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Abstract

Modelling, parameter identification, and simulation play an important réle in systems
biology. In recent years, various software packages have been established for scientific use in
both licencing types, open source as well as commercial. Many of these codes are based on
inefficient and mathematically outdated algorithms. By introducing the package BioPARKIN
recently developed at ZIB, we want to improve this situation significantly. The development
of the software BioPARKIN involves long standing mathematical ideas that, however, have
not yet entered the field of systems biology, as well as new ideas and tools that are particularly
important for the analysis of the dynamics of biological networks. BioPARKIN originates from
the package PARKIN, written by P.Deuflhard and U.Nowak, that has been applied successfully
for parameter identification in chemical physics for many years. This report is addressed to
scientists who want to get to know the mathematical background of BioPARKIN, and its
actual implementation.

Keywords: systems biology, ordinary differential equations, sensitivity analysis, parame-
ter identification, affine invariant Gauss-Newton algorithm, numerical library, graphical user

interface
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Introduction

BioPARKIN is a software package to aid researchers in the field of systems biology. It facilitates
the simulation of biology-related models, and is specialised in the computation of parameter sen-
sitivities and the identification of parameter values (based on experimental data). Its numerical
core is built upon long-standing mathematical ideas that have not yet been applied in systems bi-
ology as well as new ideas that are particularly useful for analysing dynamical biological networks.
BioPARKIN is available free of charge as an open-source project. It can be used in academic as
well as commercial settings.

Systems biology aims at describing biological processes using mathematical models that permit
biologically sound quantitative predictions. To arrive at statements of this kind, the time courses
of biological processes are modelled by differential equations that describe the concentration or
amount of the involved substances over time. For the time being, we consider only systems of
ordinary differential equations (ODE systems). In BioPARKIN, the ODE systems are solved
numerically by making use of LIMEX [8], a linearly implicit extrapolation method that is especially
suited for stiff systems.

From a mathematical point of view the main difficulty is not to simulate such systems, i.e. to
solve the differential equations, but to determine the unknown parameters in such a way that
the simulation results agree with experimental measurement values. This is an inverse problem
which can be formulated as a nonlinear least squares problem. In biological models, there are
usually dependencies between parameters that typically lead to rank-deficient problems. For the
solution of such problems, efficient and reliable numerical algorithms based on affine invariant
Newton methods have been developed over the past decades [6]. An error-oriented algorithm with
adaptive trust region and rank strategies has been implemented in the code NLSCON (Noulinear
Least Squares with CONstraints) [6]. A precursor version of NLSCON had already been part of
the software package PARKIN [22, 7, 21], a single shooting method for parameter identification



in large chemical reaction kinetic networks. The two methods differ in the damping strategy of
the Newton steps. NLSCON allows the user to control the algorithmic setting, whereas PARKIN
works much more in an automated way, which might not always be suitable for the problem
at hand. Both methods have been integrated into BioPARKIN and form the numerical core
library of the software. Thus, BioPARKIN can be considered as a successor of PARKIN especially
designed for applications in systems biology. In particular, we aimed at a comprehensive and
flexible implementation using object-oriented design. In fact, BioPARKIN uses a stand-alone
library written in C++, PARKINcpp, that deals most efficiently with the following numerical
tasks:

e fast expression evaluation,

e solver LIMEX for stiff differential-algebraic systems,

e sensitivity analysis,

e Gauss-Newton methods NLSCON and PARKIN for parameter identification.

The graphical user interface of BioPARKIN is written in the highly flexible scripting language
Python. The graphical and the numerical part work together using the wrapper library SWIG. In
this way, BioPARKIN combines the best of both worlds: highly efficient C++ and very flexible
Python.

The current release of BioPARKIN is not able to detect if a network of reactions is too large, i.e.
if there are redundant reaction links that, eventually, could be eliminated without any change in
the results. However, BioPARKIN is designed to indicate and to correctly deal with the situation
where the parameter space contains a non-trivial subspace of solutions to the inverse problem at
hand. Similarly, if a network is too small, i.e. if important compartments, species, and/or reactions
are missing in order to explain the given data, this eventually shows up in poor convergence of the
Gauss-Newton method during parameter identification.

This report is addressed to all scientists and researchers who want to learn more about the math-
ematical background of BioPARKIN, and its actual implementation. The outline of the report is
as follows. Section 1 briefly introduces in the SBML standard used by already existing systems
biology-related software. The mathematical problem is more formally presented in Section 2 while
the iterative approach to its solution is put forward in Section 3. The next section, Section 4, de-
scribes some of the challenges in cross-platform development. State-of-the-art numerical routines
are implemented in the C++ library PARKINcpp which is the focus of Section 5. This library is
combined with a graphical user interface that allows intuitive handling of models including species,
parameters, and mechanisms. The compatibility of BioPARKIN with the model standard SBML,
an overview of the user interface and some details concerning software architecture and implemen-
tation are given in Section 6. Section 7 presents some results obtained using BioPARKIN. Finally,
the report ends with a small outlook in Section 8 and a conclusion given in Section 9.

1 Existing Standards and Software

Having introduced the problem at hand and some aspects about our approach to solve it, the
following parts will shed light on existing software, their advantages and their possible shortcom-
ings. Before assessing existing software, however, the file format used by most software in systems
biology is briefly explained.

1.1 SBML Standard

During the last decade, it became clear that well-defined standards would benefit the systems
biology community. Independent from each other, several projects started to create a standard for
modelling biological systems and sharing them with the community.

The most prominent projects are CellML [13, 14], BioPAX [5], and SBML [4]. Retrospectively,
SBML is the most-widely used standard. While CellML, BioPAX, and other formats are still main-
tained and progressed, SBML is the de-facto standard—especially in simulation-centric workgroups
and projects [25].



Regardless of which standard is used the researcher has to know the syntax and terminology of the
format. SBML defines important entities like Species, Reactions, Compartments, Kinetic Laws,
Rate Rules, Assignment Rules, Events, and others. This, of course, implies a steep learning curve to
understand the format, its possibilities and its pitfalls. On the upside, almost all SBML-compatible
tools share the same terminology. This makes it easier to use new tools that comply with SBML.
It also facilitates the communication between researchers who might use different SBML tools.
For all these reasons, BioPARKIN supports SBML—currently in its most-wide used variant Level
2 Version 4 (see Section 6.1.1 for details).

The SBML standard is supported by a lively community of researchers and software engineers.
There is an official software library, ibSBML, to access SBML files and interact with them. This
library is thoroughly maintained by a core team of developers since, obviously, the library is vital
to almost all other software projects that comply with SBML.

1.2 Existing Software

Systems Biology Workbench. The Systems Biology Workbench (SBW) is both a set of small-
to-medium sized SBML software tools and a system for SBML-centric tools to communicate with
each other (via the so-called SBW Broker) [4].

Among others, the SBW contains tools for designing (JDesigner), simulating (Simulation Tool),
creating layouts of (Network Layout), SBML models. Some tools exist only for Windows, others
are available for nearly all platforms.

No tool within SBW was found that could serve as a suitable basis for a cross-platform solution
like BioPARKIN.

COPASI. COPASI (“COmplex PAthway SImulator”) is a general-purpose tool for modelling and
simulation that has been published even before the SBML standard itself [15]. It uses its own file
format but can import and export SBML files. Based on ideas from its predecessor GEPASI [20],
the development of COPASI began in 2006 and is progressed by a multi-national team based in
Virgina in the USA, Heidelberg in Germany, and Manchester in the UK.

COPASI is structurally well designed, has lots of features and a steep learning curve. Because of
its flexibility, the user interface is not very streamlined. The feature list includes computing the
sensitivities of parameters and the estimation of parameter values from experimental data.

While the software is suited for diverse applications, it is not easily extensible. There is no plugin
architecture that allows the user to build on existing functionality. The source code of COPASI
is available but may not be altered to create other software—it is allowed to use the source code
within own projects but not to change it.

In general, the software is well documented. Detailed questions, however, often remain unanswered.
Having access to the source code may seem to alleviate the problem. In practice, though, finding
any particular code and following the program flow is too time-consuming to understand a feature—
e.g. the details of computing relative sensitivities.

CellDesigner. CellDesigner is one of the most-widely used SBML tools to edit and display SBML
models [10]. It can also be used to simulate models using the SOSIib library [18]. It is developed
by several institutes in Japan and has progressed steadily over the past years. It adheres to the
SBGN standard that defines the visual representation of SBML entities [17].

Although it supports the simulation of models it cannot compete with the plenty of features that,
for example, COPASI offers. It is more suited to get a quick impression of a model’s simulation
results.

CellDesigner features a plugin interface. This feature is not widely adopted. Most of the existing
plugins serve simple tasks and it is doubtful that the functionality of the BioPARKIN project could
be implemented within such a plugin.

POEM. The development of BloPARKIN was inspired by its predecessor, an in-house tool called
POEM (“Parameter Optimisation and Estimation Method”) which was developed and maintained
by U. Nowak with meticulous precision. POEM combines a numerical core written in FORTRAN,
and a graphical user interface using Matlab.



Models have to be coded by hand in FORTRAN. Every change in the model requires the user to
recompile the code into an executable file which, in turn, is used by the Matlab frontend. Thus,
although POEM is sometimes really cumbersome to use, its rich feature list, and the high quality
of its computational results, drove the development of BioPARKIN forward.

BioPARKIN tries to provide POEM’s feature set in a more usable and accessible way.

2 Problem Description

2.1 Large Kinetic Networks in Systems Biology

A major topic in systems biology is the study of the dynamical evolution of bio-chemical mech-
anisms within a well-defined, biology-related context. The bio-chemical mechanisms in such a
compound under consideration are typically given as a, possibly huge, set of chemical reactions
between numerous species. Thus, the set of chemical reactions are the building blocks of the system
model forming a large kinetic network. Assuming the general principle of mass action kinectics,
this large network can readily be transformed to a system of n ordinary differential equations
(ODEs) leading to the initial value problem (IVP)

v =fly;p),  yto) =vo (2.1)

where the right-hand side, f, denotes the dependence of the change in the species vector, ¥, on
both the species, y € R™, and the parameter vector, p € R?, of dimension ¢. The initial condition
vector, Yo, has the same dimension as the species vector,y. In BioPARKIN, the ODE systems are
solved numerically with LIMEX, a linear implicit Euler method with extrapolation [8, 9].

The first step in systems biology often involves developing a suitable model description, f, that
will not be dealt with in detail here. Instead, it is assumed that some discrete experimental data
(in form of species concentration versus time),

(T1,21)s - (Tar, 2M), (2.2)

is available. Note that freqently, only a certain amount of the n species concentration are measur-
able observables, if at all. The task at hand now reduces to quantify the ¢ unknown components
of the parameter vector, p, by comparison between model values and measured data.

A complete data set, of course, must include prescribed statistical tolerances, 0z; (j =1,..., M),
for each measurement as well. The mathematically correct handling of these will be described in
greater detail in Section 2.6 below.

2.2 Multiple Experiments

The design of experiments almost always includes different conditions such that the effects of these
different conditions on the system under investigation can be observed and studied. In the simplest
case, calibration measurements might be necessary, for example, or data related to different initial
conditions, ¥o,1,0,2,---,Y0,u; - - -, are given. Numerically, these situations can be handled by the
concatenation of several IVPs,

yll/:fl/(yV;p)7 yu(to,u) =Yo,vs v=12,..., (2'3)
very similar to the management of breakpoints/events (see below). If required, the solution y,
corresponding to the (virtual) initial timepoint, ¢y ,, can readily be shifted to the (original) initial
time, tg, for comparison or plotting purpose.

2.3 Breakpoint Handling

A sudden event (maybe from outside the biological system) is handled by introducing a breakpoint,
ty > to, and subsequently, splitting the ODE system into a y~-part for tg < t < t;, and a y-part
for t, < t,



where g : R™ x R? — R"” is a mapping of the initial conditions; possibly dependent on the
parameter vector, p. The approach of splitting the ODE system with respect to time also applies
in the case of multiple experiments, at least for the cases described above.

2.4 Parameter Constraints

In order to enforce constraints such as positivity or upper and lower bounds on the unkown pa-
rameters to be determined in the model, a (differentiable) transformation, ¢ : R? — R?, can be
applied resulting in a different parametrisation, u, of the model ODE system,

p=o), ¥ =fy;e)=/rf(y;u) (2.6)

A global positivity constraint on the parameter vector, p, can be achieved for example by the
(componentwise) exponential transformation

pi=exp(u;), i=1...,q (2.7)
To impose an upper and a lower bound, A and B, respectively, a sinusoidal transformation

B-—A
pi=A+

(1+sinwy;), i=1,...,q (2.8)

can be used. For a single bound, C, as last example in this section, a root square transformation

piCi<1,/1+u§), i=1,....q (2.9)

(with the upper sign for an upper bound and the lower sign for a lower bound) is possible.

The last two transformation formulae are especially eligible since, at least for small perturbations
dp; =~ ¢’ duy, the differentials are bounded and, most importantly, are essentially independent of
the new parametrisation, wu.

