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Abstract

We propose a combinatorial algorithm to track critical points of 2D

time-dependent scalar fields. Existing tracking algorithms such as Feature

Flow Fields apply numerical schemes utilizing derivatives of the data,

which makes them prone to noise and involve a large number of com-

putational parameters. In contrast, our method is robust against noise

since it does not require derivatives, interpolation, and numerical integra-

tion. Furthermore, we propose an importance measure that combines the

spatial persistence of a critical point with its temporal evolution. This

leads to a time-aware feature hierarchy, which allows us to discriminate

important from spurious features. Our method requires only a single,

easy-to-tune computational parameter and is naturally formulated in an

out-of-core fashion, which enables the analysis of large data sets. We ap-

ply our method to a number of data sets and compare it to the stabilized

continuous Feature Flow Field tracking algorithm.

1 Introduction

Time-dependent 2D scalar data arises in many scientific disciplines. For the
analysis of such data, the extraction of minima, saddles, and maxima of each
individual time step has been proven useful. These point features of the data
are often called critical points. To understand the dynamic behavior of time-
dependent data, it can be beneficial to analyze the temporal evolution of these
critical points.

To enable an efficient quantification of the temporal evolution of the criti-
cal points, we can track them over time. In this paper, we call such a tracked
critical point a critical line of the data. Many different algorithms that extract
critical lines have been proposed, see Section 2 for a small overview.

For smooth data, the Feature Flow Field method [TS03] provides a partic-
ularly sound mathematical foundation. Given a smooth time-dependent scalar
field, the critical lines are implicitly defined by streamlines in a higher dimen-
sional derived vector field. While this method works well for smooth data, its
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application to data that is only continuous is problematic as derivatives have to
be computed. To circumvent this problem, derivative free algorithms employ-
ing concepts from algebraic topology have been developed recently, see Section 2.

The main remaining weakness of the available algorithms is their inability
to handle noisy data in a meaningful way. Such data usually contains an over-
whelming number of critical lines that hinder meaningful visual data analysis.
To reduce the number of critical lines, one typically smooths the data or discards
short critical lines. Both approaches can be problematic. A simple smoothing
of the data may remove important critical lines and affect the spatial position
of the critical lines, see Figure 7 for an example. Discarding short critical lines
may remove an important and stable, but short lived feature. See Figure 9 for
an example of such a short but important critical line.

This paper proposes a combinatorial algorithm that is able to track critical
points in noisy data. This robustness is achieved by combining Forman’s notion
of a combinatorial gradient field [For98a] with the notion of Persistence pro-
posed by Edelsbrunner et al.[EHZ01]. Persistence is a well founded importance
measure for critical points. Together, these concepts enable a robust and con-
sistent combinatorial representation of the gradient of a scalar function. Both
fundamental concepts will be briefly introduced in a graph theoretic formulation
in Section 3.1.

A definition for a critical line of a sequence of combinatorial gradient fields
was recently proposed by King et al. [KKM08]. The basic idea is similar to
the continuous Feature Flow Field method - a higher dimensional field is con-
structed in which the critical lines are given by combinatorial streamlines. We
therefore refer to the higher dimensional field as a Combinatorial Feature Flow
Field in this paper. We formulate King’s definition of critical lines in combina-
torial gradient fields using a graph theoretic formulation in Section 3.2.

Our main contribution is the introduction of the first efficient algorithm that
extracts the critical minima, saddle, and maxima lines in 2D discrete scalar fields
using Combinatorial Feature Flow Fields.

The proposed algorithm has many valuable properties. It has a reasonable
running time and is naturally formulated in a out-of-core fashion enabling the
analysis of large data sets as only two subsequent time steps have to be kept
in memory. The input consists of a regular cell complex, so the algorithm can
deal with many widely used representations of discrete data like triangulations,
quadrangulations, or a mixture of these. It contains only one easily-tuned com-
putational parameter, the persistence threshold σ, used to construct the com-
binatorial representation of the gradient fields.

Due to the combinatorial nature of our algorithm, we can formulate a nat-
ural spatio-temporal importance measure for the resulting critical lines called
Integrated Persistence (see Section 3.3).
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2 Related Work

Many algorithms that track features in time-dependent data have been proposed
in many different scientific communities. A lot of this work has been partially
inspired by object tracking methods in the area of computer vision, see [YJS06]
for a survey. In the context of visual data analysis, tracking approaches can
roughly be categorized into three classes depending on the treatment of the
temporal dimension [Pos03].

