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Abstract

The paper presents a construction scheme of deriving trans-
parent , i. e. reflection-free, boundary conditions for the nu-
merical solution of Fresnel’s equation (being formally equiv-
alent to Schrödinger’s equation). These boundary conditions

appear to be of a nonlocal Cauchy type. As it turns out, each
kind of linear implicit discretization induces its own discrete
transparent boundary conditions.
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� Introduction

Fresnel’s equation, which is formally equivalent to Schrödinger’s equation, plays an
essential role in such fields of natural sciences and techniques, where wave propagations
are considered, e. g., in optics, accoustics and quantum mechanics. The general task

in computing a solution of Fresnel’s equation is the following: one ore more sources
are given, which generate waves travelling through the domain of interest and leave
it afterwards. In order to simulate the wave propagation, we have to cut out a finite

piece of the real problem containing the domain of interest. This paper deals with
the choice of the boundary conditions in 2-D problems along our artificially choosen
boundaries. We want to realize reflection-free or, equivalently, transparent boundaries,
which means boundary conditions so that scattered parts of the wave travelling in the

inner region and hitting the boundaries are not reflected in any way back into the
interior domain. We want that the boundary conditions realize transparent boundaries
for arbitrarily shaped waves going from the inner region to the outer region and vice
versa. The problem of the choice of appropriate boundary conditions in the field of

wave propagation has been known for a long time and a number of different suggestions
have been made. One proposal is to introduce additional absorbing boundary layers
next to the simulation domain [7]. This method is the one most often used because
it is robust and easy to implement. But it makes an artificial change concerning the

original problem and contains additional parameters to adjust. The method can be
optimized only over a finite spectral range of the propagating waves. Another method
uses a local approximation of the solution near the boundaries with the help of plane

waves in order to extrapolate the propagation of the wave through the boundary ([9]
and [8]). This method gives good results, if the local approximation is satisfactory,
otherwise reflections occur. Although both methods not exact solutions the remaining
and unwanted reflections can be neglected in many practical cases. But there are a

number of important applications where the results supplied by both methods are not
satisfactory even from the practical point of view. Such a situation is given, when
scattered waves with a large spectral range (e. g. from an optical grating) hit the
boundary. Finishing, a rather new approach, which has to be mentioned, uses a Greens

functions represenation of the solution in the semi-infinite outer region [1]. This method
is superior to the other both from the theoretical as well as from the practical point
of view. It gives a true representation of the original problem and very good practical
results, if a Green’s function representation and a well suited discretization can be

found. The method to be discussed in this paper is also a quite general method but
does not need any knowledge of Green’s function solution of the continuous equation.
This means that the method can be applied even in complicated real-life situations

where the Green’s function is not known. The results presented in this paper lead to a
new and efficient algorithm and give new insights into the problem.
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� Derivation of transparent boundary conditions

Fresnel’s equation in two dimensions is given by

∂2u(x, z)

∂x2
+Δn2(x, z)u(x, z) = 2in0(z)

∂u(x, z)

∂z
(2.1)

Δn2(x, z) = n2(x, z)− n2
0(z)

u(x, 0) = u0(x) ,

where z denotes the direction of propagation, x the transversal direction, n(x, z) ∈ C

the refractive index geometry of the given problem and n0(z) ∈ C a so called reference
index. As Fresnel’s equation is used in integrated optics as an approximation of the
Helmholtz equation, the reference index n0 is not given by the physical problem but oc-
curs as a parameter to be adjusted. A useful adjustment of n0 depends on the solution

u(x, z) itself, therefore n0 is a function of u(x, z) in general and is usually not given in
advance. However, in our consideration here we do not investigate this nonlinear aspect
of the model equation. We assume that n0(z) may be given a-priori.

n
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s

x

z
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Fig. 1. Schematical drawing of the scattering of an incoming wave on an optical grating. The refractive
indexes of the grating ng, the substrate ns , and the air nair are constant.

Figure 1 shows a schematic representation of a practical problem. An incoming
monochromatic light beam is scattered at an optical surface. The region we are in-
terested in lies between the arbitrarily fixed numerical boundaries −a and +a. These

boundaries have nothing to do with the physical solution of the problem. If we choose
n0 = nair in our example, then the n2 − n2

0 vanishes in the region to the right of the
grating and (2.1) simplifies such that we can easily find a Green’s function solution.
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But in practice it is found that a sufficient approximation of the wave propagation us-

ing Fresnel’s equation requires a very careful z-dependent choice of n0. Although the
z-dependence of n0 in the given example is weak it has an essential influence on the
approximation quality of the model. Therefore the usual assumption of a homogeneous
exterior domain is not applicable in general.

��� Adaptive Rothe method in the direction of propagation

We discretize (2.1) first in z-direction only, using a linear implicit one step discretization.

This means, that for an ordinary differential equation (ODE) of the type

du

dz
= f(u, z)

we study the θ-family of discretizations

ui+1 − ui = Δzi+1f (θui+1 + (1 − θ)ui, zi + θΔzi+1)

Δzi+1 = zi+1 − zi ,

for θ in the range 0 < θ ≤ 1. When applied to the partial differential equation (PDE)

(2.1) we obtain

∂2ui+1

∂x2
− λ2

i+1ui+1 = −1− θ

θ

∂2ui

∂x2
+ κ2

i+1ui(2.2)

λ2
i+1(x) =

2in0(zi + θΔzi+1)

θΔzi+1
−Δn2(x, zi + θΔzi+1)(2.3)

κ2
i+1(x) = −2in0(zi + θΔzi+1)

θΔzi+1
− 1− θ

θ
Δn2(x, zi + θΔzi+1).(2.4)

Alternatively we introduce the notation

Li+1ui+1 :=
∂2ui+1

∂x2
− λ2

i+1ui+1(2.5)

Di+1ui := −1− θ

θ

∂2ui

∂x2
+ κ2

i+1ui ,(2.6)

which will be useful when we will consider the discrete Green’s function represen-
tation of the solution in the exterior domain.