Note that the application of any transformation of the parameters obviously change the sensitivities
of the parameters to the dynamical evolution of the ODE system, as will be shown next. Therefore,
it is strongly recommended that parameter constraints should only be applied in order to prevent
the parameter vector components, p;, from taking on physically meaningless values.

Currently, only the global positivity constraint case is implemented in BioPARKIN, i.e. the user
can only select whether to impose the positivity constraint by the exponential transformation on
all parameters in a given model, or not.

2.5 Sensitivity Matrix

The dependence of the solution, y(¢; p), on the parameters, p, is characterised by the sensitivity
(n, q)-matrix, S = S(t), defined by

Oy
Sii(t) = t). 2.10
0 = 50 (210)
The matrix can readily be computed as solution to the variational equation
S'=fywip) S+ fly;p),  Slte) =0 (2.11)

Consequently, the variational equation associated with a transformed system reads

S = fyiuw) S+ fuly: v
Fo(ys o) S+ foly; e(w) @' (u),  S(to) =0 (2.12)

clearly showing the influence of the transformation, ¢, upon the sensitivity matrix, S.



In the case that breakpoints/events are specified, the computation of the sensitivity matrix also
splits into the computation of S~ and ST,

ST = fuuip) ST+ foly s p) (2.13)
S(ty) = O, (2.14)
(ST = fywhip) ST+ fytip) (2.15)
ST(ty) = gy(yip)S™ () +gp(y7 5 D) (2.16)

respectively.

Often, model species and model parameters cover a broad range of physical units and their values
can vary over orders of magnitude. To achieve comparability, the absolute sensitivities have to be
normalized by the absolute values of species and parameters to obtain relative sensitivities,

() — 0y; . max{|p;|, thres(p;)}
50 = () © s (a1 (0], thres(y.)] 10

where thres(-) are user-specified threshold values for parameters and species, respectively, and the
integration time interval of the ODE system, I, is used. In the graphical user interface, i.e. in the
Results Window, these relative sensitivities are displayed.

Note that, since the variational equation is an inhomogeneous linear equation, the qualitative
behaviour of its solution trajectories is essentially determined by the distribution of the eigenvalues,
i.e. the spectrum, of the factor of the linear term, f,(y; p), of the right-hand side. Accordingly,
typical stability patterns of the trajectories such as convergence towards an equilibrium or, more
likely, convergence towards a limit cycle, or even divergence, are possible. Of cource, for biology-
related systems the latter behaviour is more natural, and thus more often observable.

2.6 Parameter Identification

Following the fundamental idea of Gauss, parameter identification is, as implemented in BioPARKIN,
equivalent to solving the weighted least squares minimisation problem,

17 2107 (w(rs: p) = )13 = min, (2.18)

with diagonal weighting (n,n)-matrices,

Dj = diag((ézj)l, ey (5zj)n>, j: 1,...,M. (2.19)

Note that, if not all components of a datum, z; € R", are available for a specific measurement time
point, 7;, the missing data in the least squares formulation is simply replaced by the computable
model value, therefore effectively neglecting the corresponding contribution in the sum (2.18). The
corresponding entry in D; is set to one (w.l.o.g.).

If, on the other hand, a component of given error tolerance, dz;, or even the whole vector, is put to
zero, this contribution to the sum (2.18) is also taken out, and considered as a (nonlinear) equality
constraint to the least squares formulation instead.!

Remark. In the (hopefully rare) case of missing error tolerances, the following estimation
approaches are used:
In PARKIN, the measurement tolerances are computed as

((;zj)k = max {n-mlax (Zi)k’ (Zj)k}v

with some small safety factor 7.

1This mechanism, however, is still to be made available to the BioPARKIN user.



In NLSCON, the measurement tolerances are computed as
(5Zj)k: = max { max (zl)k, thres(zj)k} ,
with some user specified threshold mapping, thres(-).
The least squares problem (2.18) may be written even more compactly as

IF(p)|3 = F(p)" F(p) = min, (2.20)

where F' : R? — RF is a nonlinear mapping and structured as a stacked vector of length L = nM,

Dy (y(mis p) — =1)
F(p) = : : (2.21)
Dyt (y(ras p) — 2m1)
If not all components of a measurement, z;, are given, the number L is accordingly made smaller,
L <nM.
In all cases the goal is to minimise the relative deviation between model and data at the mea-
surement time points, 7;. The above problem, which is usually highly nonlinear in the unknown

parameter vector, p, can be solved by affine covariant Gauss-Newton iteration [6] where each
iteration step, k, calls for the solution of a linear least squares problem,

| F'(p*) Ap* + F(p*)||3 = min, (2.22)

PP =pF L N APF, k=0,1,2,... (2.23)

The update step uses a customised QR decomposition for solving the linear least squares problem,
especially in the rank-deficient case.

3 Iterative Solution Approach

Having a set of measurement points as described above,

(T1a21)621)7 MR} (TMaZM76ZM)7 (31)

with 0z; additionally denoting a statistical tolerance of the j-th measurement (i.e. standard devia-
tion of z;), the inverse problem of finding unknown parameters, p, can be stated most conveniently
by the formalism as introduced in Section 2.6: Defining the pointwise deviations between model
and data,

Sy(tjs p) =2z —y(755 p), j=1....M (3.2)

and the M diagonal weighting (n,n)-matrices,
Dj ::diag(ézﬂ,...,ézjn), jzl,,M

formed by the prescribed statistical tolerances, dz;, a discrete (weighted) lo-product is introduced
by

M
1 _
(dy, 3y) = 57 > D5 oy(rs )5

J=1

Formally, if some of the components of the j-th measurement, z;, are not available, this would mean
to set the corresponding components in the measurement tolerance, dz;, to infinity, i.e. to take
the contribution of these components out of the discrete lo-product, just as described in Section
2.6. The given discrete data gives rise to a vector mapping, F' : R? — RE, with L = nM if all



compoments at every data point have been measured (really rare, not only in Systems Biology!),
or otherwise some L < nM,

Dy '6y(mi 5 p)
F(p) = : : (3.3)

Dy 6y(tars p)

In the compatible case, it is assumed that there is at least one parameter vector, p* € R?, such
that the positive cost functional, ¢ : R? — R,

c(p) .= |F(p)l3 = (3y, oy), (3.4)

vanishes for p = p*, i.e. F(p*) =0 holds.
Otherwise, if the last condition can not be achieved, any parameter vector, p* € R?, that minimises
the cost functional,

c(p”) = min 1 (p)II3 (3-5)

is referred to as a solution to the weighted least squares problem as well. In general, the task at
hand is highly non-linear, ill-posed, and possibly underdetermined. Therefore, BioPARKIN tries to
compute a solution to it by a successive, iterative approximation: the well-known, but yet refined
Gauss-Newton method.

3.1 Parameter Scaling

Before dealing with the implemented Gauss-Newton algorithm in detail, a proper internal scaling
has to be addressed. In general, a scaling-invariant algorithm, i.e. an algorithm that is invariant
under the choice of units in a given problem, is (almost) indispensable to guarantee any reliable
results. Therefore, the following scaling strategy within the course of the Gauss-Newton iteration
has been implemented: an internal weighting vector, pw € RY, is used to define the local scaling
matrices, Wy , by

Wi, = diag(pws, . .., pwy) (3.6)

with locally given
pw; = max{\pﬂ, thresh; } , i=1,...,q (3.7)

where thresh; > 0 are a suitable threshold values for scaling chosen by the user. Consequently, any
relative precision of parameter values below these prescribed threshold values will be insensible
and meaningless.

3.1.1 Scaling Update Procedure

Listing 1: Internal Parameter Scaling

Input:

user

pw := user — supplied weighting vector

Initial check:

if (|pwi™| = 0):

user .__
WS 1=

eps, if problem highly nonlinear
1, if problem mildly nonlinear
endif



Initial update:

pw) 1= max {|pwfser| , |p?|}

Iteration update:

pwf = max { pw=r], 3 (I + 1ol }

Summarising, the internal scaling matrix, Wy, and the error norm, | - || (weighted root mean
square), used in the codes are given by

W), = diag (pwf, ... ,pwg) (3.8)

and

[vll == llv]lw == (3.9)
3.2 Gauss-Newton Method
Starting with an initial guess, p° € RY, the (damped) Gauss-Newton method is given as
pEHE = pF 4 N ApF, k=0,1,... (3.10)

Here, the steplength, 0 < A < 1, is recomputed successively in each iteration (see below). The
update, Ap”, is the minimum norm solution to the linear least squares problem,

|F'(p*) Ap* + F(p*)|| = min, (3.11)

where the (L x ¢)-Jacobian matrix, F’(), can be approximated either by computing the difference
quotient, for { =1,....Landi=1,...,q,

Joi= 3 (Fip+eh) = Fip),  h=0 (lpil vam), (3.12)

or by stacking rows of the sensitivity matrices, S(7;), corresponding to the measurement points
(75> 2j),

S(m)

J = : (3.13)

S(Tu)
Either approach to compute the Jacobian matrix is possible in BioPARKIN, to make sure that,
at each current parameter estimation, p*, the approximation J ~ F’(p*) is valid. Note that the
computation of the difference quotient avoids the costly integration of the variational equation, an
ODE system of ((n 4 1) X ¢q) equations in total.

. o . k1
For later use, the notation of the so-called simplified Gauss-Newton correction, Ap * , as the

minimum norm solution to et '
17(p*)Ap" " + F(p"™)|| = min, (3.14)

may also be introduced here en passant.

10



3.2.1 Setplength Strategy

The determination of an optimal damping factor, 0 < Ay < 1, is based on the assumption that a
global Jacobian Lipschitz constant, w, < co, exists such that

1" () F[F' () = F'(@)](y = )| Sws ly —2l®, @,y DCRY, (3.15)

where p* € R? dentoes the unknown solution of the minimisation problem as introduced before.
Additionally, some local constants, wy < Wy < 00, should exist satisfying

1E" (0" 1F (y) = F'(@)](y = 2)|| < wlly — 2|, (3.16)

IF' (") ' (y) = F'(@)]v || < @ lly = |l - [[vll, v,y € DR (3.17)
Introducing, further, the quantity

A= PN [FON + F PR (3.18)

and using the bigger local Lipschitz constant, W, < oo, it is seen that for the simplified Gauss-
. ——k . .
Newton corrections, Ap , the inequality

IAp" — ApF + R = |[[I- N F ) A (3.19)
= [F'G5YF ) [1- F N F )] B (3.20)
= |[F'")* [F0") — F'(o" )] B (3.21)
< @M 1A - 138 (3.22)

where maximal rank of F'(x), at z = pF, is assumed (thus, for 2 = p¥, the orthogonal pro-
jection fulfils P(x,z) = F'(z)TF'(z) = I) in the second line, and the Moore-Penrose Axiom
F'(z)" F'(z) F'(z)* = F'(x)" for a generalised inverse, in order to derive the third line. Hence,
one obtains the a priori estimate

—k —k

IS A m

- N
Nt 181 |35

D (3.23)

Now, considering the global level function

* 1 *
T.(p) = T([F'(p")") = SlIF (0")* F(p)|, (3.24)
it can be shown that
T.(p* + AAp*) < 6 Tu(p") (3.25)
with )
ty = tp(N\) = 17>\+§)\2 r (3.26)
and
i o= w, |[(F (") F' (") M| - | Ap¥- (3.27)

Therefore, the descent measured in terms of the natural level function is maximised by minimising
tr(\), resulting in

AP = min{l,%}. (3.28)

One can verify that

b= wn|APM) < B and wp <, [[(F/(7) T F (0) 7. (3.29)
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Inserting the local estimate [h}] := [w] || Ap”|| with [w)] from above leads to the readily computable
a priori estimate

. 1
)\,(CO) =min{l, pr}, pr:= o] (3.30)

wi] [ Ap*|”
Note that this prediction strategy needs an initial estimate, /\E)O), given by the user as additional
input for the very first iteration as the prediction strategy requires information from the previous
iteration step.
If, however, the damping factor, )\,(CO), still does not satisfy the natural monotonicity test in terms
of the local level function, T(p|F'(p*)T),

——k+1
=9TGIF ) My || = [ 30| < 40" = |-TT@IF @) )lppr| (3.31)
an additional correction strategy is invoked to compute the a posteriori estimates,
)\2”) = min {1, %Ag_l), /J,iy_l)} ,
(v—1) v=12,... (3.32)
My [hk()\(kuq))] ,
where
——k+1,v—1 (v—1) k
- 2 |Ap — (A=A ) AP
e\ 1))} = k < hy,. (3.33)
O (A@=Dy2 1ApF]|
Usually, this a posteriori loop is rarely activated, as experience shows. To avoid an infinite loop,
however, it is ensured that both estimates, )\,&0) and )\](:), v=1,2,..., always satisfy the condition
AV > A, v =0,1,2,... (3.34)

with a minimal permitted damping factor, Anyi,, provided by the user. In case )\E:) < Amin
deliberate rank reduction is invoked, which usually leads to larger damping factors. Otherwise,
the Gauss-Newton iteration will be stopped.