The first class considers feature tracking as a two-step process: feature ex-
traction for each time slice and subsequent feature matching solving a cor-
respondence. Such methods do not rely on a temporal interpolation. Event
analysis mostly happens implicitly during tracking defined by event functions.
Common tracked features are volumes or areas, boundaries or contours and
points. Correspondence criteria use distance metrics of the domain and the
attribute space, which are in general based on application specific heuristics.
Typical attributes comprise feature size, shape descriptors or also texture char-
acteristics [CJR07]. Features are linked, if their distance falls below a given
threshold [SSZC94, RPS99, LBM+06, dLvL01]. Improvements using feature
overlap instead of Euclidean distances are used in [SW97]. A more global ap-
proach is followed in [Ji06] employing a best matching algorithm. Improved
tracking can be achieved by utilizing additional information for motion predic-
tion [RSVP02]. [BSS02] proposes a progressive tracking of isosurfaces using the
isosurface at time t as an initial guess for the next time-step t+1. An extension
to tracking of the entire contour tree using volume overlap has been proposed
in [SB06].

The second class of algorithms considers time as additional dimension, treated
equally to spatial dimensions. Features are extracted from space-time directly,
thus increasing the dimension of the domain and the features by one. Tracking is
accurate with respect to the chosen temporal interpolation. No explicit distance
metrics for features are needed. Event analysis is mostly a subsequent step after
tracking and is based on well-founded theory. Methods extracting isosurfaces
in space-time have been proposed in [WB98, JSW03]. A topological event anal-
ysis based on the Reeb-Graph of the surface resulting from sweeping contours
has been performed in [WBD+ar, BWP+10]. The development of topological
structures in 2D and 3D flow fields has been analyzed in [TWSH02, GTS04].
These algorithms consider vector fields composed of space-time cells with lin-
ear interpolation, for which events are restricted to cell boundaries. Critical
point tracking thus reduces to the computation of entry and exit points for each
cell. Similarly, [BP02] introduces an algorithm to track vortex core lines over
time and scale space searching for features, represented as parallel vectors, on
all boundary cells of the space-time cell [BP02]. While giving accurate results,
these methods are prone to noisy data and a high feature density. To reduce the
number of extracted features and events, a common practice is to delete short
living features. A combinatorial approach to track critical points is based on the
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definition of Jacobi sets [EH04]. It consists of Jacobi edges, which are extracted
from a spatial-temporal simplicial complex assuming a linear interpolant. The
decision whether an edge belongs to the Jacobi curve involves the topological
analysis of the lower link of vertices and edges of the simplicial complex. While
providing a nice theoretical framework, the resulting Jacobi curves of real data
sets are often very complex and hard to analyze. Based on this work it is also
possible to track the evolution of the Reeb-graph of a scalar function [EHM+08].

The third class of algorithm combines aspects of both above-mentioned
types. They represent the dynamic behavior of features implicitly as streamlines
of a higher dimensional derived vector field in space-time. Critical points can
then be tracked by computing certain streamlines in this vector field, referred to
as a Feature Flow Field [TS03]. Recently, a combinatorial version of the Feature
Flow Field method has been proposed [KKM08]. This method is discussed in
detail in Section 3.2 and provides the mathematical foundation for our novel
tracking algorithm presented in Section 4.

3 Fundamental Concepts

The purpose of this section is to introduce the reader to the main concepts that
build the mathematical foundation for our combinatorial tracking algorithm
described in detail in Section 4. We first introduce the reader to the well known
concept of combinatorial gradient vector fields (CGF) in Section 3.1 using a
graph theoretic formulation. Using this concept we can define the notion of
a combinatorial feature flow field (CFFF) in Section 3.2. We conclude this
Section with a definition of a time-aware importance measure for the tracked
critical points that is based on the notion of persistence.

3.1 Combinatorial Gradient Fields

For simplicity, we restrict ourselves to 2D manifolds while the mathematical
theory for combinatorial gradient fields is defined in a far more general setting
[For98a]. Let C denote a finite regular cell complex of a 2D manifold. Examples
of such cell complexes are triangulations or quadrangular meshes. Given C, we
first define its cell graphGC = (S,L) that encodes the combinatorial information
contained in C in a graph theoretic setting.

The nodes S of the graph consist of the cells C of the complex and each node
up is labeled with the dimension p of the cell it represents. For a triangulation,
the nodes of the cell graph therefore consist of the vertices (0-cells), edges (1-
cells), and triangles (2-cells).