The Rothe-discretization transforms the initial boundary value problem described

by the PDE into a boundary value problem described by an ODE of ui+1(x). The
general solution of (2.2) for arbitrary boundary values is given by

ui+1(x) = u1(x)
∫ x

0

w1(ξ)

w
dξ + c+u1(x) +(2.7)

u2(x)
∫ x

0

w2(ξ)

w
dξ + c−u2(x),
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where u1(x) and u2(x) are two basis functions ∈ C2 which solve the homogeneous part

of (2.2)

Li+1u1,2 = 0 ,(2.8)

and w,w1, w2 are the related Wronski determinants

w =

∣∣∣∣∣ u1 u2
∂u1

∂x
∂u2

∂x

∣∣∣∣∣ , w1 =

∣∣∣∣∣ 0 u2

Di+1ui(x)
∂u2

∂x

∣∣∣∣∣ , w2 =

∣∣∣∣∣ u1 0
∂u1

∂x
Di+1ui(x)

∣∣∣∣∣ .
From (2.2) and (2.8) we find

dw

dx
= 0

and therefore w = const.

��� Boundary value problems in the transversal plane

We consider solutions ui+1(x), which are quasi exponential bounded in the exterior
domain |x| ≥ a ≥ 0, i. e. ui(x) ∈ Fγ,δ with

Fγ,δ =
{
ui|ui ∈ C0; |ui| < Kγe

γx for x ≥ a, and |ui| < Kδe
−δx for x ≤ −a

}
.

To derive the transparent boundary condition we make a temporary simplification
in the notation. We shift the origin of the coordinate system to the right boundary

and consider only the exterior domain x ≥ 0 (see Fig. 2). The exterior domain is
characterized by the fact that the coefficients of (2.1) do not change in x-direction.
This guarantees that the exterior domain itself is reflection-free and leads to λ2

i+1(x) =
λ2
i+1 = const. In this case (2.7) simplifies to

ui+1(x) =
1

2λi+1

∫ x

0
Di+1ui(ξ)e

λi+1(x−ξ) dξ + c+e
λi+1x −(2.9)

1

2λi+1

∫ x

0
Di+1ui(ξ)e

−λi+1(x−ξ)dξ − c−e
−λi+1x ,

where λi+1 is the principal value of the square root of the complex constant λ2
i+1. The

unique relation between the two constants c+, c− ∈ C and the initial conditions at x = 0
is

ui+1(0) = c+ − c−(2.10)

and
∂ui+1

∂x

∣∣∣∣∣
x=0

= λi+1(c+ + c−) .(2.11)

Now the meaning of (2.9) is the following. If we know ui(x) in the boundary

domain and assume the constants c+ and c− are given then we can calculate ui+1(x).
The constants c+ and c− influence the behavior of ui+1(x) for x → ∞ and yield the
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Fig. 2. Separation of the solution and the exterior domain by the boundary at x = 0. The horizontal
dashed lines represent the Rothe discretization method (method of horizontal lines).

boundary conditions for the inner solution at the same time. Thus we find that the
boundary conditions determine the asymptotic behavior of ui+1(x).

To obtain a first formulation of the transparent boundary condition we investigate
the asymptotic behavior of the boundary solutions ui+1(x) generated by source functions

Di+1ui(x) ∈ Fγ and Re(λi+1) > γ ≥ −Re(λi+1). In general, (2.9) supplies a quasi
exponential bound for ui+1

|ui+1(x)| ≤ K1e
γx +K2e

Re(λi+1)x .

Our heuristic to obtain transparent boundary conditions is that this asymptotic be-

havior of ui+1(x) should not be influenced by λi+1, which depends on the chosen z -
discretization. In contrast, it should be determined only by the asymptotic behavior of
Di+1ui(x). Consequently, we must determine the constant c+ such that we haveK2 = 0.

This is realized by

c+ = − 1

2λi+1

∫ ∞

0
Di+1ui(ξ)e

−λi+1ξ dξ .(2.12)

To prove this statement we consider the first two terms on the right hand side of (2.9),
which contain the diverging exponential functions and apply (2.12)

∣∣∣∣ 12λ
(∫ x

0
Du(ξ)e−λξ dξ −

∫ ∞

0
Du(ξ)e−λξ dξ

)∣∣∣∣ ∣∣∣eλx∣∣∣(2.13)

=
∣∣∣∣ 12λ

(∫ ∞

x
Du(ξ)e−λξ dξ

)∣∣∣∣
∣∣∣eλx∣∣∣

≤
∣∣∣∣ 12λ

∣∣∣∣
(∫ ∞

x
Ke(γ−Re(λ))ξdξ

)
eRe(λ)x

=

∣∣∣∣ 12λ
∣∣∣∣ K

Re(λ)− γ
eγx .
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For completeness we discuss the influence of the remaining two terms in (2.9) on

the asymptotic behavior of ui+1. The absolute value of these terms is less than a quasi
exponential bound

K3e
γx + |c−|e−Re(λi+1)x ,

i. e. that for our restriction the asymptotic behavior again is determined by exp(γx).
For γ < −Re(λi+1) the λ-term dominates, in contrast to our heuristic requirement.
However, this situation is not critical because by choosing an adequate small stepsize

Δz the absolute value of Re(λi+1) can be made arbitrarily large. Therefore this case is
a question of stepsize control.

Now we can give a first formulation of the general transparent boundary conditions.
Using the initial conditions (2.10), (2.11), and (2.12) we get

∂ui+1

∂x

∣∣∣∣∣
x=0

+ λi+1ui+1(0) = −
∫ ∞

0
Di+1ui(ξ)e

−λi+1ξ dξ .(2.14)

Equation (2.14) derived for the exterior domain gives an inhomogeneous Cauchy bound-
ary condition for the inner solution too, if continuity of u(x) and its first derivative can
be assumed as it is always the case if the boundary lies in a region of constant coefficients.