3.2.2 Subcondition Monitor

For the solution of the linear least squares problem in each iteration step, a (Q R-decomposition of
the associated Jacobian (L, ¢)-matrix, J = F'(p),

QJI = ( Jg > (3.35)

by applying Householder reflections with additional column pivot maximisation, is realised in
BioPARKIN. Here, for simplicity, the full rank case is assumed where ¢ < L and R is an upper
triangular (g, ¢)-matrix, R = (r;;). The permutation, II, is determined such that

[r1a| > |raal > .. > [rgql- (3.36)

For some required accuracy, § > 0, given by the user, the numerical rank, £ := rnk(J), indispensible
to the solution of ill-posed problems, is then defined by the inequality

|Tg+1"g+1| <0 |T11‘ < |’/‘gg‘. (337)
Note that this definition is highly biased by both row and column scaling of the Jacobian. Intro-
ducing, nevertheless, the so-called subcondition number, for £ = ¢, by
se() = 1l < condy(), (3.38)
I74ql

it follows that, if § - sc(J) > 1, the Jacobian will certainly be rank-deficient. In this case, a rank-

deficient pseudo-inverse is realised, either by a ) R-Cholesky variant or by a ) R-Moore-Penrose
+

variant. Both cases of pseudo-inverses of the Jacobian, J, will be denoted by (JZ)

12



3.2.3 Rank Optimisation

A deliberate rank reduction may additionally help avoid an iteration towards an attractive point,
P, where the associated Jacobian matrix, J(p), becomes singular. The general idea of this device
is to reduce the maximal permitted rank in the QR decomposition until the natural monotonicity
will be fulfilled again or, of course, no further rank reduction is possible. The subroutine to do so
is as follows.

To start with, let ¢ denote the current rank. The ordinary Newton correction, Ap”, is then
recomputed with a prescribed maximum allowed rank, ¢ = ¢ — 1. With the new (trial) correction,
Ap*t anew a priori damping factor, a new trail iterate, and a new simplified correction,

MO = min {1, 50}, (3.39)
pOO = pk 4 ACOApkL (3.40)
Aptt = =T (") F ("), (3.41)
ApOD = —JlpM) T F(p©D), (3.42)

are computed, respectively.
If now the monotonicity check is successfully passed, the Gauss-Newton iteration proceeds as usual.

Otherwise, the damping factors, /\,(CV’Z) (v=1,2,...), are calculated using the a posteriori estimates

as given above. If in the a posteriori loop, in turn, /\,(QV’Z) < Amin occurs, the maximum allowed
rank is further lowered by one and, again, the repetition of the rank reduction step starts once
more.

This rank reduction procedure is carried out until natural monotonicity, ||A7p(y’é) | < ||Ap*¢||, holds
true or, alternatively, a final termination criterion, £ < pin (0 < fmin < ¢), is reached.

Note that the application of a rank-reduced Newton step means to perform an intermediate Gauss-
Newton step. Although, in principle, both methods are algorithmically very similar, there are some
essential theoretical differences. As a consequence, the local Lipschitz constant estimates, [(D,(CV’Z)]
, have to be modified accordingly,

N

(13" — apht + A" - A%)

(@] = — < @, (3.43)
Ak—1 [[ApE=L[ {|Ap™ ||
with the norm, A > 0, of the projection
—k
A=|[[1=T "I 0] Ap'l, (3.44)

see [6] for further details.
Note that an emergency rank reduction can occur in a step where the rank of the Jacobian, J(p*),
has already been reduced because of the sub-condition criterion.

3.3 Pseudo-Code

An informal algorithm, including damping strategy and rank reduction as explained, may be given
as follows.

Input:

0 initial guess (of dimension gq)

Ao initial damping factor

Amin minimal permitted damping factor

fmin minimal permitted rank

condyax maximal permitted subcondition number

Ereq required accuracy of solution

Kmax maximal number of iterations

F, J user—supplied routines describing the problem to solve

13
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51

52

53

54

55

Start:

k<0
Fk — F(pk)
Jk — J(pk)
Emax <_ q
ApF e — (I By
¢ maximal s.t. £ < lpay, sc(Jf) < condpmax
(by @ R—decomposition)
Ao k=0
(0,6) ’
AT { min{L uéo’é)}, k>0

ve0, AT

A AP

if ((15 = V= L) A (A < Ain) A(ALTHD > Amin)) :
A\ — )\min

endif

if (A< Amin) :
Emax — gmax -1
if (Umax < €min) : exit("rank strategy failed”)
else : continue at (B)

endif

pk+1,u — pk + )\Apk

Fk+1,u — F(pk+1,1/)
——k+1,v

Ap T e = (T P ((75)" from (B))
if (130" < 2req) A (JAPHP <10+ 210) A (A = 1)) :

——k+1,
p* <_pk+1,u +Ap +1,v

if (¢ =q): exit ("solution”, p*)
if (¢ <gq): exit ("stationary point”, p*)
endif

/\](CVJrl,Z) (v+1,0)

— min{l7 75
. —k+1,v
it (130" < apt])

pk+1 — pk+1,l/

Frp1 < Fry1
k< k+1
if (k> kmax) : exit(”too many iterations”)
else : continue at (A)
else:
vv+1
if (A= Anin) : exit(”damping strategy failed”)
A < min {A,ﬂ_’“), 1x
A+ max {\, A\nin}
continue at (C)
endif

Listing 2: Global Gauss-Newton Scheme with Damping and Rank Strategy

3.4 Further Practical Issues

It is well-known that the numerical realisation of the routines calculating the forward model equa-

tion, F', and the Jacobian, J, have to be numerically accurate enough in order to preserve dif-
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ferentiability of the underlying model with respect to species and parameters. Moreover, since
the biological networks are likely to be stiff, the integrator solving the ODE systems has to be
capable to deal with stiff ODE systems. In BioPARKIN, a linearly-implicit extrapolation code
is used (LIMEX) for computing the numerical solution of the ODE system, with detailed order
and stepsize control enabled: in the local convergence domain of the Gauss-Newton iteration, i.e.
A = 1, the scaling and the stepsizes for the stiff itegrator are preserved [8]. Thus differentiability
is ensured, provided that, near the unknown solution, the integration order stays constant during
this iteration phase.

3.4.1 Statistical a posteriori Analysis

Provided the iterative Gauss-Newton procedure indeed converges to a solution vector, p* € R9, the
linearised model, taken at this solution point, readily enables a statistical a posteriori analysis.
Assuming that a QR decomposition (with column pivoting) of the unscaled (!) Jacobian, J(p*) ~

F'(pr),

Jp)II=Q-R, r := rank(R) (3.45)
is available, the variance, 02 = 0 (p*), of the residual with respect to the given data is estimated
by

M
~ 1 . ,
&= ;lly(ﬁ ;") = %5 (3.46)

Using the splitting of the upper triangular factor,

R= { ? } with (r, r)—matrix R, (3.47)

the variance-covariance matrix w.r.t. the solution vector, p*, is then computed by

cov(p*) = 5° (11~%T11~3)71 (3.48)

and, having set V := cov(p*) for abbreviation, correspondingly the correlation matrix, C € R%? |
by

Cij = (3.49)

1
— Vi, dj=1,...,q
VVi/Vij
Note that the last formula tacitly implies that an entry Cj; is set to zero if (at least) one of the
square roots is zero.

4 Cross-Platform Development

BioPARKIN is made up of two main components. All the numerical functionality resides in a
separate library called PARKINcpp. The graphical user interface (GUI) for managing models,
data and for interacting with the numerical library—e.g. invoking actual computations—is the
other part, called BioPARKIN. Thus, BioPARKIN is both the name of the complete software
package as well as of the GUI.

4.1 PARKINcpp & BioPARKIN

PARKINcpp. As the name suggests, PARKINcpp is written in C+-. The intent of this library
is to make algorithms developed at the ZIB available inside a modern and modular package. A
lot of PARKINcpp’s functionality previously existed only in legacy FORTRAN code that is not
suitable to be used inside other projects.

The development of PARKINcpp alongside the BioPARKIN GUI ensures that the library has a
mature API (Application Programming Interface) that can just as easily be used within other
software projects.

15



C++ was chosen because it is both abstract enough to support modern design principles and close
enough to the hardware to provide good performance—an important trait for a numerical software
package.

BioPARKIN. BioPARKIN is written in Python and uses the popular Qt GUI toolkit (for
details, see Section 6).

Python is an interpreted script language that is suitable for rapid prototyping and for quickly
adapting the code to changes. Its popularity has been increasing for years, especially in fields like
biology and bioinformatics.

The Python interpreter—needed to run Python code—is available for all major operating systems
as is the Qt library. BioPARKIN was intended to be a cross-platform tool from the very beginning.

4.2 Supported Operating Systems

While BioPARKIN’s GUI is developed in Python and works on several operating systems without
any further adjustments, the PARKINcpp library has to be compiled for each platform specifically.
Currently, there are versions for Windows and Linux. Support for Mac OS X is possible.

4.3 Extending Existing Software

With the advent of the SBML standard a whole ecosystem of software tools has sprung up (see
Section 1.2). Most of the existing software is intended for a single purpose and is not suited to be
the basis for a project like BioPARKIN whose goal is of wider intent. However, some software—e.g.
CellDesigner (see Section 1.2)—has interfaces dedicated to accept plug-ins of different kinds.

The plug-in architecture of several software tools was evaluated. In all cases, doubts about the
feasibility of integrating all of BioPARKIN’s intended features into a plug-in remained. Experience
shows that the development of plug-ins often hits the boundaries of what the underlying framework
allows.

In order to be as independent as possible and retain full control over the software environment,
BioPARKIN was realised as a stand-alone software project. Details about the implementation can
be found in the following sections.

5 Numerical Library: PARKINcpp

The C++ subpackage of BioPARKIN consists of several classes that have been divided into different
subdirectories, or modules, respectively. These modules are briefly described as follows,

addpkg
In this subdirectory all additional packages are collected. Currently, the packages dlib,
ExprEval, LIMEX4 3A, newmatll, and Ode (dop853) are included. In the present version
of PARKINcpp, however, only the packages dlib (matrix/vector backend), and LIMEX4 3A
(a linearly implicit extrapolation code for solving ODE systems) are used.

common
Here, common constants and types (typedefs) in so-called header files are listed.

linalg
This subdirectory incorporates typical tasks of Linear Algebra, such as QR decomposition.
It serves also as base for the implementation (or class interface) of the fundamental Matrix
and Vector classes. Note that particular emphasis has been put here on providing an almost
one-to-one mapping of MATLAB-like methods of matrix-/vector-operations and procedures.
It is absolutely clear that the classes of this section are the core building blocks for all other
classes in PARKINcpp.

nonlin
In this subdirectory the non-linear solvers are gathered, including the important interface def-
inition of the user function UserFunc. Presently, both NLSCON and PARKIN are available
here.

16



odelib
Here, the interface (and adapter) classes to any solvers of ordinary differential equations (and
systems thereof) are put together. In future versions of PARKINcpp, this place shall also
include (interface) classes for solving delay equations, for example.

swig
This subdirectory contains the so-called interface definition files for SWIG, a wrapper gen-
erator especially suited for (non-typed) script languages such as Python. Admittedly, the
content of this directory needs a complete review, if not a complete redesign. Done correctly,
this would provide a clean interface of PARKINcpp to other languages (e.g. Java, Lua, Perl,
Ruby, Tcl, to name a few) as well.

system
In this subdirectory, all classes relevant for the description of—and solutions to—(biological)
systems are listed. In particular, the fast evaluation of abstract syntax trees (AST) for the
description of the right-hand side (RHS) of an ODE system is enabled by the two classes,
Expression and ExprNode.

tstprg
Last but not least, some test routines and examples how to use the classes of PARKINcpp
are given here.

The general approach to the development and overall design of the C++ package has been, on
the one side, to re-use as many as possible code already avaible in other high level programming
languages (FORTRANTT7: limex4_3a.f, parkll.f; MATLAB: nlscon.m, deccon.m, solcon.m),
and, on the other side, to have a clean object-oriented setup right from the start.

5.1 Functionality

Usage of the C++ package can most succinctly be explained by giving code snippets, demonstrating
the basic functionality of the library.
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Yoy

// This code snippet is for demonstration purpose only. It will NOT run.