The links L of the graph encode the neighborhood relation of the cells in C:
if the cell represented by node up is in the boundary of the cell represented by
node wp+1 then �p = {up, wp+1} is a link in the graph. Note that we label each
link with the dimension of its lower dimensional node.
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Figure 1: Combinatorial gradient fields (CGF) - basic definitions. Left: arrow
representation of a CGF on a single triangle. Middle: the same CGF represented
as a matching (dashed links) of a cell graph consisting of 0-links (blue) and 1-
links (yellow). Right: topological features of a CGF - a minimum (blue), a
saddle (yellow), a maximum (red), and a separatrix (transparent).

Figure 2: Combinatorial feature flow fields - basic definitions. Left: Two subse-
quent combinatorial gradient fields V0 and V1. Middle: Forward tracking field
V[0,1]. Right: Backward tracking field V[1,0]. The minima (blue) in V0 and V1

are tracked as there is a combinatorial 0-streamline (transparent) in V[0,1] and
a combinatorial 0-streamline in V[1,0] that connect the corresponding nodes.

A matching of a graph is defined as a subset of links such that no two links
are adjacent. Using these definitions, a combinatorial vector field V on a regular
cell complex C can be defined as a matching of the cell graph GC (see Figure 1,
middle). An arrow representation of this combinatorial field as used in [For98a]
is shown in Figure 1 left.

The nodes of the graph that are not covered by V are called critical points.
If up is a critical point of V , we say that the critical point has index p. A critical
point of index p is called sink (p = 0), saddle (p = 1), or source (p = 2) (see
Figure 1, right).

A combinatorial p-streamline is a path in the graph whose links alternate
between V and the complement of V and the dimension of the links equals p. A
p-streamline connecting two critical points is called a separatrix (see Figure 1,
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right). If a p-streamline is closed, we call it either an attracting periodic orbit
(p = 0) or a repelling periodic orbit (p = 1).

As shown in [Cha00], a combinatorial gradient field (CGF) V can be defined
as a combinatorial vector field that contains no periodic orbits. In the context
of CGF we refer to a critical point up as a minimum (p = 0), saddle (p = 1),
or maximum (p = 2). For the computation of a CGF that represents the input
data we refer to [Lew05, BLW10, RGH+10].

When we deal with noisy data, the corresponding CGF contains a huge num-
ber of minima, saddles, and maxima. Fortunately, the theoretical foundation of
CGF [For98b] allows for a consistent removal of these spurious features. Suppose
there is a unique separatrix connecting a saddle to a maximum or minimum.
Reversing this separatrix results in a CGF without this pair of critical points.
When we simplify a CGF using this idea we have to decide on the order of the
simplifications. A well founded order is given by persistence [EHZ01].

To track critical points in noisy data, we can therefore compute a CGF
with a given persistence threshold σ. For example, if the noise is in the range
[−�, �], then it suffices to compute its CGF with a persistence threshold of
σ = 2� to remove all noise induced critical points. For more information on
the connection between discrete Morse theory and persistence simplification we
refer the interested reader to [BLW10].

3.2 Combinatorial Feature Flow Fields

Using the combinatorial representation of the gradient fields defined above, we
will now describe the combinatorial feature flow field concept introduced in
[KKM08] that allows us to track critical points in our graph theoretical frame-
work. This formulation enables an efficient and simple implementation described
in Section 4.

Given a sequence of combinatorial gradient fields (Vt)t=0,1,2,...,T on a cell
complex C of a 2D manifold we now define the notion of a combinatorial fea-
ture flow field (CFFF) that allows us to track the critical points in (Vt). For
simplicity, we assume T = 1 as the general case follows easily. We first construct
the cell graph of C × [0, 1] using the graph theoretic formulation introduced in
Section 3.1.

For a depiction of a simple example of the rather technical construction that
follows, we refer to Figure 2. We start the construction of GC×[0,1] with three
copies G1

C , G
2
C , G

3
C of the cell graph GC . We then add links to this graph that

connect the corresponding nodes of G1
C with G2

C and G2
C with G3

C . The label
p of each node in G2

C is then increased by one. For example, if up is a node of
the second copy that corresponds to the node w2 of the first copy, then p = 3.
We can now define the forward tracking field V[0,1], a CGF of GC×[0,1]. We first
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Figure 3: Evaluation of different filter criteria for critical minima lines (blue)
of the acceleration of a flow dataset. The dominant minima of the acceleration
describe vortex activity of the flow. Top-left: all extracted critical minima lines
computed by Algorithm 1 without any post processing. Top-right: lines filtered
by length. Bottom-left: lines filtered by spatial persistence. Bottom-right: lines
filtered by our novel importance measure integrated persistence. The lines with
high integrated persistence correspond to the dominant vortex activity of this
data set as shown in [WSTH07].