Transparency of the boundary conditions means that we can construct boundary
conditions which supply the same inner solution like in the case of an infinite exterior
domain. We do not want to insert any disturbing effect by our boundary condition.

Usually, inadequate boundary conditions give rise to the generation of artificial reflec-
tions along the computational boundary.

Next we consider this transparency aspect with regard to our boundary condition
(2.14). As the choice of the origin of our coordinate system with respect to x was

arbitrary, any other choice would supply the same form of the boundary condition
(2.14) , i. e. a shifted coordinate system using x̄, ξ̄ such that

x̄ = x− a , ξ̄ = ξ − a

with respect to the reference system would supply (2.14) too, with x̄, ξ̄ instead of x, ξ.
Therefore the appropriate boundary condition at x = a is

∂ui+1

∂x

∣∣∣∣∣
x=a

+ λi+1ui+1(a) = −
∫ ∞

a
Di+1ui(ξ)e

−λi+1(ξ−a) dξ .(2.15)

The form of the transparent boundary condition (2.14) is translation invariant. To

investigate the reflection property of (2.14) it is convenient to restrict to a special set
of test functions ui+1, the plane wave functions with real wavenumbers k

ui+1,k = eikx .(2.16)
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We consider the test functions ui+1,k as exact solutions given due to suitable func-

tions Di+1ui and appropriate initial conditions at x = 0. It is ui+1,k ∈ F0 therefore
the integral representation of c+ (2.12) exists and can be evaluated. The evaluation of
ui+1,k based on a reflecting boundary condition at x = a means that at least at one
side an additional plane wave with a different wavenumber is generated. However, our

transparent boundary condition at x = a is equivalent to the boundary condition at
x = 0, which was supposed to be right. Therefore an additional generation of reflected
waves at x = a is impossible.

��� Recursive generation of boundary domain functions

As the determination of c+ is known by virtue of (2.12), we come back to the general
representation of the solution ui+1(x) in the boundary domain. We rewrite (2.9) together
with (2.10) and (2.12):

ui+1(x) =
1

λi+1

∫ x

0
Di+1ui(ξ) sinh (λi+1(x− ξ)) dξ(2.17)

− 1

λi+1
sinh(λi+1x)

∫ ∞

0
Di+1ui(ξ)e

−λi+1ξ dξ

+ui+1(0)e
−λi+1x .

The integral terms define a linear operator Ti+1 for any Re(λi+1) > γ ≥ −Re(λi+1) and
f ∈ Fγ:

Ti+1 : Fγ → Fγ ∩ C2

(Ti+1f)(x) =
1

λi+1

∫ x

0
f(ξ) sinh (λi+1(x− ξ)) dξ(2.18)

− 1

λi+1
sinh(λi+1x)

∫ ∞

0
f(ξ)e−λi+1ξ dξ .

Equivalently we have for the differential operator defined in (2.6) Di+2 : C2 ∩
Fγ → Fγ, which follows directly from (2.18). Following this process backwards we get

ui+1 ∈ Fγ ∩ C2 if we have D1u0 ∈ Fγ for the initial field in the exterior domain. As
result we obtain a short notation for (2.17)

ui+1(x) = (Ti+1Di+1)ui(x) + ui+1(0)e
−λi+1x .(2.19)

Now ui(x) itself can be expressed in the same way, and introducing it into (2.19)
we get

ui+1(x) = (Ti+1Di+1)((TiDi)ui−1(x) + ui(0)e
−λix) +(2.20)

+ui+1(0)e
−λi+1x

= ui+1(0)e
−λi+1x + (Ti+1Di+1)ui(0)e

−λix

+(Ti+1Di+1)(TiDi)ui−1(x) .
7



Finally, the repetition of this process leads to a Green’s function representation of the

solution ui+1(x) in the exterior domain

ui+1(x) =
i+1∑
j=1

uj(0)gi+1,j(x) +Gi+1,0u0(x)(2.21)

with gi+1,j(x) = (Ti+1Di+1)(TiDi) . . . (Tj+1Dj+1)e
−λjx(2.22)

and Gi+1,0(x) = (Ti+1Di+1)(TiDi) . . . (T1D1) .(2.23)

At this stage the transparent boundary condition (2.14) does not appear to be

very helpful, because in order to evaluate the boundary condition we have to know the
complete solution in the exterior domain of the last z-layer. But this outer solution
need not be explicitly computed because we can use a recurrence representation of the
integral expression in the right hand side of (2.14). It is convenient to use the following

notation for the integral term, where L{f(x)} is apparently the Laplace transformation:

F (p) = L{f(x)}(p)(2.24)

L{f(x)}(p) =
∫ ∞

0
f(x)e−px dx(2.25)

p ∈ C , f(x) ∈ Fγ, Re(p) > γ .(2.26)

We introduce further the abbreviations

Θ =
θ − 1

θ
(2.27)

and σ2
i+1 = −

(
Θλ2

i+1 + κ2
i+1

)
.(2.28)

Now the transparent boundary condition (2.14) reads

∂ui+1

∂x

∣∣∣∣∣
x=0

+ λi+1ui+1(0)(2.29)

= −L{Di+1ui}(λi+1)

= σ2
i+1Ui(λi+1) + Θ

(
∂ui

∂x

∣∣∣∣∣
x=0

+ λi+1ui(0)

)
.

In order to construct a recurrence algorithm for Ui we apply the Laplace transformation
to the original discretized equation (2.2) and obtain

Ui+1(p)
(
p2 − λ2

i+1

)
− pui+1(0)− ∂ui+1

∂x

∣∣∣∣∣
x=0

=(2.30)

(
Θp2 + κ2

i+1

)
Ui(p) −Θ

(
∂ui

∂x

∣∣∣∣∣
x=0

+ pui(0)

)
.

