AE) that is used in [2].

Definition 3.8. The set W is defined by

W := {p ∈W 1,1
Γ (Ω) : a>∇p ∈Wdiv(Ω; Rd) and

∃µ ∈M(Γ) : 〈ν · a> p , ϕ〉D′Γ = 〈µ , ϕ〉M(Γ) ∀ϕ ∈ DΓ}.

Similarly to above, we identify the co-normal derivative on Γ by ν · a>∇p = µ ∈ M(Γ) if
p ∈W .

With this definition we may define the linear operator

AW : W →M(Ω)×M(Γ) =M(Ω ∪ Γ)

w 7→ (− div aT∇w, ν · a>∇w).

By definition of the distributional derivative, for each p ∈W , AW p is the unique continuous
extension of the linear functional ϕ → a(ϕ, p) to a measure. This extension exists by
definition of W . To be more precise, we have:

〈AW p, ϕ〉C̃Γ(Ω) = a(ϕ, p) ∀ϕ ∈ DΓ. (21)

Now we have everything at hand to introduce the notion of solutions to (AE) according to
Alibert and Raymond [2]:

Definition 3.9. A function p ∈W is called solution of (AE), if it satisfies

1. the following weak formulation of (AE)

a(ϕ, p) =
∫

Ω

ϕdµΩ +
∫

Γ

ϕdµΓ ∀ϕ ∈ DΓ, (22)

2. p ∈ Ls′(Ω) and τp ∈ Lr′(Γ), where s and r are as defined in Definition 3.2,

3. and the following formula of integration by parts

−
∫
Ω

(div a∇v)p dx+
∫
Γ

(ν · a∇v)p ds

= −〈div a> p , v〉M(Ω) + 〈ν · a> p , v〉M(Γ) ∀ v ∈ V.
(23)

Remark 3.10. If in (23) the test space V was replaced by DΓ, it would be again impossible
to show uniqueness of a solution. Thus, this notion of solution also involves a non-standard
test space, just as the previously defined ones.
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Theorem 3.11. There exists a solution of (AE) in the sense of Definition 3.9. Moreover,
it is unique and coincides with the solution of (AE) in the sense of Definition 2.10.

Proof. For ease of notation, define the continuous embedding E := EqEV : V ↪→ C̃Γ(Ω).
Let us translate Definition 3.9 into operator equations. By (21) and density of DΓ

in C̃Γ(Ω) the weak formulation (22) is expressed by AW p = µ. The formula of partial
integration (23) reads

〈AV v, (p, τp)〉Ls′,r′ = 〈AW p,Ev〉C̃Γ(Ω) ∀v ∈ V

or with adjoints: A∗V (p, τp) = E∗AW p.
If p is a solution in the sense of (D1), it clearly solves (22). The definition of the

distributional divergence together with (22) then implies

〈− div a>∇p , ϕ〉D′ = a(ϕ, p) = 〈µΩ , ϕ〉M(Ω) ∀ϕ ∈ D,

which gives a>∇p̄ ∈Wdiv(Ω; Rd). Applying again (22) yields

〈µΓ , ϕ〉M(Γ) = a(ϕ, p) + 〈div a>∇p , ϕ〉M(Ω) = 〈ν · a>∇p , ϕ〉D′Γ ∀ϕ ∈ DΓ,

by the definition of the distributional normal trace. Thus we have p ∈ W and AW p = µ.
Moreover, by Theorem 3.6, the solution p also satisfies A∗V (p, τp) = E∗µ. Thus,

A∗V (p, τp) = E∗µ = E∗AW p,

which is the formula of partial integration.
If, in turn p is a solution in the sense of Definition 3.9, then AW p = µ and A∗V (p, τp) =

E∗AW p. Thus, A∗V (p, τp) = E∗µ, and so (p, τp) is the solution in the sense of (D3) and
thus also in the sense of (D1) by Theorem 3.6.

Therefore, both definitions of solutions are equivalent which establishes the assertion.

4 Conclusion

To summarize the above analysis, we collect our results in a single theorem:

Theorem 4.1. The following equation in the weak form

a(v, p) =
∫

Ω

v dµΩ +
∫

Γ

v dµΓ ∀v ∈ DΓ (24)

admits solutions in W 1,1
Γ . Precisely one of these solutions is outstanding and characterized

by one and hence all of the following equivalent additional conditions:

(i) p ∈W 1,q′

Γ for some q > d and satisfies the extended weak formulation

ā(v, p) := lim
pk∈H1

Γ
‖pk−p‖

W
1,q′
Γ
→0

a(v, pk) =
∫

Ω

v dµΩ +
∫

Γ

v dµΓ ∀ v ∈ Dq, (25)

where Dq is the maximal domain of definition of Aq.

(ii) p ∈ D(Ā∗q) := {w ∈W 1,q′

Γ : ∃ cw so that ā(v, w) ≤ cw ‖v‖∞ ∀ v ∈ Dq} for some q > d.
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(iii) p is the limit of solutions of (24) for a sequence of smooth right hand sides that
converges to µ in M(Ω ∪ Γ) in the weak∗ sense.

(iv) (p, τp) ∈ Ls′,r′ and p satisfies the very weak formulation∫
Ω

(− div a∇v)p dx+
∫
Γ

(ν · ∇v)p ds =
∫

Ω

v dµΩ +
∫

Γ

v dµΓ ∀v ∈ V,

where V is the maximal domain of definition of AV .