Figure 4: Computational pipeline of the algorithm described in Section 4.

use the matching V0 to define a matching in G1
C and G2

C (see Figure 2, middle).
For G3

C we use the matching V1. We then add all links to the matching of
GC×[0,1] that connect a critical point of V0 with a node of G2

C . Constructing
a forward tracking field V[0,T ] for the whole sequence of combinatorial gradient
fields (Vt) can be done iteratively: if we have a forward tracking field for V[0,k],
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we get V[0,k+1] as the union of V[0,k] and V[k,k+1]. The backward tracking field
V[T,0] can be defined by reversing the order of the sequence (Vt). As proven
in [KKM08], the forward tracking field defined above is indeed a combinatorial
gradient field as it does not contain any periodic orbits. Also, the only critical
cells of this CGF are the cells that are critical in VT .

We are now in a position to give a precise definition of the space-time re-
lation of critical points in this combinatorial setting. Let up and wp denote
critical points in (Vt). We say up and wp are connected if and only if there is
a combinatorial p-streamline connecting up with wp within V[0,T ] and a combi-
natorial p-streamline connecting up with wp within V[T,0]. For future reference,
we call the set of lines that connect the critical points of (Vt) the critical lines
of (Vt). Note that in principal this definition allows for splitting and merging
critical saddle lines. While our implementation allows for this behavior we have
not observed any such critical saddle lines in our numerical experiments.

The presented approach is related to the continuous Feature Flow Field
method [TS03] - both approaches for the tracking of critical points define a
higher dimensional field where the critical points can be tracked by streamlines.
We therefore refer to the approach presented in this Section as the Combinatorial
Feature Flow Field method (CFFF).

3.3 Integrated Persistence

This Section proposes an importance measure for the critical lines of a sequence
of T scalar fields (ft) defined on a 2D manifold as introduced in Section 3.2.
To incorporate the spatial importance of the critical points that make up the
critical line we can make use of the notion of persistence [ELZ02]. Loosely
speaking, persistence measures the stability of the critical points with respect
to perturbations of the data values. We now define an importance measure for
a critical line L as the sum of the persistence values of the critical points that
make up the line divided by T . For future reference we refer to this measure as
Integrated Persistence.

Note that in some sense Integrated Persistence is a spatio-temporal impor-
tance measure. A short, but spatially persistent critical line, is considered as
important as a long critical line with low spatial persistence. Figures 3 and 9
demonstrate the physical relevance of Integrated Persistence.

4 Algorithm

In this Section, we will describe our combinatorial tracking algorithm in de-
tail. We will first give an overview of the algorithmic pipeline in Section 4.1,
describing the input, output and out-of-core approach. Section 4.2 describes
how we can efficiently track critical points. We will finish this Section with a

8



Figure 5: Left: Two subsequent combinatorial gradient fields V0 and V1 on three
triangles. Right: Forward tracking field V[0,1]. The saddles (yellow) in V0 and
V1 are connected in V[0,1] by a combinatorial 1-streamline (transparent) that
connects the corresponding nodes. Note that the minima lines (transparent) of
the saddle of V0 (bottom-left) intersect the maxima lines (transparent) of the
saddle in V1 (top-left).

detailed description of our algorithm including pseudo-code to ensure a good
reproducibility of the results presented in Section 5.

4.1 Overview

The input of our algorithm consists of a regular cell complex C of a 2D man-
ifold and a sequence of scalar fields (ft) defined on the 0-cells of C. A simple
example of such input data is a triangulation or a quadrangular mesh with a
sequence of scalar values defined on each vertex. We then compute a sequence
of combinatorial gradient fields (Vt) with persistence threshold σ that represents
the gradient of the input data in a discrete fashion. To deduce an importance
measure for our result we will also require the persistence values of the critical
points contained in (Vt).

A closer inspection of the definition given in Section 3.2 reveals that we
can compute all critical lines contained in (Vt) in a streaming fashion - it is
sufficient to compute the critical lines of each consecutive pair of the sequence
(Vt). Due to the combinatorial nature of the critical lines they can easily be
merged afterwards to get the result for the complete data set. The importance
measure for a critical line introduced in Section 3.2 can be computed by adding
the persistence values of the critical points contained in the line. See Figure 4
for an overview of the overall algorithm.