Yl

#include "bioparkin.h"

using namespace BIOPARKIN;

int main ()

{
Real
Real
BioSystem

tstart = —15.0;
tend = 100.0;
biosys(tstart ,tend);

BioRHS :: ExpressionMap exprs;
BioSystem :: Species species;
BioSystem :: Parameter parameters;

BioSystem :: Param

parvals ,initvals , guessvals ,rslts;

biosys .setODESystem (exprs );
biosys.setParameters(parameters);
biosys.setInitialValues (initvals);
biosys.setParamValues(parvals);

//

Vector

timepts;

BioSystem :: MeasurementList measvals;

BioSystem :: Param

guessthres , measthres;

biosys.setMeasurementList (timepts ,measvals);

//

int re = 0;

Real xtol = 1.0e—4;

10pt iopt;

BioProcessor proc( &biosys, "nlscon" );

proc.setIOpt (iopt

proc.setCurrentParamValues (guessvals)
proc.setCurrentParamThres (guessthres)
proc.setCurrentSpeciesThres (measthres

)

)

)

rc = proc.identifyParameters(xtol);

if ( rc = 0 ) rslts = proc.getldentificationResults ();

return rc;

Listing 3: Code snippet showing the typical structure of a PARKINcpp application.

Input/Output Facilities.
strates how to enter a simple

The first code snippet (Listing 4) given in this paragraph demon-
ODE system describing the reaction mechanics A + B = C with
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reaction rate constants, k1 and ko, respectively.

C++
//
// Simple A + B <=> C ezample ; with reaction rates kI, k2, resp.
//
// (1) A’ = — kI A+« B + k2« C
// (2) B = — ki1 xA*B + k2 %C
/) (3) C' = —2+k2xC + 2% ki «AxB
//
BioSystem biosys( 0.5, 6.0 );
BioRHS :: ExpressionMap emap, aux;
BioSystem :: Species species;
species .push back("A");
species .push back("B");
species .push back("C");
aux["rct"] = Expression (TIMES, "k1", Expression (TIMES,"A" /"B"));
aux["rev"] = Expression (TIMES, "k2", species[2]);
// define Eqn (1)
emap [ "A" | = Expression (MINUS, aux|["rev"], aux["rct"]);
// define Eqn (2)
emap|species [1]] = Expression(MINUS, aux|["rev"|, aux["rct"]);
// or emap["B"] = emap[species[0]]; alternatively
// define Eqn (3)
emap[species [2]] = Expression( MINUS,
Expression (TIMES, 2.0, aux["rct"]),
Expression (TIMES, 2.0, aux|["rev"])
)s
biosys .setODESystem (emap ) ;
biosys.setInitialValue (species|[0], 1.0);
biosys.setInitialValue (species[1], 2.0);
biosys.setInitialValue ("C", 0.0);
//

Listing 4: Formulating reacting kinetics as ODE systems within PARKINcpp.

The following list of operations is available within the Expression interface:

PLUS, MINUS, TIMES, DIVIDE, POWER,

ABS, CEIL, FLOOR, SIGN,

EXP, LN, LOG,

SIN, COS, TAN, SINH, COSH, TANH,

ARCSIN, ARCCOS, ARCTAN, ARSINH, ARCOSH, ARTANH
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HILLplus, HILLminus

All listed operators here take either one or two arguments, as usual, with the only exception being
the so-called Hill functions,

c z\”
H+($7y,p) = 17_|_C7 with ¢ := (y) (51)
1 z\?
H™ (z,y,p) = 7o again with ¢ = (y) (5.2)

The second example (Listing 5) shows how to assign parameters in an ODE system with values,
e.g. with inital start guesses for a first simulation run.
C++

//

BioSystem biosys (0.0, 100.0);
BioRHS :: ExpressionMap emap;

BioSystem :: Parameter parameters;
BioSystem :: Param parvals;

/o

biosys .setODESystem (emap ) ;

//

parameters.push back("pl");
parameters.push back("p2");
parameters.push back("p3");

/)

std::string s = parameters|[2]; // <— this is "p3" here
parvals["pl"] = 7.32;
parvals [parameters [1]] = —3.14;

parvals[s] sqrt (2.0);

/o

biosys.setParameters(parameters);
biosys.setParamValues(parvals);

//
//

Listing 5: Setting parameter values in ODE systems in PARKINcpp.
The core items of each instantiation of the BioSystem class are available by corresponding getter

methods, e.g. getODESystem(), getParamValues().

Parameter Transformation. The transformation of the parameters can be switched by an
input option field /array that must be given in the setup of the BioProcessor performing the Gauss-
Newton iteration. This is illustrated in the code snippet given by Listing 6.
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Cht

//

//

BioSystem

//

biosys(—1.0, 1.0);

int nParameter = 5;

BioProcessor proc( &biosys, "nlscon" );

10pt iopt;

Vector trans ; // <— Vector always starts to
// count from _one_ !

trans.zeros (nParameter);

trans (1) = 1; // apply exponential transformation
trans (4) = 1; // to first and fourth parameter _only
iopt.transf = 1; // apply/switch for all p.

iopt.itrans = trans; // select transformation for single p.

proc.setIOpt (iopt );

7

Listing 6: Mechanism of parameter transformation switching.

The following flags are currently available:

iopt
iopt
iopt
iopt

iopt

.transf

.transf

.transf

.transf

.transf

0:

1:

2:

3:

4:

No transformation.

Exponential transformation, p = exp(u).

Lower bound transformation with L € R, p=L — (1 — m)

Upper bound transformation with U e R, p = U + (1 - m)

Lower and upper bound transf. (L < U), p= L+ % (U — L) (1 + sin(u)).

The actual values of the upper and lower bounds are passed by corresponding iopt.lbnd and
iopt.ubnd fields, respectively.

Approximation of Jacobian. In principle, the trajectories of the linearised model—the solution
of the variational equation needed to set up the Jacobian—can be computed approximatively
in two ways, either as numerical solution of the variational equation, or as difference quotient
approximation. A snippet for this mechanism is given in Listing 7.
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//

BioSystem biosys( 0.0, 15.0 );
BioProcessor proc( &biosys, "nlscon" );
TrajectoryMap trajMap , scaledTrajMap ;
10pt iopt;

iopt.jacgen = 3;
proc.setIOpt (iopt ); //

Expression :: Param parVals;

Expression :: Param parThres, speThres;

proc.setCurrentParamValues (parVals);

proc.setCurrentParamThres (parThres);
proc.setCurrentSpeciesThres (speThres);

//

// <— use difference
of biosys supplied wvar.

instead
eqn

quotient

// < p. values where
// sens. are taken

// <= thresholds for
// <— species and p.

trajMap = proc.computeSensitivityTrajectories ();
scaledTrajMap = proc.getScaledSensitivityTrajectories ();
//

int rc = 0;

Vector timepoints;

MatrixList matList;

QRconDecompList qrList;

timepoints.zeros (2);

timepoints (1) = 2.34;

timepoints (2) = 4.56;

rc = proc.prepareDetailedSensitivities( timepoints );

if (rc =—20)
{

matList = proc.getSensitivityMatrices ();

// qrList =

//
//

proc.getSensitivityDecomps ();

Listing 7: Sensitivity computation by evaluating the Jacobian matrices.

Statistical a posteriori Analysis.
offers a statistical a posteriori analysis (see Listing 8).
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//

BioSystem biosys (0.0,10.0);

int rc = 0;

Real xtol = 1.0e—4;

10pt iopt;

BioProcessor proc( &biosys, "nlscon" );
Expression :: Param idParam;

Matrix vevMat , corMat ;

iopt.qstat = true;
proc.setIOpt (iopt );

/o

rc = proc.identifyParameters(xtol);

if (rc =—20)
{

idParam = proc.getldentificationResults ();
vevMat = proc.getVarianceCovarianceMatrix ();
// corMat = proc.getCorrelationMatriz ();

//

Listing 8: Determination of the variance-covariance matrix following a successful identification run.

5.2 Foreign Library Access

A simplified wrapper and interface generator, i.e. a package known as SWIG, provides most con-
veniently the possibility to use the numerical C++ library PARKINcpp in other programming
languages as well. The SWIG package is a mature and popular open-source tool to enable code
that is written in a variety of languages to use native C and C++ routines and objects, respec-
tively. Moreover, the design of SWIG supports simultaneously to generate interfaces for a number
of scripting (Python, Ruby, Perl) and non-scripting languages (Java, C#, and other) [1]. All it
needs to make C/C++ classes and functions accessible to other languages is to write so-called
interface files. The complexity of these interfaces depends on the wrapped C/C++ code, e.g. the
types of function arguments.

Currently, PARKINcpp provides interfaces especially for the script language Python (found in the
swig subdirectory, see beginning of Section 5). These interface files define all necessary conversion
information, e.g. C+-+ templates, to generate the interface code.?

The generated interface code results in a parkin.py file that can simply be imported in Python.
This import modules comes together with a special dynamical link library file _parkin (_parkin.pyd
on Windows, and _parkin.so on Linux), also compiled by SWIG from the original C++ code,
PARKINcpp.

Currently, only Python-specific interface files are available within PARKINcpp. The nature of
SWIG, however, allows to support additional programming languages (e.g. Java) if needed. This
turns PARKINcpp into an attractive numerical library for a lot of different projects or groups.

2A PDF (of a talk by SWIG’s inventor) showing one of the earliest applications of SWIG and some details on
interfaces can be found here: http://www.dabeaz.com/presentations/SwigPyTalk.pdf
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5.3 Design Patterns

This section lists the design patterns that have been identified as extremely useful during the entire
PARKINcpp development, sorted by the classes they have been applied to.

otherMatImpl
«Interface»
GenericMatrix A/
yet AnotherMatImpl
dlibMatImpl

Matrix / Vector

- impl : GenericMatrix*

Figure 5.1: Adapter pattern used in BioPARKIN for Matrix/Vector class

class Matrix / class Vector
Uses a type of an adapter pattern in order to unify different interfaces of existing matrix
packages (such as the dlib C++ package) to the matrix interface used throughout PARK-
INcpp. The PARKINcpp matrix interface has been developed with the basic aim to imitate
a MATLAB-like syntax as much as possible. The usage of the adapter pattern, additionally,
decouples the interface definition from the implementation and, consequently, facilitates a
hypothetical future change of the underlying matrix implementation enormously.

class Expression
This class is structured as an abstract syntax tree (AST) since the objects of this type shall
represent arbitrary mathematical formulae, the right-hand sides of an ODE system, for in-
stance. The leaves of this tree are the terminal symbols, i.e. variable names and constant
numbers, and the other nodes hold the operators with one, two, or three operands. Moreover,
since (symbolic) differentiation is a pure algebraic operation, these objects also know how to
take the derivative of themselves, w.r.t. a given variable.

class BioSystemWrapper (special wrapper class)
Provides the call-back interfaces typically required by numerical ODE solvers such as LIMEX.
Especially, if the requesting code is written in legacy FORTRAN, this wrapper idiom also
cares for the correct function type linkage since FORTRAN package libraries often expect
function signatures different from the usual ones of C++ compilers. The crucial point for
successfully linking with FORTRAN, here, is to use solely static member functions as the
call-back routines passed to the FORTRAN library.

class BioProcessor / class BioPAR
These classes introduce a further abstraction layer into the PARKINcpp design. They are
built, more or less, on composition rather than inheritance since they intrinsically carry a
“has a”-relationship, but not the relation “is a”. In this way, multiple systems could be dealt
with simultaneously much easier, in principle.
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BioSystem

BioSystemWrapper

- obj : static BioSystem*
+ static setObj(obj : BioSystem™*) : void
+ static cbFCN(...) : void

Figure 5.2: Wrapper idiom for call-back routines, as required by static-typed libraries

6 Graphical User Interface: BioPARKIN

This section gives an overview of the graphical user interface (GUI) of BioPARKIN, both from
a user-oriented perspective (see Section 6.2.1 and Section 6.2.2) and from a technical developer-
oreinted perspective (see Sections 6.3.2, 6.3.3, and 6.3.4).

6.1 Functionality

The GUI makes most of PARKINcpp’s features available for easy use. Those features are detailed in
Section 5.1. The following paragraphs describe the functionality that is added by the BioPARKIN
GUI layer.

Additional guidance on how to use BioPARKIN can be found in the BioPARKIN manual [3].

6.1.1 SBML Compatibility

The SBML standard uses Versions and Levels to distinguish between SBML specifications with
different feature sets. Each development cycle of SBML increments the Version, which generally
increases the number of modelling cases that can be realized within the SBML syntax. Within
a Level, Versions are increased when issuing “bugfixes” or removing contradictions within the
standard [4]. The most recent release of SBML is Level 3 Version 1. Level 3, however, can still be
considered to be a young standard. The available software mostly supports SBML Level 2 Version
4 which had long been the most recent specification before Level 3 was released in October 2010.
When work on BioPARKIN started, SBML Level 2 Version 4 was the current specification. Due
to the fact that this Level still has the strongest hold within the field, BioPARKIN focuses on
supporting it. Supporting Level 3 will be possible later on.

Currently, BioPARKIN only supports a subset of SBML Level 2 Version 4. SBML’s event defini-
tions, for example, support more types of events than BioPARKIN is able to handle at the moment.
Such exceptions are usually reported by errors or warnings within the user interface or the log file.

6.1.2 File Input and Output

BioPARKIN uses SBML to handle model files (see previous section). An additional format is
needed to store experimental data and simulation results.