First we observe that if we choose p = λi+1 equation (2.2) reduces to the transparent

boundary condition (2.29). Further, addition of (2.30) and (2.29) yields the desired
recurrence formulation:

Ui+1(p) =
ui+1(0)−Θui(0)

p+ λi+1
+ΘUi(p) − σ2

i+1

Ui(p)− Ui(λi+1)

p2 − λ2
i+1

.(2.31)
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� Analysis of the constructed boundary conditions

In this section, we now analyze the above derived discrete transparent boundary con-
ditions in the light of a simple model problem - plane waves on uniform meshes for
constant coefficients.

��� Plane wave solution

Before we proceed further let us consider a simple but informative example. Assume

that the coefficients n(x, z) and n0(z) in Fresnel’s equation (2.1) are real constants, then
(2.1) reduces to

∂2u

∂x2
+Δn2u = 2in0

∂u(x, z)

∂z
(3.32)

with Δn2 = n2 − n2
0(3.33)

and Δn2, n0 ∈ R .(3.34)

With a plane wave ansatz

u(x, z) = e−i(βz+kx)(3.35)

β, k ∈ R(3.36)

inserted into (3.32) we get

Δn2 = k2 + 2n0β ,(3.37)

which is called the dispersion relation in optics. Every plane wave (3.35) with wavenum-
bers β and k obeying the dispersion relation is a solution of (3.32). Now we use such

a plane wave solution with β, k > 0 as initial condition at z = 0 and compare the
exact solution and the discrete solution according to (2.9) after one z-step at z = z1.
We contract the inner domain to the boundary itself so we have to deal only with the
exterior domains (see Fig. 3).

The initial condition at z = 0 is

u0(x) = u(x, 0) = e−ikx ,(3.38)

and after the first step we have the exact solution

u(x, z1) = e−i(βz1+kx) .(3.39)

The application of (2.17) to the plane wave yield for the right exterior domain

u1(x) =
e−λ1x (−k2Θ+ κ2

1 + u1(0)(k
2 + λ2

1)) + e−ikx(k2Θ− κ2
1)

k2 + λ2
1

.
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z
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Fig. 3. The inner domain contracts to the boundary itself separating the the semi-infinite left and right
outer domains.

The analogous result holds for the left exterior domain (λ1 is replaced by −λ1). The
continuity of u1(x) at x = 0 is realized by construction, the continuity of ∂u1

∂x
, which

must be fulfilled, leads to

u1(0) =
k2Θ− κ2

1

k2 + λ2
1

.

Therefore we obtain (in consistency with u1(0))

u1(x) = e−ikxk
2Θ− κ2

1

k2 + λ2
1

.

Finally, the insertion of the dispersion relation and the use of the definitions for λ
and κ (2.3), (2.4) supplies the desired discrete result

u1(x) = e−ikx 1− iβ(1− θ)z1
1 + iβθz1

.(3.40)

A comparison of the exact solution and the discrete result shows that we have
obtained exactly the solution that we would have obtained by applying our discretization

to a first order ODE.

��� Uniform mesh and constant coe�cients

Although the aim of this paper is to give an algorithm for the general case of a nonuni-

form discretization and z-dependent coefficients in the outer region the investigation of
a uniform z-discretization with constant coefficients gives some useful insight into the
properties of the recurrence formula (2.31). To show, how the evolution of the bound-

ary values uj(0), 0 ≤ j ≤ i, influences the boundary condition (2.29) at j = i + 1 we
calculate the right hand side of (2.29) as weighted sum of these boundary values. In the
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following we assume that u0(x) vanishes outside the inner region. Therefore we have

U0(p) ≡ 0. Due to the uniform discretization we have

λj = λ , κj = κ , j = 1 . . . i+ 1 ,

which leads to the following form of the transparent boundary condition (2.29)

∂ui+1

∂x

∣∣∣∣∣
x=0

+ λui+1(0) = σ2Ui(λ) + Θ

(
∂ui

∂x

∣∣∣∣∣
x=0

+ λui(0)

)

A repeated insertion into itself and taking into account that U0 vanishes yields

∂ui+1

∂x

∣∣∣∣∣
x=0

+ λui+1(0) = σ2
i−1∑
j=0

ΘjUi−j(λ)

Du to the Green’s functions representation (2.22) we have for the Laplace transform

of um(x) at p = λ

Um(λ) =
m∑
k=1

gm,kuk(0)

where the coefficients gm,k here are the Laplace transforms at p = λ of the appropriate

Green’s functions gm,k(x) in space. From this equation we read that it is Um = gi,k if
ui = δik for 1 ≤ i, k ≤ m

∂ui+1

∂x

∣∣∣∣∣
x=0

+ λui+1(0) = σ2
i−1∑
j=0

Θj
i−j∑
k=1

gi−j,kuk(0)(3.41)

= σ2
i∑

k=1

uk(0)
i−k∑
j=0

Θjgi−j,k .