4.2 Efficient Extraction of Critical Lines in CFFF

As described above, it suffices to track the critical points for each consecutive
pair (Vk, Vk+1) of the sequence of combinatorial gradient fields (Vt). As defined
in Section 3.2, a critical point of Vk is connected to a critical point of Vk+1

if and only if there is a combinatorial streamline in the forward tracking field
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V[k,k+1] and a combinatorial streamline in the backward tracking field V[k+1,k]

connecting the two points. The goal of this Section is to give a simple algo-
rithm that finds all pairs of critical points that satisfy this condition. It will
be shown that we actually do not need to construct the higher dimensional cell
graph GC×[0,1]. This significantly reduces the runtime, memory consumption,
and greatly simplifies the implementation of our algorithm.

For a depiction of the following argument, we refer to Figure 2. We start
with the minima. Let u denote a minimum in Vk. When we iterate the combi-
natorial 0-streamlines of the forward tracking field that start in u we see that
there is only a single streamline that ends in minimum of Vk+1. This is due to
two reasons. First, the structure of the forward tracking field implies that the
only way to reach Vk+1 is to start with the matched link adjacent to u. Second,
a combinatorial streamline whose first node is not a 1-cell and whose first link
is matched, is uniquely defined as it cannot split. The same arguments can be
employed to show that there is only a single streamline connecting a minimum
of Vk+1 to a minimum of Vk in the backward tracking field.

Tracking minima is therefore a rather simple procedure. Given a minimum
u in Vk we find its only possible partner w in Vk+1 by computing the unique
streamline in the forward tracking field that starts in u with a matched link. We
then compute the unique streamline in the backward tracking field that starts in
w with a matched link. If this streamline ends in u, then u and w are connected
in the sense of the definition given in Section 3.2.

Note that we do not actually need to construct the forward and backward
tracking fields to compute these combinatorial streamlines. It suffices to trace
them in the given pair of CGFs Vk and Vk+1 as can be seen in Figure 2.

The maxima can be tracked in the same way, we only have to switch forward
and backward tracking fields: the maxima of Vk+1 have only a single partner
in Vk in the forward tracking field, and the maxima of Vk have only a single
partner in Vk+1 in the backward tracking field.

While tracking minima and maxima has been proven to be rather simple,
tracking of saddles seems to be a very daunting task as the combinatorial 1-
streamlines in the higher dimensional tracking fields may merge and split (see
Figure 5). On first sight, it seems that the only way to compute the critical
saddle lines is a brute-force depth-first-search in the tracking fields. However,
a close inspection of the structure of the tracking fields reveals that this is not
actually necessary. Consider the 1-streamlines of the forward tracking field that
start in a saddle u of Vk and end in a saddle w of Vk+1. If we think of the graph
of the forward tracking field as consisting of three layers (the three copies of
GC), we can observe three properties of these streamlines (see Figure 5 for an
example):
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1. The layer of the nodes of the streamlines only increases and the only node
of the bottom layer is the node in which we start.

2. The section of these streamlines that runs through the second layer follows
the 0-streamlines of Vk that start in u.

3. The section of these streamlines that runs through the third layer follows
the 1-streamlines of Vk+1 and ends in w.

These properties show that there is a combinatorial 1-streamline in the for-
ward tracking field that connects u with w if and only if the 0-streamlines of
Vk that start in u intersect the 1-streamlines of Vk+1 that end in w. Similarly,
there is a combinatorial 1-streamline in the backward tracking field that con-
nects w with u if and only if the 0-streamlines of Vk+1 that start in w intersect
the 1-streamlines of Vk that end in u.

Instead of a brute-force search in the higher dimensional cell graph GC×[0,1],
it therefore suffices to intersect the separatrices of u defined by Vk with the
separatrices of w defined by Vk+1 in the low dimensional cell graph CK . This
simplifies the following tracking algorithm significantly.

4.3 Implementation

The main algorithm that tracks the critical points of a sequence of discrete
scalar fields (ft) defined on the 0-cells of a cell complex C is given in Algo-
rithm 1. Line 1 constructs the cell graph GC of the cell complex C as defined
in Section 3.1. The CGF subfunction called in Lines 3 and 4 computes a com-
binatorial gradient field with a persistence threshold σ. To do this, one can
employ the algorithm described in [BLW10]. In this work, we follow the ap-
proach presented in [RGH+10]. We thereby compute the whole sequence of
simplified CGFs, which has the advantage of allowing the user to quickly select
the appropriate simplification threshold σ in a post processing step. For the
persistence values, we employ the importance measure proposed in [RGH+10].
Note that this importance measure is closely related to the definition of persis-
tence in [ELZ02] as shown in [BLW10]. Line 5 and 6 extract the critical minima,
maxima and saddle lines of the current pair of CGFs as defined in Section 3.2.

