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EXACT SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL

EQUATIONS BY THE METHOD OF GROUP FOLIATION

REDUCTION

STEPHEN C. ANCO, S. ALI, AND THOMAS WOLF

Abstract. A novel symmetry method for finding exact solutions to nonlinear PDEs is
illustrated by applying it to a semilinear reaction-diffusion equation in multi-dimensions.
The method is based on group foliation reduction and employs a separation ansatz to
solve an equivalent first-order group foliation system whose independent and dependent
variables respectively consist of the invariants and differential invariants of a given one-
dimensional group of point symmetries for the reaction-diffusion equation. With this
method, solutions of the reaction-diffusion equation are obtained in an explicit form,
including group-invariant similarity solutions and travelling-wave solutions, as well as
dynamically interesting solutions that are not invariant under any of the point symme-
tries admitted by this equation.

1. Introduction

The construction of group foliations using admitted point symmetry groups for non-
linear partial differential equations (PDEs) is originally due to Lie and Vessiot and was
revived in its modern form by Ovsiannikov [1]. In general a group foliation converts a
given nonlinear PDE into an equivalent first-order PDE system, called the group-resolving
equations, whose independent and dependent variables respectively consist of the invari-
ants and differential invariants of a given one-dimensional group of point symmetry trans-
formations. Each solution of the group-resolving equations geometrically corresponds to
an explicit one-parameter family of exact solutions of the original nonlinear PDE, such
that the family is closed under the given one-dimensional symmetry group acting in the
solution space of the PDE.

Because a group foliation contains all solutions of the given nonlinear PDE, ansatzes
or differential-algebraic constraints must be used to reduce the group-resolving equations
into an overdetermined system for the purpose of obtaining explicit solutions. Compared
with classical symmetry reduction [2, 3], a main difficulty to-date has been how to find
effective, systematic ansatzes that lead to useful reductions.

An important step toward overcoming this difficulty has been taken in recent work [4, 5]
on finding exact solutions to semilinear wave equations and heat equations with power
nonlinearities. Specifically, this work demonstrates that the group-resolving equations for
such nonlinear PDEs have solutions arising from a simple separation ansatz in terms of the
group-invariant variables. Through this ansatz, many explicit solutions to the nonlinear
PDE are easily found, whose form would not be readily obvious just by trying simple
direct ansatzes using the original independent and dependent variables in the nonlinear
PDE, or by simply writing down the form for classical group-invariant solutions. In
particular, some of these solutions are not invariant under any of the point symmetries
of the nonlinear PDE and thus fall completely outside of classical symmetry reduction
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(while others coincide with explicit group-invariant solutions). Most importantly for
applications, many of the solutions also have interesting analytical properties related to
critical dynamics, blow-up behaviour, asymptotic behaviour and attractors.

We will illustrate this group-foliation reduction method by applying it to obtain explicit
exact solutions for the semilinear radial reaction-diffusion equation

ut = urr + (n − 1)r−1ur + (p − kuq)u, k = ±1, p = const. (1)

for u(t, r), with a nonlinearity power q 6= 0,−1, where r denotes the radial coordinate in
n > 1 dimensions or the half-line coordinate in n = 1 dimension. The symmetry structure
of this reaction-diffusion equation is given by [6]

time translation X1 = ∂/∂t for all n, q, p, (2)

scaling X2 = 2t∂/∂t + r∂/∂r − (2/q)u∂/∂u only for p = 0, (3)

space translation X3 = ∂/∂r only for n = 1, (4)

where X is the infinitesimal generator of a one-parameter group of point transformations
acting on (t, r, u). For constructing a group foliation, it is natural to use the time trans-
lation generator (2), since this is the only point symmetry admitted for all cases of the
parameters n ≥ 1, q 6= 0, p.

In Sec. 2, we first set up the system of group-resolving equations given by the time-
translation symmetry (2) for the reaction-diffusion equation (1), which uses the invari-
ants and differential invariants of the symmetry generator X1 as the independent and
dependent variables in the system. We next state the form required for solutions of the
group-resolving system to correspond to group-invariant solutions of the reaction-diffusion
equation (1) with respect to the point symmetries generated by X1, X2, X3.