In summary, we obtain

∂ui+1

∂x

∣∣∣∣∣
x=0

+ λui+1(0) =
i∑

k=1

akuk(0)(3.42)

with ak = σ2
i−k∑
j=0

Θjgi−j,k

= σ2
i−k∑
j=0

Θjgi−j−k+1,1 .(3.43)

The straight forward way to evaluate the coefficients ak is to calculate the Laplace
transforms of the Green’s functions (2.22) and to carry out the summation. Alterna-

tively, we show here how the recurrence formula (2.31) can be used directly to obtain
the desired coefficients.
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For convenience we introduce the normalized quantities Ū = U ·λ, p̄ = p/λ, σ̄ = σ/λ

and drop the bar, which gives the normalized recurrence formula (2.31)

Ui+1(p) =
ui+1(0)−Θui(0)

p + 1
+ ΘUi(p) − σ2Ui(p)− Ui(1)

p2 − 1
.(3.44)

Due to u0(x) ≡ 0 and U0(p) ≡ 0 we have for i = 0 immediately

U1(p) =
1

p+ 1
.(3.45)

To calculate the coefficients gm,1 we consider in correspondence with our discrete Green’s
function approach (2.21) the recursion of Um(p), 1 ≤ m ≤ i for the boundary values
um = δm1, i. e. all boundary values for m > 1 vanish. A repeated application of the

recurrence formula then leads to

−Ui+1(p)
p2 − 1

σ2
si + gi,1(1)s

i + gi−1,1(1)s
i−1 + . . .+ g1,1(1)s(3.46)

=
Θ

σ2
s(p− 1)− p2 − 1

σ2
U1(p) ,

where the abbreviation

s =
p2 − 1

Θp2 − (Θ− σ2)
(3.47)

was introduced. If we restrict p to the principal value and exclude the branch point

p = 0, then there is an unique relation between s and p and we can rewrite the right
hand side of (3.46) completely in terms of s. We get

Θ

σ2
s(p− 1) − p2 − 1

σ2
U1(p) =

Θs− 1

σ2

√
1− s(Θ + σ2)

1− sΘ
− 1 .

The right hand side of this equation is expanded at s = 0 into Taylor series with the

leading terms

Θ

σ2
s(p− 1) − p2 − 1

σ2
U1(p) =

1

2
s+

σ2

8
s2 +

2Θσ2 + σ4

16
s3 + . . .

U1(s) contains no meromorphic part. As it is clear from the recurrence formula, then all
Um(p), m = 1 . . . i+1 can equivalently be given too in series of s without a meromorphic
part. This enables us to determine all coefficients gm,1 from (3.46) by a comparison of
coefficients. We obtain

g1,1 =
1

2

g2,1 =
σ2

8
...
12
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Fig. 4. Normalized weighting coefficients āk = ak/λ. for the implicit Euler (x) and the implicit
midpoint discretization (o) after i = 20 uniform steps have been performed.

It is informative, to specialize this general discretization to the cases of the implicit
midpoint and the implicit Euler discretization and to choose Δn2 = 0 in the exterior

domain such that we have λ2 = −κ2. The implicit Euler discretization characterized
by

θ = 1, and thereforeΘ = 0

σ2 = λ2 ,

and the midpoint discretization by

θ =
1

2
, and thereforeΘ = −1

σ2 = 2λ2 .

Taking into account the normalization ḡm,1 = λgm,1 we get for the first kind of dis-

cretization

∂ui+1

∂x

∣∣∣∣∣
x=0

+ λui+1(0) =(3.48)

λ
(
ui − 1

2
ui−1 +

1

2
ui−2 − 3

8
ui−3 +

3

8
ui−4 − . . .

)
,

and for the latter one

∂ui+1

∂x

∣∣∣∣∣
x=0

+ λui+1(0) =(3.49)

λ
(
1

2
ui +

1

8
ui−1 +

1

16
ui−2 +

5

128
ui−3 +

7

256
ui−4 − . . .

)
.
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Fig. 5. Green’s functions obtained from the implicit midpoint discretization
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Fig. 6. Green’s functions obtained from the implicit Euler discretization
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In this notation the nonlocal character of the Cauchy-type transparent boundary

conditions is visible. Fig. 4 gives a graphical representation of the normalized coeffi-
cients ak/λ. It becomes apparently that the weights behave very different for different
discretizations. This underlines the necessity to construct transparent boundary con-
ditions which fit the discretization scheme as well as aspects related to the continuous

equation (e. g. conservation properties). The previous consideration showed that in
order to evaluate the transparent boundary condition we do not need an explicit rep-
resentation of the solutions u(x) in the exterior domain as it may be expected from
the basic recurrence formula (2.29). Further, we have seen that different discretization

schemes led to different boundary conditions, and so we expect that the implicit given
solutions uj(x) in the exterior domain are different too. Therefore we complete the
discussion of the uniform discretization case adding the first five functions evaluated

using (2.19), starting with g11 = exp(x), λ = 1 and assuming uj = 0, j > 1. Fig. 5
gives the functions gj1, 1 < j ≤ 6 for the implicit midpoint discretization, and Fig. 6
the appropriate curves for the implicit Euler scheme.

��� Conservation of energy

For practical simulation tasks the conservation of the energy (power) plays an essential
role. In Fresnel’s approximation we consider the quantity p as energy

p(z) =
∫ ∞

−∞
u(x, z)u(x, z) dx .

For real constants n,Δn2 the continuous equation (2.1) guarantees

dp

dz
= 0 ,

if u(x), ∂u
∂x

→ 0 for x → ±∞. It is a natural requirement that in the discrete case
the same conservation property should hold. The question arises, what is the influence
of the transparent boundary conditions on the evolution of the power in the whole

space. Like before, we investigate this question based on the z-discretized form (2.2) of
Fresnel’s equation

Li+1ui+1 = Di+1ui .(3.50)

As now a vanishing field for x → ±∞ is assumed, we have ui ∈ Fγ,δ∩C2 and δ, γ > 0. We
rewrite the general solution (2.7) by introducing virtual boundaries at x = â, x = −â
with â ≥ a ≥ 0

ui+1(x) = u1(x)
∫ x

â

w1(ξ)

w
dξ + c+u1(x) + u1(x)

∫ â

0

w1(ξ)

w
dξ(3.51)

u2(x)
∫ x

−â

w2(ξ)

w
dξ + c−u2(x) + u2(x)

∫ −â

0

w2(ξ)

w
dξ,

15



Now we let â → ∞ and insert the transparent boundary conditions instead of c+, c−
which yields

ui+1(x) = u1(x)
∫ x

∞

w1(ξ)

w
dξ + u2(x)

∫ x

−∞

w2(ξ)

w
dξ .(3.52)

This is (of course) nothing else then a generalized version of (2.17). We redefine
the operator Ti+1 for the whole space −∞ ≤ x ≤ ∞ and Re(λi+1) > γ, δ ≥ −Re(λi+1)

Ti+1 : Fγ → Fγ ∩ C2(3.53)

(Ti+1f)(x) = u1(x)
∫ x

∞

−u2(ξ)f(ξ)

w
dξ + u2(x)

∫ x

−∞

u1(ξ)f(ξ)

w
dξ.