To compute the critical lines we need to compute a lot of combinatorial
p-streamlines in a given CGF Vk. The pseudo-code for such a combinatorial
streamline integrator is given in Algorithm 2. Almost all computational time
of the main Algorithm 1 is spent integrating such lines which makes the perfor-
mance of this algorithm crucial for the overall runtime. Note that due to the
structure of the cell graph GC and the matching property of Vk, there cannot
exist multiple links that fulfill the condition in Line 3. Of course, an actual im-
plementation would not take the complement of the matching in each iteration
(Line 5). One would rather simply switch the if condition in Line 3.

Using Algorithm 2, we can compute the critical minima and maxima lines as
shown in Algorithm 3. For each minimum or maximum u (Line 1, S(Vk) denotes
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Algorithm 1 Main CFFF algorithm

Input: C, (ft), T , σ
Output: All critical lines in V[0,T ]

1: GC ← constructCellGraph(C)
2: for k = 0 to T − 1 do

3: Vk ← CGF(GC , fk, σ)
4: Vk+1 ← CGF(GC , fk+1, σ)
5: lines ← lines ∪ trackMinMax(GC , Vk, Vk+1)
6: lines ← lines ∪ trackSaddles(GC , Vk, Vk+1)

Figure 6: Evaluation of noise robustness on a synthetic data set – time is rep-
resented using the z-coordinate. Left: critical saddle lines extracted with the
Stable Feature Flow Field method. Right: critical saddle lines extracted by our
method using an appropriate persistence threshold σ.

the nodes S contained in the set of matching links Vk) of the first CGF Vk, we
integrate the corresponding combinatorial p-streamline in Vk+1 (Line 3). We
now take the last point w of this streamline as the start point of a streamline in
Vk (Lines 4, 5). If this streamline comes back to u (Line 6), we found a critical
line in V(k,k+1) and append the pair {u,w} to the result.

To compute the critical saddle lines, we need to compute the separatrices
of the saddles. A simple method that returns the separatrices of type p of the
saddle u in the CGF Vk is given in Algorithm 4. We iterate over all adjacent links
� of the saddle u of the given type p (Line 1) and integrate the combinatorial
p-streamline that starts in the end point w of � (Line 2). This line is then
appended to the separatrices (Line 3).

Using this algorithm, we can now describe how we trace the critical saddle
lines. Each saddle is appended to the nodes covered by its separatrices of type
0 (Lines 1-8). We then iterate over each saddle u of Vk (Line 9). The possible
saddle partners for u in Vk+1 are then given as the union of the saddles in Vk+1

whose separatrices of type 0 are intersected by the separatrices of type 1 of u
(Lines 10-13). For each such partner w we then iterate its partners in Vk (Lines
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Algorithm 2 Combinatorial Streamline Integrator: traceLine(...)

Input: GC = (S,L), Vk ⊂ L, u ∈ S, p = 0, 1
Output: Combinatorial p-streamline that starts in u
1: loop

2: Line.append( u )
3: if there exists w: {u,w} = �p ∈ Vk then

4: u ← w
5: Vk ← V c

k
6: else

7: return

Algorithm 3 Min and max tracking algorithm: trackMinMax(...)

Input: GC = (S,L), Vk ⊂ L, Vk+1 ⊂ L
Output: All critical min/max lines in V(k,k+1)

1: for all up /∈ S(Vk) and p �= 1 do

2: p ← max(0, p− 1)
3: Line ← traceLine(GC , Vk+1, u, p)
4: w ← Line.last()
5: Line ← traceLine(GC , Vk, w, p)
6: if Line.last() = u then

7: MinMaxCritLines.append( {u,w} )

14-18). If this set of saddles contains u, we have found a critical saddle line in
V(k,k+1) and append the pair {u,w} to the result.

5 Results

In this Section, we will evaluate the algorithm presented in Section 4. We show
its robustness with respect to noise in Section 5.1, compare it to the continuous
Feature Flow Field tracking algorithm in Section 5.2, and apply it to a real-
world data set from computational fluid dynamics in Section 5.3. We conclude
the evaluation of our algorithm with a performance analysis in Section 5.4.

5.1 Robustness

To demonstrate the ability of our algorithm to deal with noisy data we consider
a synthetic data set. The data values are given by a 2D analytic function sam-
pled on a uniform 256× 256 mesh. A height field visualization of this function
is shown in Figure 6. This data is then rotated to generate a sequence of 256
scalar fields (ft) on the uniform mesh. To show the influence of the noise on
the extraction methods we added an increasing amount of noise to the second
half of the sequence (ft).
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Algorithm 4 Separatrix Integrator: traceSeps(...)