A simple custom CSV-like format was chosen to save such data. It uses tabulators to separate fields
and has the structure given in Table 1. The first column has to be named “Timepoint [unit]”
with “unit” defining the actual time unit of the measured (or simulated) data. Of the following
columus, every column ending with “[unit]” is treated as data (“[1” is possible, too, for unit-less
data). The names of these data columns have to correspond to species IDs within the model so
that BioPARKIN can match model entities and data.

If a column called “SD” is preceded by a data column it holds the standard deviations of the
measurements in the preceding column.
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Timepoint [unit] [ ID1 [unit] | SD | ID2 [unit] | SD | Arbitrary Column
0 0 1 0 1
3.33 0.4 1 0.09 1

Table 1: Structure of a BioPARKIN data file. Neigboring cells are separated by a tab character.

Columns with arbitrary names can be appended at the end. As long as they do not contain square
brackets, they are effectively ignored by BioPARKIN when doing calculations. This can be helpful
to keep track of patient IDs within files, for example.

BioPARKIN not only reads files formatted this way but uses the same format to save simulation
results to disk.

6.1.3 Data Browser
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"
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| Plot Al Data Sets_| [Piot Selected Data Sets| 7] Indude Experimental Data in Simuiation Plots

Figure 6.1: BioPARKIN’s Data Browser showing a data file.

Data files are opened within the Data Browser interface (see figure 6.1). The data is shown in a
table to provide the user with a well-known view of the data. Each loaded file is shown in its own
tab at the bottom (hence, the name “Browser”). The “+” tab shows a page where additional files
can be selected and opened.

An important feature of the Data Browser is the ability to select or deselect individual data files
and individual columns within a file. Files can be selected via a checkbox on their respective tab.
Columns can be selected via a checkbox in the their respective table header. Only selected data is
used when doing computations. In this way, it is easy to use only a subset of a data set (e.g. only
a specific species) when fitting model parameters.

Moreover, a timeshift can be applied to the data (individually per file). This is often needed in
order to match the start of the simulation to the data time points.

When BioPARKIN is started with “--debug” from the command line, the Data Browser shows an
additional option to perturb the data using uniformly randomised noise. This is useful for testing
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purposes as it allows the user to take simulated data, perturb it slightly, and then use this data to
“re-estimate” the parameters that were used to generate the data in the first place.

Currently, editing the data is not enabled. The Data Browser should be used to view and to select
the data, not to edit it. This view-only approach may change, though, once BioPARKIN supports
merging data.

6.1.4 Parameter Selection

The PARKINcpp library supports the computation of sensitivities and the identification of param-
eter values for subsets of parameters. This functionality is exposed in BioPARKIN. The researcher
can select the parameters of interest which can speed up computation times.3

6.1.5 Parameter Sets

When a researcher is working on a model or exploring its parameter space, parameter values are
usually changed quite often. The parameter sets feature of BioPARKIN tries to accommodate for
this behaviour.

Each parameter set includes all parameters and their values. Parameter sets are displayed side-
by-side in the simulation tab and can be duplicated or removed.

Upon opening a SBML model, an “Original” parameter set is created that allows the user to revert
back to the initial parameter values at any time. Another set is created automatically, called
“Guess”. This is meant to be used in conjunction with the parameter identification. The results of
an identification run are also put into a parameter set and, thus, can be plotted, compared with
measurements, etc.

6.1.6 ODE System Generation

" ODE Viewer

Individual Rate Equations:

reactionl: vi

reaction2: C *k1 *X * pow(C +K5, -1)

reaction3: C * kd

reactiond: {1 +-1*M) *V1*pow(Kl +-1*M +1, -1)
reaction5: M *V2 *pow{K2 + M, -1)

reactiong: V3 * (1 +-1%X) *pow(3 +-1*X + 1, -1)
reaction?: V4 =X *pow(k4 + ¥, -1)

reactiong: al *C ™Y

reactiond: a2 *Z =
reaction10: alpha *d1*Z

reaction11: alpha *kd *Z

reaction12: vs

reaction13: d1 =Y

dC/jdt = 1*reactionl - reaction2 - reaction3 - reactiond + 1 * reactiond + 1 * reaction10
dX fdt = 1 *reaction6 - reaction?

dM jdt = 1 *reaction4 - reaction5

dY fdt = -reactiond + 1 *reactiond + 1 *reaction1l + 1 *reaction12 - reaction13

dZ fdt = 1*reaction8 - reactiond - reaction10 - reaction11

l ODEs (reaction IDs replaced with actual equations):

dC/fdt = 1% (i) - (C*k1=X =pow(C +K5, -1)) - (C *kd) - (81 *C *Y) + 1= (32 *Z) + 1 = (alpha *d1=2)
dXfdt = 15 (3= (1 +-15X) *pow(K3 +-1%X + 1, -1)) - (V4 *X * pow(K4 +X, -1))

dMjdt = 1% ((1 +-1=M) *V1=pow(Ki+-1=M + 1, -1)) - (M =V2 = pow(K2 + M, -1))

Close

d¥fdt = (@1 *C*Y) +1%(@2*2Z) + 1* (alpha *kd *Z) + 1 * (vs) - (d1*Y) - |J

Figure 6.2: ODE overview as generated by BioPARKIN

3Selecting fewer parameters speeds up the computation only if Numerical Differentiation (either of the two modes)
is selected for Jacobian calculation in the Setting tab of the Workbench.
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SBML files do not usually define ordinary differential equations (ODEs) directly. Instead, they
define the interactions between Species as Reactions with reaction kinetics. BioPARKIN parses
the reaction network and creates one differential equation per Species.

The generated ODE system can be reviewed by the user (see Figure 6.2). This ODE system is
used when setting up the PARKINcpp backend for computations. The ODEs shown to the user
in the ODE Viewer window are shown in various levels of detail—e.g. a level with parameter IDs,
and a level with their names.

For implementation details, see Section 6.3.4.

6.2 Workflow
6.2.1 Window Layout

The user experience (UX) of a software program is usually understood as the sum of usability,
look, and feel. It thereby extends the notion of whether a software is merely usable to include the
question if a software is “a joy to use” and if it pleases the eye. Instead of frustrating the user,
current software often tries to reward the user for using it[19, 12].

While it is too far-fetched to say that BioPARKIN has great looks and feel, the development always
had good UX in mind. The arrangement of windows, tabs, and buttons was optimised several times
as it became clear how a better usability could be achieved. This section illustrates the (current)
design that this approach led to.

Invoking BioPARKIN, the user first encounters a window with menu bar and icons at the top, as
usual. The main part of the window is taken up by two tabs that either show the current model
or the simulation controls.

"+ BioPARKIN v1.2.13 SlE] =
EAXR »
Model Overview | Workbench
Model List Entity Tree Entity Details
BovCyclexml D ’ Name B Property  Value

> Compartments D pard8

> Species E

» Reactions Name  cliof

4 Parameters =
pardg cl_iof Value 0.298
pad? T_cliof
paigs T_pg_ot Unit dimensionless
pa:i hl—pi—‘uf Constant | true
pa cl_o
paid2 T el ot Scope | Global
par9l h_e2cl_ot
pard Te2 g2
parid dlenz
pard? T_pd_enz
par86 h_p4_enz
parg2 clinh
pargl k_foll_inh -

Figure 6.3: BioPARKIN’s Model Overview tab showing a model and a selected parameter

Model Overview Tab. Within the Model Overview tab (see figure 6.3), the currently opened
model is shown on the left.* In the center, there is a tree-like view of all the model’s entities—e.g.
Compartments, Species, Reactions. A table with details of the currently selected entity is placed
on the right.

A future update of BioPARKIN will allow editing the model—e.g. adding and removing species
and reactions—from within this tab. Currently, the model tab is only meant to convey an overview
of the parts of a model.

4BioPARKIN currently supports only one model to be open at the same time. The framework does support more
models at once but this has implications on workflow and usability that will be solved in a future version.
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Figure 6.4: Tabs within the Workbench (the screenshot has been rotated 90° clockwise)

Workbench Tab. The Workbench tab hosts all the settings and controls to do the following
(see Figure 6.4):

Start simulations

Plot simulated and experimental data

— Manipulate and save the plots
Show simulated and experimental data in tables

— Save and recolour (based on a user-defined threshold) data
Compute parameter sensitivities

— Generate an overview and plot the sensitivitiy trajectories of all parameter /species pairs

— Define timepoints and look at sensitivity (Jacobian) matrices and subconditions at these
timepoints

Identify parameter values based on experimental data
Manage experimental data

— Select relevant data

— Apply a timeshift to data
Manage parameter sets

— Easily compare and plot variants of parameter sets
Change global settings with impact on all computations

— Switch between two Gauss-Newton variants in PARKINcpp (NLSCON and PARKIN,
see Section 5)

6.2.2 Workflow Details

This

section illustrates a typical workflow within BioPARKIN.

Currently, BioPARKIN is focused on simulating SBML models, providing sensitivity analysis and
parameter estimations. The model tab gives a quick impression of the model but is not (yet) meant
to build or to edit a model. For the time being, following the principle of interoperatibility between
SBML software tools, users are kindly asked to use other SBML programs in order to build and
modify SBML models, e.g. to make use of CellDesigner (see Section 1.2).

Actual usage of the software is covered in more detail in the BloPARKIN manual [3].
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Loading and viewing a model. The Model Overview tab (as seen in Figure 6.3) shows relevant
model entities in the central tree view. There are main nodes for SBML Compartments, Species,
Parameters, Reactions, Rate Rules, Assignment Rules and Events. Each of these nodes can be
expanded by clicking the plus/triangle sign® on the left of it. This reveals all entities of this type
within the model.

The table on the right shows the details of the entity selected in the central tree. Most entries in
that table cannot be edited and are shown so that the user can get an understanding of the model.
The name of the selected entity can always be edited. Depending on the type of entity, different
additional properties can be edited as well. These are the properties which can be edited:

All Entities
Name (most useful for parameters so that they can be more easily identified in the ODE
Viewer).

Reactions
Math can be edited to change the actual reaction kinetic of a reaction.

Assignment and Rate Rule
Variable can be edited to change the left-hand side of this rule, i.e. the target. Math can be
changed to define the right-hand side of the rule, e.g. the assignment.

Event
The target of the event can be changed via Target. The Trigger can be changed as well.
It has to be given in the format “eq(time, x)” (where x can be any real number that lies
strictly within the integration interval). Finally, Expression defines what will happen to
the target in case the trigger is fired (e.g. if just a parameter ID is given, the value of this
parameter is assigned to the target).

Plotting Simulations. Common settings for all computations can be defined in the Settings
tab. Regarding (forward) simulation, the most important ones are Start Time and End Time.
Simulate buttons can be found in the lower-right corner of several tabs (Settings, Species, Param-
eters, Parameter Sets). Another way to start a simulation run is to use the keyboard shortcut
CTRL+ALT+S.

The species trajectories are computed at timepoints that are chosen automatically by the adaptive
stepsize control within the integrator LIMEX (see Section 3.4). Timepoints are not interpolated
before being shown in the Results window (see next section). As a result, some parts of the output
curves may seem rough (few support points), other parts may be drawn extremely smooth (lots
of points). These are the exact data produced by and used within the integrator. In this way, the
user can see what happened during the computation, preventing wrong assumptions—based on
arbitrary interpolation.

Each simulation run produces two result tabs within the Results window—one showing a plot and
another presenting the timecourse data in a table (see Figure 6.5 for an example).

5The exact look of the tree widget and its expand signs depends on the operating system used.
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Figure 6.5: Results Window with two tabs. The active tab shows the plot of a simulation run.

Results Window. All results (simulations, as well as sensitivity and parameter identification
computations) are shown in the Results window (see Figure 6.5). The window opens the first time
anything is computed. If the user closes it, it can be reopened via a button in the menu bar at the
top.

Per default, the Results window uses a tabbed interface. Each computation result (let it be a plot
or a table) is placed within its own tab in the left-sided tab bar. A checkbox (Tab Mode) at the
bottom can be deselected to switch to a windowed mode in which every tab is replaced by a small
window (inside the surrounding Results window). If this is done, two buttons will appear (Tile
Windows and Cascade Windows) which can be used to automatically rearrange all the results. This
can be used, for example, to conveniently arrange plots and view them side-by-side (see Figure
6.6).
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Figure 6.6: Results Window in non-tabbed mode, showing two plots side-by-side.

On the left side of each result (again, plot or table) there is a Data Sources tab. This tab shows all
available data sources, e.g. species in the case of a simulation, or species/parameter combinations
in the case of a sensitivity computation. It can be used to filter the results. Per default, only
the first item is selected. Checkboxes in the row/column headers make it possible to select whole
rows/columns at once.

The Settings & Actions tab provides some additional functionality such as saving the table/plot,
showing a plot legend, and colouring table cells based on a threshold, see the BioPARKIN manual
for more detailed explanations on how to use these features [3].

Computing Sensitivities. The Sensitivity tab shows two tables. The table on the left is used
to select parameters. The right table allows to select species. This allows the user to predefine the
parameter /species combinations for which sensitivities will be computed.