In contrast, we have for the differential operators

Li+1, Di+1 : Fγ ∩ C2 → Fγ

and because T solves (3.50) uniquely to the fixed transparent boundary conditions it is

Ti+1 = L−1
i+1 .

To measure the energy we use the inner product

〈u(x), v(x)〉 =
∫ ∞

−∞
u(x)v(x) dx .

The quantity 〈ui+1, ui+1〉 should be conserved. If we specialize the z-discretization to

θ = 1/2 (implicit midpoint discretization) we find, see (2.2),

D = −L̄ .

Therefore (3.50) can be written now as

∂2ui+1

∂x2
− λ2

i+1ui+1 = −∂2ui

∂x2
+ λ̄2

i+1ui .

A rearrangement gives

∂2(ui+1 + ui)

∂x2
− Re(λ2

i+1)(ui+1 + ui) = i · Im(λ2
i+1)(ui+1 − ui) .

We calculate the inner product with (ui+1 + ui)〈
∂2(ui+1 + ui)

∂x2
− Re(λ2

i+1)(ui+1 + ui), ui+1 + ui

〉
= i

〈
Im(λ2

i+1)(ui+1 − ui), ui+1 + ui

〉
.

The imaginary part of λ2
i+1 do not depend on x (see (2.2)). Further, as ui+1, ui ∈

Fγ,δ ∩ C2 and Li+1ui+1, Li+1ui ∈ Fγ,δ, we can perform a partial integration with the
following result

16



−
〈
∂(ui+1 + ui)

∂x
,
∂(ui+1 + ui)

∂x

〉
− 〈Re(λ2

i+1)(ui+1 + ui), ui+1 + ui〉

= i · Im(λ2
i+1)

(
〈ui+1, ui+1〉 − 〈ui, ui〉+ 〈ui+1, ui〉 − 〈ui, ui+1〉

)
.

Finally, a comparison of the imaginary parts of both sides supplies the desired conser-

vation result

〈ui+1, ui+1〉 = 〈ui, ui〉 .(3.54)

As the conservation of energy is one of the most important questions concerning the
wave propagation in integrated optics, we want to investigate the same problem form a
slight different point of view. A direct evaluation shows that the operator T in (3.53) is

complex symmetric with respect to our inner product. We find for the adjoint operator
T ∗

T ∗
i+1 = T̄i+1 and therefore L∗

i+1 = L̄i+1 .

Now we obtain

〈Li+1ui+1, ui〉 = −〈L̄i+1ui, ui〉
〈ui+1,−L̄i+1ui〉 = 〈L̄i+1ui, ui〉
〈ui+1, Li+1ui+1〉 = 〈L̄i+1ui, ui〉 .

If we compare the imaginary parts of both sides of the last equation we get again (3.54).
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� Numerical realization

To realize the transparent boundary condition (2.29) we need as indicated by the re-
currence formula (2.31) the numerical value of U(λ) from the step before. There are
many different ways to obtain the wanted coefficient. Practical experience showed that

a direct numerical approximation of the difference quotient contained in (2.31) tends to
instabilities due to the finite computer arithmetic. Therefore we decided to represent
U(p) in fact as a rational function in p and to carry out a polynomial division. We

restrict our consideration to the case of a vanishing outer field u0(x) at the initial plane
z = 0, because this is the practically most interesting case. However it does not matter
to superpose a nonvanishing initial field if necessary like it is done in (2.21). It has been
turned out that the following rational functions supply a useful basis to represent the

Laplace transforms Ui(p) in the Laplace domain

qj(p) =
p− λj

p + λj

.

We construct a basis for Ui(p) , i.e., for the rational polynomials after the ith step

bi = {1, qi, qiqi−1, . . . ,
1∏

j=i

qj} .

For a convenient notation we introduce further the abbreviation

qij =
j∏

k=i

qk .

Now we can write Ui(p) as

Ui(p) = aii+1 +
1∑

j=i

aijq
i
j .

The superscript i of the complex constants ai
j counts the number of steps performed

and the subscript j gives the number of the coefficient in our rational basis.
As pointed out we have for both kinds of discretization

u(x, 0) = u0(x) = 0 , x ≥ 0

U0(p) ≡ 0

and therefore U1(p) =
u1(0)

2λ1

(1− q1) .(4.55)

We assume that i numerical simulation steps have been done and we need the value
of Ui(λi+1) for the next step (see (2.29)). The polynomial Ui−1(p) known from the step
before has to be updated to Ui(p) according to (2.31) and then evaluated at p = λi+1.

We consider the following recurrence formula which holds for both kinds of dis-
cretizations.

18



Ui(p) =
ui(0) −Θui−1(0)

2λi
(1− qi) + ΘUi−1(p) +

+
σ2
i

4λ2
i

(
2− qi − 1

qi

)
(Ui−1(p)− Ui−1(λi)) .(4.56)

The main difficulty in carrying out this recursion is to find a suitable technique to
express the quotient term

1

qi(p)
(Ui−1(p)− Ui−1(λi))

in the original basis bi−1. As the technique we need to do this is exactly the same as
we need to transform a rational polynomial given in the basis bi−1 to a representation
in the basis bi we concentrate for the moment only on this aspect. We develop this key

part of our algorithm in such a way that adjoint summations can be used as effective
summation techniques [4]. By insertion we can prove that the following equation holds

qj(p) = qi(p)
(
αjqj(p) + 1

)
− αj(4.57)

αj =
λj − λi

λj + λi

(4.58)

= −qj(λi).