Input: GC = (S,L), Vk ⊂ L, u ∈ S, p = 0, 1
Output: All combinatorial p-streamlines that start in saddle u
1: for all {u,w} = �p ∈ L do

2: Line ← traceLine(GC , Vk, w, p)
3: Separatrices.append( Line )

Algorithm 5 Saddle tracking algorithm: trackSaddles(...)

Input: GC = (S,L), Vk ⊂ L, Vk+1 ⊂ L
Output: All critical saddle lines in V(k,k+1)

1: for all u1 /∈ S(Vk) do

2: minLinesu ← traceSeps(GC , Vk, u, 0)
3: for all w ∈ minLinesu do

4: saddlesk[w].append(u)
5: for all u1 /∈ S(Vk+1) do

6: minLinesu ← traceSeps(GC , Vk+1, u, 0)
7: for all w ∈ minLinesu do

8: saddlesk+1[w].append(u)
9: for all u1 /∈ S(Vk) do

10: maxLinesu ← traceSeps(GC , Vk, u, 1)
11: partnersu ← ∅
12: for all w ∈ maxLinesu do

13: partnersu ← partnersu ∪ saddlesk+1[w]
14: for all w ∈ partnersu do

15: maxLinesw ← traceSeps(GC , Vk+1, w, 1)
16: partnersw ← ∅
17: for all v ∈ maxLinesw do

18: partnersw ← partnersw ∪ saddlesk[v]
19: if u ∈ partnersw then

20: SaddleCritLines.append( {u,w} )

We then applied the algorithm presented in Section 4 and the stabilized
continuous Feature Flow Field method [WTGP10] to this data set. Figure 6
shows the critical saddle lines extracted by these two algorithms. Due to the
presence of noise, the continuous extraction method results in an overwhelming
number of critical saddle lines. In contrast, our combinatorial algorithm is able
to extract the dominant critical saddle lines of this time-dependent data set
using a persistence threshold σ slightly above the range of the noise.

5.2 Comparison

We compare our algorithm to the stabilized continuous Feature Flow Field
method [WTGP10] using a data set from computational fluid dynamics [NSA+08].
The data set consists of a simulation of the time-dependent flow behind a cylin-
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Figure 7: Comparison between the Stable Feature Flow Field method (left col-
umn) and our combinatorial method (right column) on a subset of the cylinder
flow data set. Top row: critical minima lines. Middle row: critical saddle
lines. Bottom row: critical maxima lines. To get the results for the continuous
method, the data set has to be severely smoothed. In contrast, our method
deals with the original data set.

der. The data set is given on an adaptive mesh with 108k vertices and 320 time
steps. We analyze the scalar quantity acceleration, a measure for vortex activity
in fluid flows [KHNH09] depicted in Figure 3. For the combinatorial method we
set the persistence threshold σ for the computation of the combinatorial gradi-
ent fields to about one percent of the data range.
Since applying the continuous method to the original data results in a lot of
spurious critical lines, the data set had to be severely smoothed to get the re-
sults presented here. Note that our combinatorial method deals directly with
the original data without any modifications.

Figure 7 shows the critical lines extracted by both methods in a small sub-
region of the data set. The continuous results are shown in the left column
while the combinatorial results are shown in the right column. The three rows
show the critical minima lines (top), saddle lines (middle), and maxima lines
(bottom). In general, both methods extract the correct critical lines in the right
half of the depicted subregion of the data set. In the left half however, the con-
tinuous method fails to extract some clearly visible critical lines. This is best
seen in case of the minima lines (top). This may be due to the severe smoothing
that had to be applied to the data for the continuous method as the data set
shows a rather high dynamic close to the cylinder which is strongly affected by
the smoothing process.
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5.3 Application

We applied our method to a scalar data set derived from a flow simulation
[CSD03]. The simulation shows the flow over a cavity from left to right. Due to
the cavity, there is a dominant vortex that separates from the wall after some
time and moves through the cavity to the right side, where it hits the other wall.

As an indicator for time-dependent vortex structures, we used the accelera-
tion, a scalar quantity whose dominant minima indicate vortex activity [KHNH09].
We computed the acceleration on the adaptive mesh that was used during the
simulation of the flow consisting of 26k nodes for each of the 690 time steps. For
the combinatorial computation of the critical lines, the persistence threshold σ
was set to about one percent of the data range. Since we are only interested
in the minima of the acceleration, we only show the critical minimal lines in
Figure 9. To demonstrate the physical significance of the importance measure
introduced in Section 3.3, the thickness of the lines is determined by Integrated
Persistence. The dominant vortices that pass through the cavity have a high In-
tegrated Persistence. This can be visualized by seeding path lines in the vicinity
of the lines with high Integrated Persistence.