The number of selected parameters has an impact on computation time if the computation of the
Jacobian matrix is set to Numerical Differentiation (either of the two modes) in the Settings tab.
Conversely, if it is set to use Variational Equations, the number of selected parameters has no
impact on computation times (see Section 3.2).

The number of selected species has no impact on computation times. It is merely a convenient way
to filter the output of the computations beforehand. Internally, sensitivities are always computed
for all the species (for each selected parameter).

Sensitivities can be shown in two ways as will be explained in the next paragraphs.
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Figure 6.7: Example of a Sensitivity Overview plot with all parameter/species combinations se-
lected

Sensitivity Overview. The sensitivitiy matrix—the Jacobian—is computed at every timepoint
that is chosen by the adaptive stepsize control of the integrator (e.g. LIMEX). For each parame-
ter /species combination the values within these Jacobian matrices form a trajectory which will be
plotted by activating the Sensitivitiy Overview (see Figure 6.7).

This overview enables the user to assess how the sensitivity of a parameter (with respect to a
species and the current initial value of the parameter) changes over time.

Detailed Sensitivities. Activating Detailed Sensitivities, the user is prompted to define time-
points for which to compute sensitivities. This is done within the Time Chooser window (see
Figure 6.8).

This window offers three ways to construct a list of timepoints:

From Data
In the top-left, there is a button to extract all timepoints from the data that is currently
loaded (see Section 6.1.3 about the Data Browser).

By Interval
In the top-right, the user can specify a timespan and a number of intervals (or an interval
size) to compute any number of timepoints.

By Hand
All timepoints appear in a large text area at the bottom. The user can just accept the
timepoints, determined by one of the previous steps, or he can manually enter arbitrary
timepoints. BioPARKIN will only take those timepoints into account that lie strictly inside
the simulation time interval defined in the Settings tab. If the user provides incompati-
ble input (e.g. letters), the GUI prompts to rectify the timepoint list before BioPARKIN
proceeds.

Detailed sensitivity information will be provided for all timepoints specified within the Timepoint
Chooser. Having completed all requested computations, two tabs per timepoint are shown within
the Results Window:
Sensitivities

This is the “raw” Jacobian matrix for all parameter/species pairs at a given timepoint. A
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Figure 6.8: The Timepoint Chooser is shown before detailed sensitivities are computed. Sensitivity
information will be shown for all specified timepoints.

threshold-based coloring is applied to all the cells by default. The threshold can be adjusted
within the Settings & Actions tab of the result window (see Figure 6.9).

Subconditions

For each given timepoint, the subconditions of all selected parameters are computed (see
Section 3.2.2). The subcondition numbers are shown in a simple table with two columns
per parameter. The right column shows the absolute subcondition value. The largest valid
value is used as a basis to normalize the values as shown in the left column (see Figure 6.10).
Subconditions are an indicator for the sensitivity of a given parameter at a given timepoint
(with regard to the parameters current value). The lower the subcondition, the higher the
sensitivity. Subcondition cells can be coloured based on a user-defined Anticipated Relative
Measurement Error. By default, this value is set to the RTOL value defined in the Settings
tab. By increasing the value (e.g. from 1E-07 to 1E-03) the user can get an impression (watch-
ing the colors in the absolute subcondition column change) of the theoretical identifiability
of the parameters if the measurements have this relative measurement error.

Identifying Parameters. The first step for identifying parameters is to set sensible initial
values for all parameters. The best way to do this is within the Parameter Sets tab. Here, the user
can create and handle multiple sets of parameter values. Because these sets are not overwritten
after performing the parameter identification, they are a good starting point to test different
combinations of parameter values and the resulting fit (see Section 7.3 for an example).

Inside the Fit tab, the user can select the parameters whose values should be identified. A click
on Identify Parameters starts the computation. The results of this estimation run are presented
within a a tab in the Results window. More importantly, they are automatically put into their
own set in the Parameter Sets tab. Hence, the user can immediately reuse the estimated values,
e.g. to create a simulation plot.
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Figure 6.9: Detailed view of the Jacobian matrix at timepoint 100 with a threshold of 0.06 to
emphasise differences (e.g. between species Y and the rest) in sensitivity. There is one row per
parameter and one column per species.
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Figure 6.10: Subconditions of selected parameters at timepoint 100. Note that this example model
has only 5 species, so it is not possible to compute subconditions for more than 5 parameters
(see Section 3.2). The Anticipated Relative Measurement Error is set to 1E-01, leading to three
“green” subconditions at the right. So, in theory, three parameters remain identifiable even if the
measurements have a high relative error of 1071.
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All the relevant options for configurating the identification backend can be found in the Settings
tab. The user can choose between the two Gauss-Newton implementations of the PARKINcpp
library (NLSCON & PARKIN) at the top of this tab, and configure options at the bottom.

6.3 Implementation
6.3.1 Underlying Framework

The next two sections briefly sum up the software foundation of BioPARKIN. For details, refer to
the developer documentation®.

Python. Python” is an interpreted programming language. It can be used as a scripting language
but is equally suited for full-fledged software programs. It supports a variety of programming
paradigms, including object-oriented, functional, and imperative approaches.

The language is dynamically-typed, i.e. variables do not have a type at development time. The
type of objects is only known at runtime. This often helps in rapid-prototyping, and allows for
some constructs that are invalid in statically-typed languages.

Qt Framework. Development of the Qt® framework—spoken “cute’—started in 1991. Trolltech,
Qt’s original developer, was acquired by Nokia in 2008.

Currently, Qt is available with different licenses, enabling the use in open-source as well as in
commercial projects.

Qt is a vast and stable framework to assist the programming of graphical desktop applications.
Parts of the framwork—e.g. threading, event processing, database access—can also be useful in
projects that do not have a graphical frontend.

Qt provides a library containing a large number of “widgets” (such as windows, dialog boxes, lists,
and tables) as well as other tools that all help work with the library—e.g. the QDesigner which
itself is a graphical application to put together window layouts that can be utilised in hand-written
source code.

PySide Language Bindings. The Qt library is written in pure C++. In order to be able to
use it from within Python, so-called language bindings need to be used. Qt’s popularity led to
the development of bindings for almost all modern programming languages with Python being no
exception.

Up to 2010, the only available Python binding for Qt was the PyQt library. BioPARKIN was built
atop PyQt at first but has since been moved ontop the newer PySide binding library.’

The most obvious advantage of PySide is its use of the liberal LGPL—the GNU Lesser General
Public License.'® This license allows for the use of software built atop PySide in both free/open-
source and commercial/closed-source use cases. PyQt, on the other hand, is based on the more
restrictive GPL!! (without the preceding “Lesser”) which does not permit deployment in commercial
closed-source software.

6.3.2 Design Patterns

This section illustrates a number of software design principles and patterns that have been used
in BioPARKIN. See Section 6.3.4 for information about the actual implementation of some of
BioPARKIN’s features, or look up the developer documentation for more details.

6The developer documentation will be available at http://www.zib.de/en/numerik/csb/software/bioparkin.html
"http:/ /www.python.org
8http://qt.nokia.com/
Yhttp://www.pyside.org
O0http:/ /www.gnu.org/licenses/lgpl.html
Whttp:/ /www.gnu.org/licenses /gpl.html
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Model-View-Controller Paradigm. The Model-View-Controller (MVC) paradigm (often re-
ferred to as an architectural pattern) is mostly drawn upon when designing software that has a
graphical user interface (GUI). The idea of MVC and all its variants is to decouple the visual rep-
resentation of the software—the GUI—from the computational logic—often called business logic.
MVC is a very general paradigm—and a de-facto standard in GUI programming—and often inter-
preted in slightly different ways. The following interpretation is the one we use in the context of
BioPARKIN.

Model
Comprises all the data that is encapsulated by the program—in case of BioPARKIN this
includes the actual SBML model as well as all the current settings, the loaded experimental
data and so on. The Model is connected to the actual data source—e.g. files, databases—and
can also contain business logic, most often very data-centric methods.

View
Represents the user interface. It can contain some logic for (simple) input validation but no
complex business logic.

Controller
Represents the gateway between View and Model and can contain (parts of) the business
logic.

Simple approaches to build a software with a GUI often intermingle interface and logic code
within the same code structures—e.g. files and/or classes. Most of the time, this tight coupling
is unfortunate because changes in the business logic obviously entail changes in the GUI parts of
the code. It also makes it difficult for teams of developers and designers to work together on such
parts of the program.

Realising the MVC approach, decoupling of code leads to better collaboration possibilities, code
with clearer structure that is easier to modify and understand, and often to less error-prone software
(in part because decoupling facilitates automated testing of individual software parts).

MVC and Qt. BioPARKIN’s GUI is based on Qt which provides an excellent tool—Qt Designer—
to build user interfaces. By using Qt Designer, BioPARKIN’s Ul is defined in its own set of .ui
files. For use within Python, these .ui files are converted to actual Python code. This Python code
is never changed by hand but has to be recreated if the corresponding .ui file is changed.

In BioPARKIN these Python classes are used by inheriting from them. Another equally valid
approach would be to instantiate each Python UI class on its own and use the UI objects from
within the hand-written business logic code.

Either way, the distinction between .ui files containing the UI definition and hand-written Python
files implement the V and C in MVC.

The separation of the Model is realised by having individual classes to encapsulate all of the
data-related parts of BioPARKIN.

Events. Whenever different parts of a software system need to talk to each other, events are
commonly used—resulting in the so-called event-based asynchronous pattern if used in conjunction
with multi-threading (see next section). This is especially true for software that has a graphical
user interface (GUI). Parts of the GUI often reflect the current state of the program. Whenever
the state changes, the GUI should reflect this. Using events for this behaviour is more elegant and
less error-prone than hardwiring the state-changing object to the GUI.

In Qt, the event system is implemented using Signals and Slots. Classes can define Signals which
can be subscribed to from other classes (although, signaling within the same class is possible and
often makes sense, t0o). The subscribing class defines a Slot method which is called whenever the
associated Signal is emitted.

One of the most useful aspects about Qt’s event system is that it safely works across threads. A
Signal-emitting object can live within another thread than the subscriber (whose Slot should be
executed). This feature is absolutely essential when working with GUI-based software where GUI
and worker threads should almost always be kept separate (see Section 6.3.2 on multi-threading).
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Signals and Slots are used throughout BioPARKIN. The MVC architecture (see Section 6.3.2),
for example, is based on events in large parts: model classes emit Signals so that all subscribed
Views (such as table views) know when to update themselves (thereby implementing the so-called
observer pattern).

Multi-Threading. In current operating systems, each individual software is commonly executed
within its own process. Each process in turn, can consist of one or more threads. Threads are
handled by the operating system and can run (virtually) concurrently on the CPU.

GUI-based software almost always uses at least two threads. One for the GUI and another where
the “heavy lifting” is done. The idea behind this separation is to keep the UI responsive (e.g.
correctly displaying the current state of the program) even when the software is doing something
computationally expensive.

Qt provides a QThread class which works in conjunction with Qt’s Signals and Slots event system
(see Section 6.3.2). BioPARKIN extends QThread and provides an intermediate “abstract” class!?
to readily report progress from within inheriting classes. These inheriting classes can either report
progress while they do their computations or they can just give the information that they started
and stopped. In the first case, the GUI will display a progress bar. In the latter case, a so-called
“throbber” animation will inform the user that a computation is happening. Progress information
is passed to the Ul using Signals and Slots.

Within BioPARKIN most (but not yet all) classes that do non-Ul-related work are based upon this
progress-enabled threading system. Most importantly, all computations delegated to PARKINcpp
are wrapped this way.!?

Services. Services—sometimes also called Service Providers—are classes that provide well-defined
functionality to different parts (i.e. other classes) of a program that is managed centrally (i.e. by
only one object in memory).

In BioPARKIN, a number of services exist—e.g. for accessing program-wide options, for accessing
the main window’s status bar and for displaying messages in the warnings window. The most widely
used service is needed to access data (both simulated and experimental). By this construction,
different parts of the program can seamlessly work together on data. For example, the Data
Browser can load experimental data into memory while another class can feed these data into
PARKINcpp to identify parameters.

Services should be available (programatically) from anywhere in the codebase. In order to do so
without passing the same references to every object, BloPARKIN uses a singleton approach (see
Listing 9). A singleton is a class that returns the same instance whenever it is instantiated. This
means only one copy of this class can exist in memory at the same time. A singleton service object
that is created once (e.g. in the main bioparkin.py file, the entry point of BioPARKIN) can easily
be accessed by other parts of the code that are invoked later. Whenever a service is about to be
used, it is just instantiated as a new object. The programmer does not have to consider or know
whether an instance of the service already exists or not.!?

121n this case “abstract” means a class that should not be instantiated directly. Python has no support for “real”
abstract classes.

13 Currently, PARKINcpp does not report incremental progress information to BioPARKIN, so there is no way to
display a progress bar when computing sensitivities, etc. The throbber animation is displayed instead.