Now a quotient

Ui−1

qi
=

ai−1
i

qi
+

1∑
j=i−1

ai−1
j

qi−1
j

qi

can be expressed as (using qi−1
j = qi−1

j+1qj)

Ui−1

qi
=

ai−1
i

qi
+

1∑
j=i−1

ai−1
j

qi−1
j+1(qi(αjqj + 1) − αj)

qi

=
ai−1
i

qi
+

1∑
j=i−1

(
ai−1
j

(
αjq

i−1
j + qi−1

j+1

)
− αj

ai−1
j

qi

)
.

We resolve this summation from behind, i. e. , from j = 1 and obtain

Ui−1

qi
=

ai−1
i − αi−1ã

i−1
i−1

qi
+

1∑
j=i−1

ãi−1
j

(
αjq

i−1
j + qi−1

j+1

)
,(4.59)

where we have introduced the recursion

α0 = 0

ãi−1
0 = 0

ãi−1
j = ai−1

j − αj−1ã
i−1
j−1(4.60)

for j = 1 . . . i− 1 .
19



The poynomial division gives the residual

r(λi) = ai−1
i − αi−1ã

i−1
i−1 .(4.61)

Looking at the recursion (4.60) and taking into account (4.58) we find that this residual

is nothing else then

r(λi) = Ui−1(λi) ,

evaluated using an adjoint summation technique. Finally we have

1

qi(p)
(Ui−1(p)− Ui−1(λi)) = bi−1

i +
1∑

j=i−1

bi−1
j qi−1

j(4.62)

bi−1
j = ãi−1

j αj + ãi−1
j−1(4.63)

for j = 1 . . . i− 1.

The transformation of a rational polynomial from a basis bi−1 to a basis bi goes the

same way. The polynomial in bi−1 is divided by qi(p) and represented in bi−1. The
coefficients of the result are the wanted coefficients, the leading coefficient aii+1 is the
residual r(λi+1).For the practical computation we split (4.56) into three parts. The first
part is already given in bi, the second is given in bi−1, and the third in bi−1/qi(p).

(4.56) is rewritten in

Ui(p) = β(1− qi) +
γ

2
qi
(
Ui−1(p) − Ui−1(λi)

)
+

+γUi−1(λi)− γΘUi−1(p)

+
γ

2

Ui−1(p)− Ui−1(λi)

qi
(4.64)

with β =
ui(0) −Θui−1(0)

2λi
(4.65)

γ = − σ2
i

2λ2
i

(4.66)

γΘ = − σ2
i

2λ2
i

−Θ(4.67)

At last the whole recursion is summarized in a pseudo code notation, which shows
that the numerical effort to realize the transparent boundary conditions is small. We
assume that i steps have been performed and we want to update the known rational
polynomial Ui−1(p) given by the i memorized coefficients aj, j = 1 . . . i to Ui(p). We

need one additional auxiliary vector bj. The other coefficients are only temporary. The
code is a direct translation of the equations (4.60), (4.62), and the definitions (4.65)-
(4.67).
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Pseudo code

α0 = 0;

ã0 = 0;

for j = 1 to i do

ãj = aj − αj−1ãj−1; // polyn. division

bj = ãjαj + ãj−1; // polyn. division

bj = −γΘaj +
γ

2
bj; // add old bi−1-part

end for;

Ui−1 = ãi;

bi = bi + γUi−1

for j = 1 to i do

ãj = bj − αj−1ãj−1; // polyn. division

aj = ãjαj + ãj−1 +
γ

2
aj; // add bi-part

end for;

ai+1 = ãi + β;

ai = ai − β − γ

2
Ui−1;

The Figures 7 and 8 give an impression how the the coefficients ai
j behave with

respect to both kinds of discretizations applying uniform Δz-steps. To cover the same

z-discretization we used λj = λ = 1 for the implicit Euler discretization and λ =
√
2 for

the implicit midpoint discretization. In the first case we have U50(1) = 0.9204, which
converges to 1.0 for i → ∞, in the latter one we find U50(

√
2) = 0.6674, which converges

to 1/
√
2 for i → ∞.
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Fig. 7. Implicit Euler discretization: Polynomial coefficients a50j after 50 uniform steps have been
performed with uj(0) = 1 for the whole length.
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Fig. 8. Implicit midpoint discretization: Polynomial coefficients a50j after 50 uniform steps have been
performed with uj(0) = 1 for the whole length.
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� Application

The transparent boundary conditions were implemented into an existing code which
supplies a full adaptive numerical solution of Fresnel’s equation both in x and z-
direction. The transversal field description uses linear finite elements, whereas the

z-discretization was performed applying the implicit midpoint rule. The algorithm of
this code called AMIGO1 was developed by one the authors in [10] for Fresnel’s wave
equation based on work of Deuflhard et al. [6] and Bornemann [2], [3] for elliptic and

parabolic partial differential equations.
All numerical experiments presented in this section are close to real applications.

The refractive indexes of the substrates are between 1.5 (glass) and 3.2 (semi conductor).
For the light source a wavelength λ = 1.55μm was used. Fig. 9 shows the propagation

of a Gaussian beam in a homogeneous semi conductor medium tilted with an angle of
100 to the z-axis. At first we have applied homogeneous Dirichlet boundary conditions.
These boundary conditions play the role of metallic walls, i. e., the whole beam is
completely reflected. Because the adaptive distributed nodes act as a very sensitive

indicator of even weak reflections the related nodes pattern for this and the following
experiments are added. By a comparison of this nodes pattern we get an impression how
the quality of the transparent boundary conditions influences the numerically effort.