In Sec. 3, we explain the separation ansatz for directly reducing the system of group-
resolving equations. This reduction yields an overdetermined system of differential-
algebraic equations which can be readily solved by computer algebra. We present the
explicit solutions of these equations and then we derive the resulting exact solutions of
the reaction-diffusion equation. These solutions include explicit similarity solutions in the
case p = 0, and explicit travelling wave solutions in addition to an explicit non-invariant
solution in the case n = 1.

In Sec. 4, we show how the success of the reduction ansatz can be understood equiva-
lently as constructing partially-invariant subspaces for a nonlinear operator that arises in
a natural way from the structure of the group-resolving equations. This important obser-
vation puts our method on a wider mathematical foundation within the general theory
of invariant subspaces developed by Galaktionov [7].

Finally, we make some general concluding remarks in Sec. 5.

2. Group-resolving equations and symmetries

To proceed with setting up the time-translation group foliation for the reaction-
diffusion equation (1), we first write down the invariants (in terms of t, r, u)

x = r, v = u, (5)

satisfying X1x = X1v = 0, and the differential invariants (in terms of ut, ur)

G = ut, H = ur, (6)

satisfying X
(1)
1 G = X

(1)
1 H = 0 where X

(1)
1 is the first-order prolongation of the generator

(2). Here x and v are mutually independent, while G and H are related by equality of
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mixed r, t derivatives on ut and ur, which gives

DrG = DtH (7)

where Dr, Dt denote total derivatives with respect to r, t. In addition, v,G,H are related
through the reaction-diffusion equation (1) by

G − r1−nDr(r
n−1H) = (p − kvq)v. (8)

Now we put G = G(x, v), H = H(x, v) into equations (7) and (8) and use equation (5)
combined with the chain rule to arrive at a first-order PDE system

Gx + HGv − GHv = 0, (9)

G − (n − 1)H/x − Hx − HHv = (p − kvq)v, (10)

with independent variables x, v, and dependent variables G,H. These PDEs are called
the time-translation-group resolving system for the reaction-diffusion equation (1).

The respective solution spaces of equation (1) and system (9)–(10) are related by
a group-invariant mapping that is defined through the invariants (5) and differential
invariants (6).

Lemma 1. Solutions (G(x, v), H(x, v)) of the time-translation-group resolving system
(9)–(10) are in one-to-one correspondence with one-parameter families of solutions
u(t, r, c) of the reaction-diffusion equation (1) satisfying the translation-invariance prop-
erty

u(t + ǫ, r, c) = u(t, r, c̃(ǫ, c)) (11)

where c̃(0, c) = c in terms of an arbitrary constant c and parameter ǫ, such that

ut = G(r, u), ur = H(r, u) (12)

constitutes a consistent pair of parametric first-order ODEs whose integration constant is
c.

We now examine the relationship between the symmetry structure of the reaction-
diffusion equation (1) and the symmetry structure inherited by the time-translation-group
resolving system (9)–(10).

Firstly, through the identifications defined by the variables (5)–(6), the prolongation
of any point symmetry generator X = a1X1 + a2X2 + a3X3 of equation (1) has a natural

projection to a point symmetry generator Y = a2X
(1)
2 + a3X

(1)
3 modulo X

(1)
1 of system

(9)–(10). The time-translation X1 thus gets annihilated by this projection, i.e. Y1 = 0,
while the scaling X2 and the space-translation X3 respectively project to

Y2 = x∂/∂x− (2/q)v∂/∂v − 2(1 + 1/q)G∂/∂G− (1 + 2/q)H∂/∂H when p = 0, (13)

and
Y3 = ∂/∂x when n = 1. (14)

Secondly, with respect to these inherited symmetries (13) and (14), the system (9)–(10)
has a reduction to ODEs yielding solutions where (G,H) is invariant respectively under
scalings

x → λx, v → λ−2/qv when p = 0, (15)

and under translations
x → x + ǫ when n = 1. (16)

Thus, translation-invariant solutions have the form

(G,H) = (g(v), h(v)) (17)
3



satisfying the ODE system

(h/g)′ = 0, g − hh′ = (p − kvq)v. (18)

Scaling-invariant solutions have the form

(G,H) = (x−2−2/qg(V ), x−1−2/qh(V )), V = vx2/q (19)

satisfying the ODE system

((h + 2V/q)/g)′ = −2/g, g + (2 − n + 2/q)h − (h + 2V/q)h′ = −kV q+1. (20)

Integration of the parametric ODEs (12) for such solutions (17)–(18) and (19)–(20) leads
to the following two correspondence results.