(v) (p, τp) ∈ Ls′,r′ and p satisfies the formula of partial integration:

−
∫
Ω

(div a∇v)p dx+
∫
Γ

(ν · a∇v)p ds

= −〈div a> p , v〉M(Ω) + 〈ν · a> p , v〉M(Γ) ∀ v ∈ V.

If the problem enjoys maximal regularity w.r.t. q, then (24) is sufficient for p being unique
in W 1,q′

Γ .

All criteria ultimately rely on a regularity result, such as Theorem 2.9 and a duality
technique, involving the closed range theorem. Except for (iii) a function space is involved,
(Dq or V , resp.) which depends on the properties of a and cannot be described as a standard
Sobolev space. In general it seems to be impossible to replace these spaces by more simple
ones without loosing uniqueness. If the problem at hand enjoys maximal regularity for
some q > d, then the non-standard space Dq becomes a Sobolev space, namely W 1,q′

Γ .
In contrast, V is hard to characterize in general. One exception are H2-regular Dirichlet
problems, where V = H2 ∩H1

0 and s = 2.

A Density results for mixed boundary conditions

The following two density results were essential for the analysis underlying the proofs of
Corollary 2.16, Lemma 2.21, and Theorem 3.11. Since the case of mixed boundary condi-
tions is not covered in the standard literature, we provide the associated proofs for conve-
nience of the reader.

Lemma A.1. Let Ω be an open, bounded set and Γ a relatively open part of ∂Ω. The set
DΓ(Ω), defined in (3), is dense in C̃Γ(Ω), given in (4).

Proof. We will apply the Theorem of Stone-Weierstrass. First, we note that due to the
Theorem of Tietze-Urysohn, each v ∈ C̃Γ(Ω) can be extended to a function in C(Rd) with
compact support in Rd. For simplicity, this extension is also denoted by v. Now define
X := Rd \ ΓD, which is a locally compact set, since ΓD is closed. Then, because of v ≡ 0
on ΓD, the extension of v is even contained in

C0(X) := {v ∈ C(Rd) : ∀ε > 0 ∃ compact set K ⊂ X so that v(x) < ε ∀x ∈ X \K}.

Moreover, we define D(X) by D(X) := {v ∈ C∞(X), supp v ∩ ΓD = ∅}. By taking the
standard mollifier, we find for each x ∈ X and each neighborhood U(x) of x a function
φ ∈ D(X) such that φ(x) 6= 0 and φ ≡ 0 in X \ U(x). Hence, D(X) is an algebra that
separates points and vanishes nowhere.

Thus we are allowed to apply the locally compact version of the Stone-Weierstrass
theorem, cf. [9, Corollary 8.3], which asserts density of D(X) in C0(X). Restriction to Ω̄,
yields the desired result.
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Proposition A.2. Let Ω be an open and bounded subset of Rd. Then, for every µ ∈M(Ω)
there is a sequence (fn)n∈N ⊂ L∞(Ω) that converges weakly∗ to µ, i.e.∫

Ω

fn v dx→ 〈µ , v〉M(Ω) ∀ v ∈ C(Ω).

Proof. We have to show that L∞(Ω) is weak∗ sequentially dense in M(Ω). By a general
result of functional analysis (cf. e.g. [9, Theorem V.12.11]), a linear subspace U of the dual
X∗ of a separable Banach space X is weak∗ sequentially dense in X∗, if and only if there
is a constant c such that, for every x ∈ X, there holds

‖v‖X ≤ sup{|〈v, v∗〉| : v∗ ∈ U, ‖v∗‖X∗ ≤ c}. (26)

Let us take X = C(Ω) (which is a separable Banach space), X∗ = M(Ω), and U :=
L∞(Ω). Then to verify (26), for each v ∈ C(Ω), we construct a sequence φk in L∞(Ω) with
‖φk‖L1(Ω) = 1 and

‖v‖L∞(Ω) ≤ lim
k→∞

|
∫

Ω

v φk dx|.

Indeed, for given v ∈ C(Ω), let y ∈ Ω be a point, for which |v(y)| = ‖v‖L∞(Ω). (Note that
such a y exists since Ω is compact and v is continuous.) Furthermore, define for ε > 0

Mε := {x ∈ Ω : |x− y| < ε}.

Clearly, Mε is non-empty and open as an intersection of two open sets, and therefore
|Mε| > 0. Now let k ∈ N and define φk := |M1/k|−1χM1/k

, where χMε
is the characteristic

function of the set Mε. Then for each k ∈ N, we have φk ∈ L∞(Ω) and ‖φk‖L1(Ω) = 1.
Moreover, we find∣∣∣∣∫

Ω

φk v dx

∣∣∣∣ =

∣∣∣∣∣v(y) + |M1/k|−1

∫
M1/k

(
v(x)− v(y)

)
dx

∣∣∣∣∣
≥ |v(y)| − sup

x∈M1/k

|v(x)− v(y)| → |v(y)| = ‖v‖L∞(Ω) for k →∞,

which proves the result.
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(1967)

[16] A. Prignet, Remarks on existence and uniqueness of solutions of elliptic problems with
right-hand side measures, Rendiconti di Matematica, 15 (1995) 321–337

[17] S. Selberherr, Analysis and Simulation of Semiconductors, Springer, Wien, (1984)

[18] J. Serrin, Pathological solutions of elliptic differential equations, Ann. Scuola
Norm. Sup. Pisa Cl. Sci., 18 (1964) 385–388

[19] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre
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