Note that our algorithm has found one critical minima line that is difficult to
observe manually (see zoom-in in Figure 9 and consider the color map therein).
This short critical line has a higher Integrated Persistence than most other
critical lines in the data set. By seeding path lines in its vicinity we observe
that this line corresponds to strong vortex activity.

This example shows that it is in general problematic to use line length as an
importance measure for critical lines.

5.4 Performance

The performance of our implementation was calculated for all three data sets
used in this Section shown Table 1 on a standard workstation containing an
Intel Xeon X5550 CPU. The table shows the number of data values given at the
vertices of the grid and the number of slices T for which the critical lines were
computed. Tracking the critical points in the computed CGFs is very fast - for
a mesh with approximately one hundred thousand vertices, only 38 milliseconds
are required for each time step.

For comparison, we have also measured the running time of the stable Fea-
ture Flow Field method. Computing the critical lines for the synthetic data set
shown in Figure 6 with this method takes 333 seconds compared to the total
running time of 376s using our method. Comparing the running time for the
other data sets is problematic, since they are defined on an adaptive mesh and
the implementation of the Feature Flow Field that is available to us can only
be applied to uniform grids.

Note that the timings for the CGF computation represent the computation
of the full hierarchy of CGFs, see [RGH+10]. The user can thereby quickly
select an appropriate persistence threshold σ in a post processing step. While
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the computation of a full hierarchy of CGFs already has a practical running
time, it could be significantly improved by making use of the ideas presented in
[RWSar].

Dataset #vertices T CGF CFFF Total time
Synthetic 65k 256 371s 5s 376s
Cavity 26k 690 366s 4s 370s
Cylinder 108k 320 2867s 12s 2879s

Table 1: Performance analysis of our method. For each data set shown in the
paper we measured the running time for the computation of the combinatorial
gradient fields (CGF) and the tracking of the critical points in the resulting
sequence (CFFF).

6 Discussion and Future Work

As shown in Section 5, our novel combinatorial algorithm to extract critical
lines of discrete scalar data works very well in practice:

• It effectively handles noisy data (see Figure 6).

• It allows for a physically relevant importance measure for the tracked
critical points (see Figures 3 and 9).

• Its extracted features correspond to the results of the Feature Flow Field
method for a smooth data set (see Figure 7).

• It has a practical running time (see Table 1).

The robustness of our algorithm with respect to noise is mainly due to the
notion of persistence which allows for a robust computation of a CGF. Unfor-
tunately, using persistence can be problematic if the data contains outliers. To
efficiently deal with such data, an importance measure for critical points would
need to be developed that can address outliers in a sensible way.

Many of the existing tracking algorithms mentioned in Section 2 extract
bifurcation points, i.e. the points where a pair of critical points appears or
disappears. The spatial importance of such critical points becomes arbitrarily
small as they approach a bifurcation point, see Figure 8. Due to our focus on
noise resilient extraction of critical lines, we do not aim for a precise computa-
tion of bifurcation points in this work. Note that critical points of course can
appear or disappear in our method – we start tracking them as soon as their
spatial importance is high enough to differentiate them from noise induced crit-
ical points.
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Figure 8: Bifurcation handling in CFFF. Right: a maximum-saddle pair evolv-
ing over time. Left: spatial importance of this pair over time. The pair is only
tracked while the spatial importance is above the threshold σ. For t < t0 and
t1 < t the critical points are considered as noise.

An extension of the presented algorithm to 3D may be quite feasible. The
mathematical foundation for our algorithm presented in Section 3 easily extends
to 3D. A close inspection of the definition of combinatorial critical minima and
maxima lines in 3D reveals that they have the same combinatorial structure as
in 2D. Given an algorithm that can compute a combinatorial gradient field in
3D we can therefore directly use our algorithm to track the minima and maxima
of 3D time-dependent data.
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Figure 9: Application of our method to a real-world data set from computational
fluid dynamics. The data set is the simulation of the flow over a cavity. The
dominant minima of the acceleration of the flow describe the vortex activity.
We extracted the critical minima lines of this data set using our method. The
thickness of these lines is defined by our novel importance measure integrated
persistence. To demonstrate the physical relevance of this importance measure,
path lines are seeded in the vicinity of the most important lines. Note that there
is a short, but important critical line in this data set (see zoom in). This shows
that the length of a critical line by itself is not a good importance measure in
general.
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