Lemma 2. In the case n = 1, there is a one-to-one correspondence between solutions
of the translation-group resolving system (9)–(10) with the invariant form (17) and one-
parameter families of travelling-wave solutions of the reaction-diffusion equation (1) given
by the group-invariant form u = f(ξ) where, modulo time-translations t → t + c, the
variable ξ = r − t/a is an invariant of the translation symmetry X = a∂/∂t + ∂/∂r =
aX1 + X3 in terms of some constant a (determined by ODE system (18)).

Lemma 3. In the case p = 0, there is a one-to-one correspondence between solutions
of the translation-group resolving system (9)–(10) with the invariant form (19) and one-
parameter families of similarity solutions of the reaction-diffusion equation (1) given by
the group-invariant form u = r−2/qf(ξ) where, modulo time-translations t → t + c,
the variable ξ = t/r2 is an invariant of the scaling symmetry X = 2t∂/∂t + r∂/∂r −
(2/q)u∂/∂u = X2.

Furthermore, in all cases, static solutions u(r) of the reaction-diffusion equation corre-
spond to solutions of the translation-group resolving system with G = 0. Hereafter we
will be interested only in solutions with G 6= 0, corresponding to dynamical solutions of
the reaction-diffusion equation.

3. Main results

To find explicit solutions of the group foliation system (9)–(10) for (G(x, v), H(x, v)),
we will make use of the same general homogeneity features utilized in Refs. [4, 5]. First,
the non-derivative terms (p − kuq)u in the reaction-diffusion equation (1) appear only
as an inhomogeneous term in equation (10). Second, in both equations (9) and (10) the
linear terms involve no derivatives with respect to v. Third, the nonlinear terms in the
homogeneous equation (9) have the skew-symmetric form HGv −GHv, while HHv is the
only nonlinear term appearing in the non-homogeneous equation (10). Based on these
features, this system can be expected to have solutions given by the separable power form

G = g1(x)v + g2(x)va, H = h1(x)v + h2(x)va, a 6= 1. (21)

For such a separation ansatz (21), the linear terms Gx, G, H/x, Hx in equations
(9) and (10) will contain the same powers v, va that appear in both G and H, and
moreover the nonlinear term HGv − GHv in the homogeneous equation (9) will produce
only the power va due to the identities va(v)v − v(va)v = (a − 1)va and v(v)v − v(v)v =
va(va)v − va(va)v = 0. Thus, equation (9) can be satisfied by having the coefficients of
v and va separately vanish. Similarly the nonlinear term HHv in the non-homogeneous
equation (10) will only yield the powers v, va, v2a−1. Since we have a 6= 1 and q 6= 0,
equation (10) can be satisfied by again having the coefficients of v and va separately
vanish and by also having the term containing v2a−1 balance the inhomogeneous term
kvq+1. In this fashion we find that equations (9) and (10) reduce to an overdetermined
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system of 5 algebraic-differential equations for g1(x), g2(x), h1(x), h2(x), together with
the relation a = 1+q/2. This system can be solved by a systematic integrability analysis.
We have carried out this analysis using the computer algebra program Crack [8], which
contains a wide repertoire of modules for reduction of differential order and polynomial
degree, splittings with respect to the independent variable(s), eliminations, substitutions,
factorizations, integrations, and length-shortening of equations, among others.

Proposition 1. For q 6= 0,−1, the separation ansatz (21) yields altogether five solutions
of the translation-group resolving system (9)–(10) with G 6= 0:

G = ±(4 − n)
(n − 2

n − 3
k
)1/2

v(n−3)/(n−2)/x,

H = ±
(n − 2

n − 3
k
)1/2

v(n−3)/(n−2) + (2 − n)v/x

p = 0, n 6= 2, 3, q = 2/(2 − n); (22)

G =
q + 4

q + 2

(

pv + (pk)1/2v1+q/2
)

,

H = ±
(( 2p

q + 2

)1/2

v +
( 2k

q + 2

)1/2

v1+q/2
)

,

n = 1, q 6= −2; (23)

G =
q + 4

q + 2

(

pv − (pk)1/2v1+q/2
)