14This is often combined with Service Locators to completely separate service provider classes from consumer
classes, because neither one has references to the other. This more elaborate approach is not used within
BioPARKIN. In BioPARKIN, the consumers have direct “knowledge” of the providers.

150ther languages (like the strongly typed C#) have a type of class that is static. These classes can be accessed
without being instantiated and are often used to define services. Python has no concept of static classes, thus the
singleton pattern is used here.
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Python

class DataService (QObject):
"nr-A data manager for accessing experimental
data and simulation data results.
The service can read data files and provide
the data in a convenient data structure.
The _ _new _ method is overridden to make
this class a singleton. FEvery time it
is instantiated somewhere in code,
the same instance will be returned.

In this way, it can serve like a static class.
mnimnn

__instance = None

# making this a Singleton , always returns the same instance
def new (cls, xargs, sxkwargs):
if not cls. instance:
cls. instance = super(DataService, cls). mnew (cls, xargs, xx
kwargs)
return cls. instance

def _ init  (self):
# only create on first init
if not hasattr(self, "data"):
super (DataService, self). _init ()
self.data = None

Listing 9: Part of the DataService class to illustrate overriding the __new__() method to create a
singleton.

6.3.3 Project Structure

The following is a brief overview of the file and folder structure of BioPARKIN. For more details
refer to the developer manual [3].

Python Modules and Packages. In Python terminology, every standard .py file is a module
(which contains one or more classes).

Python packages contain modules that are self-sufficient and provide a certain functionality. Such
packages can be imported by other code parts and act like a library. Done right, this can make
code reusable within a project as well as across projects.

A Python package is just a folder with any number of Python files/modules (providing the func-
tionality of the package) and a special __init__.py file in it. This file is most often empty (it
is empty in all of BioPARKIN’s packages) but can define some additional importing behaviour if
necessary.

Files and Folders. The following list outlines the most important packages within BioPARKIN’s
code base and may serve as a rough impression of where to search for code providing a specific
feature.

Root folder
Most importantly, BioPARKIN’s root folder contains the BioPARKIN.py file that is used
to start the program. Within this file, the main window and important Signal and Slot
connections are initialised.
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backend
Provides base classes that can be used to build a BioPARKIN-compatible computation back-
end. Details are provided in Section 6.3.4.

backend_parkincpp
Inheriting from the backend package, the actual connection with the PARKINcpp library is
realised here. Details are provided in Section 6.3.4.

basics
Contains the threading base class and other sub-packages.

helpers
A small collection of helper classes to deal with enumerations, files and some SBML-
related exception cases are defined here.

logging
Logging is integrated throghout all parts of BioPARKIN’s code base. The necessary

logging adapters for Python’s own logging system are located here. For more details,
see Section 6.3.4.

widgets
Shared code for custom Qt widgets is placed here.

contrib
A place for 3rd-party code snippets (but not packages currently) that are used in BioPARKIN.

datamanagement
The backbone of BioPARKIN’s data handling, the DataSet class and the EntityData class,
are defined here. More details are provided in Section 6.3.4.

images
This is not a Python package. Instead, this folder contains icons and images for use in
BioPARKIN.

odehandling
Generation and management of ODE systems (from a SBML reaction network) is provided
by this package. For details, see Section 6.3.4.

parkincpp

This package contains the compiled PARKINcpp library (_parkin.pyd on Windows, _parkin.

on Linux) and the necessary SWIG-generated parkin.py file to access this library (see Section
5.2).

sbml_model
Loads an SBML model file and wraps every SBML entity into helper objects. Parameter
Sets are also handled here.

sbml_views
Views used in BioPARKIN’s main window are located here (model view, entity tree view,
entity detail view). The SBML warning window can also be found in this package.

services
Holds the services of BioPARKIN, most notably, the data service (see Section 6.3.2 and
Section 6.3.4).

simulationworkbench
This is a large and important package that defines the UI of the Simulation Workbench
(shown within the Workbench tab of the main window) as well as all the functionality to
gather settings, SBML entities, parameter sets, and experimental data, in order to pass these
to the computation backend (e.g. PARKINcpp).
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widgets
The Results window and all custom widgets that are used within the Results window
are found within this sub package—e.g. plot widget, table widget. The Data Browser
widget and the Timepoint Chooser window can also be found here.

6.3.4 Implementation Details

This section illustrates some of the decisions that were made in the process of designing the code
architecture of BioPARKIN.

Logging. Python provides a mature logging functionality that is leveraged in BioPARKIN.
Logging libraries usually offer different logging levels to provide graduated levels of detail for
different logging targets. For example, the console may show only the “info” and “error” logging
levels while a log file may also contain log entries of “warning” and “debug” levels.

The logging targets (such as console and files) provided by Python’s logging module can be extended
by inheriting from its logging.handler class.

BioPARKIN defines two such logging handlers:

QtLoggingHandler
This handler can connect to a compatible Qt widget to display logging information within that
widget. BioPARKIN provides the QtLoggingView widget which uses a plain text edit field to
show logging information. Currently, neither the QtLoggingHandler nor the QtLoggingView
are in use within BioPARKIN’s UL (The implications on usability were greater than had been
anticipacted. Users were constantly irritated by the prominently placed stream of status
information.)

StatusBarLoggingHandler
Furnished with a QStatusBar, this handler accepts log messages that are shown on the status
bar. Note that the logging level for this handler should be set appropriately, e.g. to “info”, so
that not all possible logging output is shown on the status bar.

BioPARKIN logs to three different targets:

1. The console window. By keeping an eye on this window, the user gets additional information
about what is happening within BioPARKIN.

2. So-called rotating log files. This means there is not a single log file, but six of them. The main
log file is named bioparkin_log.txt. The additional files are named bioparkin_log.txt.1
to bioparkin_log.txt.5, and serve as a backup of older log entries. The newest entries are
always found in the main .txt file.

3. The status bar which only shows log entries of the “info” level.

Defining logging statements (with appropriate levels) throughout BioPARKIN’s code in this man-
ner is an efficient way to keep the user properly informed—Ilet it be in detail via the log files and
console, or let it be the more usual status information found on the status bar.

Note that BioPARKIN has a command line switch “--debug” to enable debugging output on the
console and within the log files. Starting BioPARKIN without this switch, debugging entries will
not show up at all.

Data Handling. All data processed by BioPARKIN—whether it is experimental data loaded
from a file, or simulated data from a computation—is handled by the DataService object (for
information about services, see Section 6.3.2).

The idea behind this service is to have one single point of access for all data-related queries. Data in
BioPARKIN is stored in a two-tiered class structure with DataSet and nested EntityData objects.

DataSet
The DataSet is meant to logically combine all data that can be associated with one set of
data. For example, data from one file will be hold by one data set. Also, the results from
one computation run will be put into one data set. Data sets have different types:
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SIMULATION For all simulated timeline data.

EXPERIMENTAL For experimental timeline data.
SENSITIVITY_DETAILS_SUBCONDITION For sensitivity results with subcondition data.
SENSITIVITY_DETAILS_JACOBIAN For sensitivity results with Jacobian matrices data.
SENSITIVITY_OVERVIEW For sensitivity overview result data.

ESTIMATED_PARAMS For estimated parameter values.

DataServices

The DataService object delivers the correct data according to these type if they are requested
by other parts of the program. For each data type there exists a corresponding getter method,
e.g. get_simulation_data(), or get_estimated_param_data().

The actual data in a data set are held by EntityData objects which, in turn, are stored as an
OrderedDict. The key for each EntityData within this dictionary is the associated SBML
entity whenever possible. Sometimes, however, there is no SBML entity to associate data
with. In such instances, the keys can be strings. The helpers.sbmlhelpers package has a
method that tries to find an SBML entity within a given model based on the entity’s ID.

EntityData
An EntityData object holds all data of one entity with regard to an experiment or compu-
tation. This entity can be an SBML entity (and almost always is) but does not have to be.
Each EntityData instance holds a list of DataDescriptor and of DataPoint entries. The
actual meaning of these lists depends on what the EntityData represents.
When dealing with timeline data (both experimental and simulated), each EntityData ob-
ject represents one Species and its associated data. In this case, the DataDescriptor list is
a list of timepoints (i.e. each entry in the DataPoint list “describes” one timepoint).
If data are not timepoint-based, the use of the very general “descriptor” term becomes clear.
For example, in the case of Jacobian matrix sensitivity data, there is one DataSet per ma-
trix. Within each DataSet there is one EntityData object per parameter. Thus, we look at
sensitivities from a parameter-based point of view (the same is true for sensitivity overview
and subcondition data). Now, the DataDescriptor list holds the IDs of Species. So, each
entry in the DataPoint list corresponds to the sensitivity value of one species (with respect
to the parameter the current EntityData is representing). Values and species are matched
by list indices.

ODE Generation and Handling. In most cases SBML models do not define ODEs (Ordinary
Differential Equations) directly.'® Connections between the entities in the model are defined by
reactions and kinetic laws (given by mathematic formulas). Each species may be a reactant or
product in any number of reactions. Those reactions’ kinetic laws need to be reformulated to one
ODE per species.

Basically, this is done by going through all reactions that a species participates in and either add
or substract its kinetic law from the ODE term. This is facilitated by the 0DEGenerator class in
the odehandling package. This ODE generation also performs some very basic simplification of
the resulting right sides of the ODEs. The stoichiometry values of a reaction are also taken into
account if any are given.

Handling Assignment Rules. SBML assignment rules can define arbitrary right sides that
can be assigned to different types of targets, most importantly to SBML species and parameters.
Those assignments need to be evaluated by the integrator at every timepoint.

In order for PARKINcpp to handle those assignment rules, BioPARKIN currently replaces the
targets (mainly parameters) within the ODEs where they appear. Ie. targets are effectively re-
placed if they are defined by an assignment rule. That way, PARKINcpp does not need any special
functionality to handle such rules. On the downside, assignment rules are no entity on their own
within PARKINcpp and can not be displayed in the results (neither within a data table nor within
a plot).

16SBML models can define ODEs by Rate Rules. These rules usually define some aspects of the model, but never
comprises the whole model as such.
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Backend. The computation backend is structured into two important parts:

BaseBackend
The base backend class (in the backend package) is a very small “abstract” class that needs
to be inherited and implemented by each and every backend that should be usable by
BioPARKIN. Currently, there is only the PARKINcpp-based implementation. A FORTRAN-
based implementation (generating and compiling FORTRAN code on-the-fly) did exist pre-
viously but was removed once PARKINcpp reached mature functionality and stability.

BaseAstConverterTemplate
The idea of the AST'” converter class is to provide the ability to convert SBML ASTNodes into
any mathematical representation that is needed by the actual backend. This base class (also
found in the backend package) provides one “abstract” method for each mathematical symbol
that will be interpreted by BioPARKIN, e.g. the methods handlePlus(), handleMinus(),
handlePower ().

Embedding PARKINcpp. PARKINcpp offers a Python-compatible interface using the SWIG
wrapper library (see Section 5.2). As such, for all wrapped C++ classes there exist Python
counterparts which can be used as normal Python classes.

The following list briefly describes the most important classes that are needed to be instantiated
(from within Python) to use the PARKINcpp library. More details are given in the developer
documentation.

BioSystem
The BioSystem class is the main place to describe the model. It has lists or dictionaries of
species, parameters, ODEs, events, etc. ODEs are given by using PARKINcpp’s Expression
objects. These objects are created by the actual PARKINcpp-specific implementation of the
BaseAstConverterTemplate class mentioned above.

BioProcessor

Setting up a computation is done via the BioProcessor class. On instantiation, this class
gets a reference to a BioSystem object so that it is able to access the model at hand.
In addition, it includes all settings (a part of which can be changed in the GUI) and
is given computation-relevant information such as experimental data and species/param-
eter thresholds. Once the object is set up, conveniently exposed methods for all differ-
ent computation types can be called from within Python—i.e. bioProc.computeModel(),
bioProc.computeSensitivityTrajectories() and so on, see Section 5.1).

The APT of both BioSystem and BioProcessor (as well as of other PARKINcpp classes exposed
to Python) is kept open to continuous improvement to reflect real-world usage and, thereby, to
make it easier to integrate PARKINcpp in other projects. Currently, PARKINcpp is only used by
BioPARKIN, but it is a mature library on its own and can readily be integrated in other projects.

7 Numerical Experiments

This section illustrates the use of BioPARKIN and PARKINcpp with actual models. First, two
models developed by the Computational Systems Biology group at Zuse Institute Berlin are pre-
sented. The third model was obtained from the BioModels database'®, a website with curated
SBML models [16].

17AST is an abbreviation for Abstract Syntax Tree. Such a tree represents an expression with a certain syntax
by its node and edge structure. Thus, in principle, it could hold a mathematical formula as well as an expression of
a programming language. For example, the term a + b results in one “+” AST node with two “a” and “b” children
nodes.