Fig. 10 illustrates this distribution of nodes belonging to the case of zero boundary

conditions. Due to the complicated interference pattern of the beam a large number
of nodes is necessary to maintain the transversal tolerance below an accepted value.
This example demonstrates the trend that reflections may generate a complicated field

distribution and therefore lead to a higher density of nodes and so increase the numerical
effort. In practice we are often faced with the following situation: The application of
nonappropriate boundary conditions results in an incorrect modeling of the real physical
behavior and leads to an increasing numerical effort. Therefore the additional effort of

the computation of the transparent boundary conditions is in general far less than the
gain due to the saved number of nodes and gives an improved problem solution from
the physical point of view. Fig. 11 shows the same simulation applying transparent
boundary conditions, obtained from the implicit midpoint discretization of the outer

domain, and Fig. 12 displays the related distribution of nodes. It can be seen from
both results that the evolution of the field is apparently not affected by the artificial
boundary. Both simulations were carried out using a tolerance TOLL2 = 0.03 per step,
but the CPU times are related as 5:1.

Furthermore, this and all other experiments to discuss in this section serve as ex-
amples, in which the reference index and therefore the difference Δn2 are z-dependent
functions in the boundary domain. Fig. 13 illustrates the evolution of the adaptively

determined reference index n0 in comparison to the constant substrate index n. Because
the optimal reference index can be seen as the mean phase velocity, it is clear from the
physical point of view, that it must converge to the substrate index for z → ∞. In
general, the function n0(z) may have a more complicated behavior, so that a Greens

function approach to transparent boundary conditions will be practically impossible for

23



0 2 4 6 8 10 12 14 16 18 20

20  

40  

60  

80  

100  

120  

140  

160  

180  

200  

220  

+ + + + + + + + + + +

+

+

+

+

+

+

+

+

+

+

+

x/μm

z/μm

Fig. 9. Field propagation within metallic boundaries.
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Fig. 10. Distribution of nodes related to the Fig. 9
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Fig. 11. Application of transparent boundaries
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Fig. 13. z-dependence of the reference index n0 in comparison to the constant substrate index

such a situation.

To demonstrate what happens if we use the implicit Euler version of our transparent
boundary condition instead of the implicit midpoint version, we have performed the

same experiment but using the implicit Euler boundary condition. The result is given
in Fig. 14. The small difference between both algorithms is sufficient to generate an
observable amount of reflections. The practical consequence of such a slight inaccuracy
is that considerable more nodes are need, as it is indicated by Fig. 15.

Fig. 16 shows the evolution of the optical power over the inner cross section P (z) =
(u(z), u(z)), which can be used to quantify the transparency of the boundary condition.
As expected, the implicit midpoint version is more transparent than the implicit Euler
version because it fits the same kind of discretization as used in the inner domain.

However, the power difference at the end is small (less than 1 per cent). If we tight
up the tolerance requirement, both curves converge to each other. The advantage in
using the implicit midpoint boundary condition is that it supplies the transparency of

the boundary even for rough discretizations.
The next experiment models a situation, where the substrate index itself changes

abruptly (in z-direction). Fig. 17 shows the refraction of a Gaussian beam at the
interface between a semi conductor medium and glass in a wide computational window.

The related result using a small window and transparent boundary conditions is given
in Fig. 18. It is seen that the field evolution in this smaller window remains uneffected
by the boundary.

Fig. 19 displays the evolution of the reference index n0 and the substrate index

n belonging to the refraction experiment. As expected, even this large change in the
coefficients are covered by the algorithm, because we do not have used any assumption
on the refractive index in the outer domain, except it must be independent from the
transversal direction x.
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Fig. 14. Application of transparent boundaries using the implicit Euler kind realization of the boundary
conditions. Due to the different discretization of the inner and the outer domain reflections occur.
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Fig. 15. Distribution of nodes related to Fig. 14. Nodes from reflected modes can be observed.
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Fig. 16. Evolution of the power P contained in the inner domain

The last experiment concerns the beam interference shown in Fig. 20. Two Gaus-
sian beams propagating with different angles with respect to the z-axis cause a well
known interference pattern.

The restriction of the simulation to the smaller window and the application of the

transparent boundary condition gives the result displayed in Fig. 21. Any detail of the
original result over this smaller domain is maintained in this new simulation.
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Fig. 17. Refraction experiment. Two layers of different refractive indexes follow one after the other.
The incidence beam is refracted. The line marks the position of the boundary for the following simula-
tion.

75 80 85 90 95 100

20  

40  

60  

80  

100  

120  

140  

160  

180  

200  

+ + + + + +

+

+

+

+

+

+

+

+

+

+

x/μm

z/μm

Fig. 18. The same experiment as before but using a much smaller computational window and trans-
parent boundary conditions.
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Fig. 19. z-dependence of the reference index n0 in comparison to the substrate index. At z = 100μm
the substrate index abruptly changes from n = 3.164 to n = 1.5.
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Fig. 20. Interference experiment. Two Gaussian beams of different incidence angles are superposed
and typical interference pattern occur. The line marks the position of the boundary for the following
simulation.
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Fig. 21. The same experiment as before but using a much smaller computational window and trans-
parent boundary conditions.
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Conclusion

We have presented a way of deriving transparent boundary conditions for the implicitly
discretized Fresnel’s equation. In the opinion of the authors, this way is not restricted
only to Fresnel’s or equivalently Schrödinger’s equation but may be applicable to other

linear PDE’s describing wave propagation in one way or the other. The transparent
boundary conditions appear as nonlocal Cauchy-type boundary conditions. No a-priori
knowledge of general solutions in the outer domain in terms of Green’s functions is

needed, therefore the method can be applied even in the case of nonconstant coefficients.
The practical implementation can be performed in form of an recurrence algorithm.
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