,

H = ±
(( 2p

q + 2

)1/2

v −
( 2k

q + 2

)1/2

v1+q/2
)

,

n = 1, q 6= −2; (24)

G =
3

2

(

pv ± (pk)1/2 tanh
(

(p/2)1/2(x + c1)
)

v2
)

,

H = ±(k/2)1/2v2 + (p/2)1/2 tanh
(

(p/2)1/2(x + c1)
)

v

n = 1, q = 2, p > 0; (25)

G =
3

2

(

pv ∓ (−pk)1/2 tan
(

(−p/2)1/2(x + c1)
)

v2
)

,

H =
(

± (k/2)1/2v2 − (−p/2)1/2 tan
(

(−p/2)1/2(x + c1)
)

v
)

,

n = 1, q = 2, p < 0. (26)

Solution (22) satisfies the scaling-invariance reduction (19); solutions (23) and (24) sat-
isfy the translation-invariance reduction (17).

Remark 1. A shift of the arbitrary constant c1 → c1 ± iπ/(2p)1/2 in solution (25) and
c1 → c1 ± π/(−2p)1/2 in solution (26) respectively yields the two further solutions

G =
3

2

(

pv ± (pk)1/2 coth
(

(p/2)1/2(x + c1)
)

v2
)

,

H = ±(k/2)1/2v2 + (p/2)1/2 coth
(

(p/2)1/2(x + c1)
)

v,

n = 1, q = 2, p > 0, (27)
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and

G =
3

2

(

pv ± (−pk)1/2 cot
(

(−p/2)1/2(x + c1)
)

v2
)

,

H =
(

± (k/2)1/2v2 + (−p/2)1/2 cot
(

(−p/2)1/2(x + c1)
)

v
)

,

n = 1, q = 2, p < 0, (28)

as obtained through the trigonometric identities

tanh(θ ± iπ/2) = coth(θ), tan(θ ± π/2) = − cot(θ). (29)

The form of the separation ansatz (21) can be naturally generalized to include addi-
tional powers

G = g1(x)v +
N

∑

i=1

g1+i(x)vai , H = h1(x)v +
N

∑

i=1

h1+i(x)vai , (30)

where

ai 6= 1, ai − aj 6= 0. (31)

This multi-term ansatz (for N ≥ 2) leads to a considerably more complicated analysis
compared to the previous two-term ansatz (with N = 1). Specifically, the homoge-
neous equation (9) now contains the powers vai+aj−1 in addition to v, vai , while the non-
homogeneous equation (10) contains the further powers v2ai−1, and vq+1. To determine
the exponents in these powers, a systematic examination of the possible balances (which
rapidly increase in number with N) is necessary. We carry out this analysis by computer
algebra, again using the program Crack [8]. In particular, for any fixed N ≥ 1, Crack

can be run automatically by setting up a priority list of modules to be tried recursively
with case splittings given a high priority, in order to split equations (9) and (10) un-
der the ansatz (30)–(31) and in each case solve the resulting overdetermined system of
algebraic-differential equations for gi and hi, i = 1, 2, . . . , N . Importantly, the modules
in Crack are able to organize the case distinctions in an efficient way that lessens a
combinatorial explosion by using algebraic conditions (equalities and inequalities) arising
in the steps of solving the equations to keep track of whether a possible balance of two
powers of v generates a new case (or subcase) which has to be solved or not. Running
Crack, we find that the system (9)–(10), (30)–(31) has solutions when N = 2 but not
when N = 3. (Based on this outcome we have not tried to investigate the system when
N > 3.)

Proposition 2. For q 6= 0,−1, and N ≤ 3, the separation ansatz (30) yields two addi-
tional solutions of the translation-group resolving system (9)–(10) with G 6= 0:

G = 3(pv + (k2p)1/3 + (kp2)1/3v1/2),

H = −(2/p)1/2(pv + (k2p)1/3 + (kp2)1/3v1/2),

n = 1, q = −3/2, p > 0; (32)

G = 4(pv + (−pk)1/2v−1/3 + (−4p3k)1/4v1/3),

H = −(3/p)1/2(pv + (−pk)1/2v−1/3 + (−4p3k)1/4v1/3),

n = 1, q = −8/3, p > 0. (33)

Both solutions satisfy the translation-invariance reduction (17).
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We now obtain explicit solutions u(t, r) of the reaction-diffusion equation (1) from the
solutions (G(x, v), H(x, v)) of its translation-group resolving system (9)–(10) by integrat-
ing the corresponding pair of parametric first-order ODEs (12). This integration yields a
one-parameter solution family u(t, r, c) which is closed under the action of the group of
time-translations t → t + ǫ.