18http://www.ebi.ac.uk/biomodels-main/
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\ GynCycle \ BovCycle \ BioModel 008 ‘

# Species 73 41 5

# Parameters 133 60 5

# Reactions 66 28 13
BioPARKIN Simulation 4.2 1.5s 0.74s
BioPARKIN Sensitivity Overview | 3min 55s 31s 1.17s
BioPARKIN Sensitivity Details 3min 05s 29s 0.99s

COPASI Simulation ~ 3.4s ~ 0.5s < 0.25s

COPASI Sensitivities ~ 3min 30s ~ 7.5s <1s

Table 2: Comparing computation times for models of different sizes. Integration interval was Os
to 100s in all cases. Sensitivities were computed for all parameters. For BioPARKIN’s Sensitivity
Details, three timepoints (10s, 20s, 30s) are selected. All other setting used BioPARKIN default
values, e.g. RTOL = 10~7. Times include preparing the ODE system and plotting the results.
COPASI run times have been measured by hand.

7.1 GynCycle
7.1.1 Description of the Model

The GynCycle model—developed in parts by the Computational Systems Biology group at Zuse
Institute Berlin—presents a differential equation model for the feedback mechanisms between a
number of hormones during the female menstrual cycle. In contrast to other models, this model
does not involve delay differential equations. The resulting mathematical model describes several
hormone profiles throughout the menstrual cycle, and is able to correctly predict changes following
administration of single and multiple doses of two different drugs. The model contains 42 species
and 114 parameters resulting in an ODE system with 40 equations [23].

7.1.2 BioPARKIN and the Model

The GynCycle model is fairly large. For the runtime measurements, a slight different model is used
that includes a coupled PK/PD model describing a variant of the drug administration. It amounts
to 73 species, 133 parameters, 66 reactions, and 2 assignment rules. A single forward simulation
takes 4.2 seconds on an Intel Core 2 Quad CPU at 2.8 GHz with regard to single core usage.'’
On the same machine, computing the Sensitivity Overview for all parameter/species pairs takes 3
minutes and 55 seconds. Detailed sensitivities for three timepoints are calculated in 3 minutes and
5 seconds (see Table 2 for comparisons). 2°

Here, BioPARKIN served as a tool to explore the model and its parameter space. Together with
its predecessor POEM (an unreleased, in-house tool based on the same numerical principles, see
Section 1.2), it was able to develop and to fine-tune a highly descriptive and predictive model for
a complex human pathway that has direct relevance to real-world applications [23].

7.2 BovCycle
7.2.1 Description of the Model

Bovine fertility is subject of extensive research in animal sciences, especially because fertility of
dairy cows has declined during the last decades. The regulation of estrus is controlled by the
complex interplay of various organs and hormones. The Computational Systems Biology group
at Zuse Institute Berlin developed a mechanistic mathematical model of the bovine estrous cycle
that includes the processes of follicle and corpus luteum development and the key hormones that
interact to control these processes. Exploiting this model it is possible to obtain a set of equations
and parameters that describes the system consistent with empirical knowledge [2, 24].

9 Generating the ODE system accounts for 2.9 of the 4.2 seconds. This is currently done for every computation.
A future version of BioPARKIN might improve this and compute the ODE system only after the model has changed
significantly.

20 A1l computations are done using the standard settings of BioPARKIN (e.g. RTOL = 10~7, ATOL = 10~9).
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7.2.2 BioPARKIN and the Model

The BovCycle model is smaller than the GynCycle model with 41 species, 60 parameters, and
28 reactions. A single forward simulation takes 1.5 seconds on an Intel Core 2 Quad CPU (at
2.8 GHz) where, again, only a single core is used. Computing the Sensitivity Overview for all
parameter /species pairs takes 31 seconds. Detailed sensitivities for three timepoints are calculated
in 29 seconds (see Table 2 for comparisons).

In this use case, BioPARKIN enabled the researchers to successively improve the model with each
design iteration. Procedures such as parameter estimation and sensitivity analysis proved to be
absolutely essential in this context as they guide design decisions by giving insight into hidden
dependencies of the model.

7.3 BIOMDO008 (Annotated SBML Database)

The model with ID 008 is one of the oldest entries in the BioModels database, and models cell
cycle control using a reversibly binding inhibitor [11].

This model is selected here for demonstration purposes because it is small as it comprises only 5
Species, 5 Parameters, 13 Reactions, and 2 Assignment Rules. The smaller a model is, the easier it
is to understand why changes in one part of the model (e.g. parameter values) affect computation
results.

Albeit being small, nevertheless, the model is of the cell cycle type and, in principle, exhibits a
stable limit cyclic which is interesting by itself to look at sensitivity values, etc.

No experimental data have been available for this model. In order to test BloPARKIN’s parameter
identification, the results of a simulation run are perturbed and used as input.2!

Last, but not least, a noteworthy, instructive conclusion will be drawn from this model at the end
of this section.

7.3.1 Parameter Identification

Key questions of pratical relevance in parameter identification tasks are almost always how much
data is sufficient and, even more importantly, how much data is necessary to successfully identify
the unknown parameters. In this theoretical scenario, obviously, all possible data of each of the
five species are available.

A specific parameter (V3p) is changed (from 0.3 to 1.0), and the goal is to reconstruct the original
parameter value. In a sequence of identification runs, each species is selected to be the only species
for which data is available.

For three of the five species (M, Y, and Z), the original value of V3p is reconstructed without any
difficulties. The parameter identification, however, is not successful at all if one of the other two
species (C and X) is selected as data source. Rerun of the identification a 2"%and 3'¢ time improves
the parameter value but does not correctly identify it, either. Figure 7.1 shows a screenshot of the
Parameter Sets tab after these computations.

7.3.2 Sensitivities

For the purpose of this section, only sensitivities with respect to parameter V3p are examined. In
the previous section, this parameter is used to test the parameter identification.

The Sensitivity Overview for Biomodel 008 computed by BioPARKIN results in a plot of the
sensitivity values of all parameter /species pairs over time. This plot can be filtered to show only
the sensitivity trajectories with respect to parameter V3p (see Figure 7.2).

Parameter V3p displays a cyclic sensitivity across all species. It seems that a change in V3p
influences the least the time course of species Y and Z while it has more influence on species C,
M, and X (see Section 2.5 for details about the stability of the solution).

21This is possible if BioPARKIN is started with the command line parameter “--debug”. In this case, the Settings
& Action tab of a Simulation Result table offers the option “Save as Pseudo-Experimental Data”. Additionally, the
Data Browser displays one more option to perturb data in the Actions tab.
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Figure 7.1: A screenshot of BioPARKIN showing the Parameter Sets tab after nine parameter

identification runs.

The red box was drawn onto the screenshot to highlight the parameter in

question (V3p). The two leftmost columns show the original value (0.3) and the value that is used

as input for the computations (1.0), respectively. Columns 3 to 11 show the result of the individual

species. The species for which data have been available is given in the Name row.
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Figure 7.2: Sensitivity Overview of the BioModel 008 for the parameter V3p. Normalised sensitivity
trajectories are plotted against the simulated time interval.
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7.3.3 A Noteworthy Caveat

Observing the sensitivity trajectories in Figure 7.2, a researcher might anticipate that having
experimental data for species Y and Z only will be least preferable to identify parameter values.
The actual parameter estimation tests, however, contradict this assumption. If data of the two
species with the lowest apparent sensitivity are provided, the V3p parameter value can be deter-
mined without a problem. On the other hand, providing data of apparently sensitive species does
not necessarily guarantee parameter identifiability (see species C and X).

Key point, here, is that the sensitivity analysis is not always suitable to anticipate which parameters
are more likely to be identified than others. In fact, sensitivities highly depend on the actual
parameter set and therefore, they are only meaningful at the end of an successful identification
run. Thus, it really should always be kept in mind that the sensitivity results are merely meant
as an explorative a prior: tool that might aid the researcher to get a better understanding of the
model.

8 Outlook

A complex software such as BioPARKIN is really never complete. Some changes can lead to
improved usability and/or efficiency. Other changes expand the functionality of the software and
make it possible to tackle problems (or aspects of problems) that previously could not be handled
by the software.

This section summarises some of the most worthwhile changes to PARKINcpp and BioPARKIN in
order to make the workflow of researchers more efficient and to extend the ability to gain insights
into models and data.

8.1 Nwumerical Library

Parallelisation. Computation times could be significantly decreased by harnessing the power of
multi-core CPUs. This could be achieved, for example, by providing other matrix implementation
packages—needed for the numerical linear algebra work—which especially exploit a multi-core
computer architecture. The code base of PARKINcpp is prepared for the addition of such matrix
packages (see Section 5.3).

Runtime Optimisation. Another approach to improve computation times could be based on
speeding up the right-hand side evaluation of the ODE systems. This could be achieved by incorpo-
rating a so-called just-in-time compilation technique to avoid the costly traversal of the expression
trees.

Additional Identification and Optimisation Algorithms. In order to provide more features
in the numerical library, several other identification and optimisation algorithms could be included,
especially global ones. This would, in principle, enable researchers to assess and to classify the
identification results of the unknown biological system under investigation even more clearly.

Additional ODE Solvers. PARKINcpp currently uses LIMEX to solve possibly stiff ODE sys-
tems. Other numerical ODE solvers might be better suited to, for example, solve delay equations,
thus widening the range of models that can be studied using PARKINcpp and BioPARKIN.

8.2 Graphical User Interface

Data Browser. The Data Browser already enables the user to handle different sources (e.g.
files) of data. However, data from different sources are currently only to be combined by invoking
an external application (such as a spreadsheet software). The Data Browser can be improved by
adding a feature that allows the user to merge data from different sources in an ever increasing
sophisticated way (e.g. putting only selected information in the resulting data set and managing
name collisions).
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Improved Data Handling. As the software was used more often in actual day-to-day scenarios,
its use cases became clearer. The underlying data handling architecture (see Section 6.3.4) has
to be improved in order to better accomodate for complex usages (e.g. comparing data that is
generated based on different models).

Results Management. This is closely tied with the previous point (data handling). The man-
agement of results has to be improved so that results can be compared more easily across models.
In order to make the results reproducible, meta data will be associated with every result, contain-
ing all settings and variables that lead to this particular result. BioPARKIN should also be able
to save this data and reload it together with all the meta data intact. This not only improves
communication between researchers, but also makes it easier for one user to understand what he
exactly did some time ago.

Model Editing. BioPARKIN currently does not allow for editing the model structure in a
significant way (e.g. adding and removing entities). While changes can be made using other
SBML-compatible editors, it would be more efficient to be able to do so inside BioPARKIN. This
additional feature will also be accompanied by safeguards and helpers that will check the integrity
of a model. For example, when a parameter ID is changed, this change has to be propagated
correctly throughout the whole model, including all reactions, rules, etc.

Network View. As the development of BioPARKIN began, providing a visual representation
of the model was one of the main goals (including clever filtering techniques for handling very
large models, etc.). There exists a basic implementation of such visual network view which is
currently disabled. Future efforts can focus on the visual representation to further improve the
user’s understanding of the model’s structure and dependencies.

Handling of Multiple Models. In principle, the code base of BioPARKIN can handle multiple
models at the same time. This, however, greatly increases complexity and the potential for bugs.
A future version of BioPARKIN will re-enable this feature and make it easier to generate (and
compare) data for different models.

9 Conclusion

As a field, systems biology is getting more attention, and is gaining more practitioners around
the world every year. With the increased size of the community the importance of establishing
standards becomes more pronounced.

BioPARKIN tries to inject mathematical knowledge—attained at the Zuse Institute Berlin in the
last 30 to 40 years—into this growing community. Ideally, this knowledge enables researchers to
generate meaningful and reliable results even faster. In order to make this possible, BioPARKIN
combines a basis of long-standing mathematical principles with compliance to system biology
standards, most importantly SBML, and an accessible interface. The SBML format is one of the
most important standards in systems biology to facilitate collaboration of researchers at all levels
(physicians, biologists, mathematicians, etc.). The interface strives to wrap complicated structures
and settings (especially with regard to the numerical backend) into an user-friendly package that
can be used correctly by non-specialists (e.g. non-mathematicians).

BioPARKIN is split into two parts—the numerical library in C++ and the graphical user interface
(GUI) in Python—in order to achieve several advantages. The crucial, yet computation-intensive
numerical algorithms are embedded in an efficient C++ library while the GUI is coded in Python
which enables rapid interface changes if needed (e.g. to adapt the user interface to new insights into
user behaviour). Another important advantage is the independent availability of the PARKINcpp
library for use in other related projects.

Both parts are available under the LPGL which is a flexible open-source license allowing for the
use of the software in both open and closed (i.e. commercial) projects.

The numerical core of BioPARKIN, the PARKINcpp library, is based on well-known and long-
standing mathematical algorithms that have been actively used in chemical physics since the 1980s,
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but that have not been applied to the field of systems biology yet. The successful use of BioPARKIN
(and its in-house predecessor POEM) to model and simulate the GynCycle and BovCycle models
demonstrates that this approach is valid and promising.

Hence, a new software package has been presented that is available free of charge to the community
in order to support and to speed up the development of mathematical models by providing state-
of-the-art numerical solutions to common problems in the field of systems biology.
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