Theorem 1. The semilinear reaction-diffusion equation (1) has the following exact so-
lutions arising from the explicit solutions of its translation-group resolving system found
in Propositions 1 and 2 (and Remark 1):

u =

(

±
(

k

(n − 3)(n − 2)

)1/2 (

r

2
− (n − 4)(t + c)

r

)

)n−2

,

n 6= 2, 3, q = 2/(2 − n), p = 0; (34)

u =

(

− (k/p)1/2 + exp

(

∓q

(

p

2(q + 2)

)1/2
(

r ± (q + 4)

(

p

2(q + 2)

)1/2

(t + c)

)))

−2/q

,

n = 1, q 6= −2, p 6= 0; (35)

u =

(

(k/p)1/2 + exp

(

∓q

(

p

2(q + 2)

)1/2
(

r ± (q + 4)

(

p

2(q + 2)

)1/2

(t + c)

)))

−2/q

,

n = 1, q 6= −2, p 6= 0; (36)

u = f(r − 3(p/2)1/2(t + c)) where

ln(pf(ξ) + (kp2)1/3f(ξ)1/2 + (k2p)1/3) − (2/
√

3) arctan((2(p/k)1/3f(ξ)1/2 + 1)/
√

3)

= −(2p)1/2ξ,

n = 1, q = −3/2, p > 0; (37)

u = f(r − 4(p/3)1/2(t + c)) where

ln(pf(ξ)4/3 + (−pk)1/2 + (−4p3k)1/4f(ξ)2/3) − 2 arctan((−4p/k)1/4f(ξ)2/3 + 1)

= −4(p/3)1/2ξ,

n = 1, q = −8/3, p > 0; (38)

u =
cosh((p/2)1/2(r + c1))

(k/p)1/2 sinh((p/2)1/2(r + c1)) ± exp(−3p(t + c)/2)
,

n = 1, q = 2, p > 0; (39)

u =
sinh((p/2)1/2(r + c1))

(k/p)1/2 cosh((p/2)1/2(r + c1)) ± exp(−3p(t + c)/2)
,

n = 1, q = 2, p > 0; (40)

u =
cos((−p/2)1/2(r + c1))

(−k/p)1/2 sin((−p/2)1/2(r + c1)) ± exp(−3p(t + c)/2)
,

n = 1, q = 2, p < 0; (41)
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u =
sin((−p/2)1/2(r + c1))

(−k/p)1/2 cos((−p/2)1/2(r + c1)) ∓ exp(−3p(t + c)/2)
,

n = 1, q = 2, p < 0, (42)

where c, c1 are arbitrary constants.

Remark 2. Solutions (39) and (40) are related by shifts of the arbitrary constants c1 →
c1 ± iπ/(2p)1/2 and c → c ∓ iπ/(3p) through the trigonometric identities

sinh(θ ± iπ/2) = ±i cosh(θ), cosh(θ ± iπ/2) = ±i sinh(θ), (43)

while solutions (41) and (42) are related similarly through the trigonometric identities

sin(θ ± π/2) = ± cos(θ), cos(θ ± π/2) = ∓ sin(θ). (44)

Modulo time-translations, solution (34) is a similarity solution, since it has the form
shown in Lemma 3. This solution has been obtained in our previous work [5] using a
two-term separation ansatz to solve the group-resolving equations given by the scaling
symmetry (3) for the reaction-diffusion equation (1) in the case p = 0.

Solutions (35) to (38) are travelling-wave solutions with the form shown in Lemma 2
(where the constant a is given by the wave speed). The two solutions (35) and (36) were
first obtained in Ref. [11] through standard symmetry reduction. To the best knowledge
of the authors, the other solutions (37) and (38) are new.

In contrast, solutions (39) to (42) are non-invariant solutions, as they contain both
t and r whereas the symmetry group of the reaction-diffusion equation (1) in the case
p 6= 0 and n = 1 is generated by both time-translation and space-translation symmetries
(2) and (4). These solutions have been found previously in Ref. [9, 10] using Bluman and
Cole’s nonclassical method.

4. Invariance properties of the reduction ansatz

As we will now explain, the success of the separation ansatzes (21) and (30) for reduc-
ing the system of group-foliation equations (9) and (10) has a mathematically natural
interpretation within the theory of invariant subspaces [7].

We start by writing the group-foliation equations in an evolutionary operator form
(

G
H

)

x

= Φ

((

G
H

))

=

(

0
(kvq − p)v

)

+

(

0
G + (1 − n)H/x

)

+

(

GHv − HGv

−HHv

)

(45)

where Φ defines a nonlinear operator acting on the pair of variables (G,H). Then we
view the ansatz (21) as defining a linear space of functions with a separable power form

(

G
H

)

=

(

g1

h1

)

v +

(

g2

h2

)

va, a 6= 1 (46)

where the coefficients depend only on x. This linear space (46) is not invariant under Φ
because

Φ

((

g1

h1

)

v +

(

g2

h2

)

va

)

=

(

0
g1 + (1 − n)h1/x − h2

1 − p

)

v +

(

(a − 1)(h2g1 − h1g2)
g2 + (1 − n)h2/x − (a + 1)h1h2

)

va

+

(

0
−ah2

2

)

v2a−1 +

(

0
k

)

vq+1 (47)

produces terms that have additional powers v2a−1, vq+1.
8



However, the operator Φ will preserve a set of functions contained in the linear space
(46) if the power a and the coefficients g1, g2, h1, h2 satisfy the conditions

2a − 1 = q + 1, −ah2
2 = k. (48)

In this sense [7] the linear space will then be partially-invariant under Φ. As a conse-
quence of this invariance property, the evolution equation (45) for (G,H) reduces to an
overdetermined system of differential-algebraic equations which we can solve for g1, g2, h1,
as discussed in Sec. 2.

The separable power ansatz (21) thus can be viewed as explicitly constructing a
partially-invariant linear subspace for the group-foliation operator Φ. A similar discussion
applies to the multi-term ansatz (30).

It is worth pointing out that apart from the mathematical interpretation given to
the ansatzes (21) and (30), the theory of (partially) invariant linear subspaces does not
provide any general constructive method or algorithm for finding a successful ansatz.
So the main aspect of the present work is to demonstrate the effectiveness of a general
separation ansatz for solving group-foliation equations. We also emphasize that this
approach is much more effective than if an analogous separation method were to be
applied either directly for solving the given reaction-diffusion PDE or instead for seeking
a (partially) invariant linear subspace for that PDE itself.

5. Concluding remarks

In general the method of group foliation reduction using a separation ansatz as illus-
trated in this paper is able to yield exact solutions to nonlinear 2nd order PDEs with
power nonlinearities.

This method works with any admitted group of point (or contact) symmetries and gives
a systematic reduction of the group foliation equations into an overdetermined system
consisting of algebraic equations and 1st order differential equations that can be derived
and in most cases solved by means of computer algebra (e.g. using the program Crack

[8]). In particular, for a given nonlinear 2nd order PDE having two independent vari-
ables, solutions are produced in an explicit form, whereas standard symmetry reduction
only gives a 2nd order ODE that still has to be solved to find group-invariant solutions
explicitly and in general this step can be quite difficult.

Moreover, because the group foliation equations contain all solutions of the given non-
linear PDE, the method can yield solutions that are not invariant under any of the point
(or contact) symmetries admitted by the nonlinear PDE.

It is straightforward to extend this method to higher-order PDEs with power nonlin-
earities. As well, it should be possible to apply the same method to PDEs having more
general forms of nonlinearities by utilizing a general separation of variables ansatz with
respect to all of the independent variables in the group foliation equations. In general,
the success of such an ansatz can be interpreted mathematically [7] as constructing a
(partially) invariant linear subspace for a nonlinear operator coming from the structure
of the group foliation equations.

Related work using a similar group-foliation method applied to nonlinear diffusion
equations appears in Ref. [12]. Group foliation equations were first used successfully
in Refs. [13, 14, 15] for obtaining exact solutions to nonlinear PDEs by a different
method that is applicable when the group of point symmetries of a given PDE is infinite-
dimensional, compared to the example of a finite-dimensional symmetry group considered
both in Ref. [4, 5] and in the present work.
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