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Abstract

This paper introduces the SCIP Optimization Suite and discusses the ca-
pabilities of its three components: the modeling language ZIMPL, the linear
programming solver SOPLEX, and the constraint integer programming frame-
work SCIP. We explain how these can be used in concert to model and solve
challenging mixed integer linear and nonlinear optimization problems. SCIP
is currently one of the fastest non-commercial MIP and MINLP solvers. We
demonstrate the usage of ZiMPL, SCIP, and SOPLEX by selected examples, give
an overview of available interfaces, and outline plans for future development.

*A Japanese translation of this paper will be published in the Proceedings of the 24th RAMP
Symposium held at Tohoku University, Miyagi, Japan, 27-28 September 2012, see http://orsj.or.
jp/ramp/2012. Available as ZIB-Report 24, http://opus4.kobv.de/opus4-zib/frontdoor/index/
index/docId/1559.
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1 Introduction

Linear programming (LP) and mized integer linear programming (MIP) are among
the most essential techniques in operations research to model and solve optimization
problems in practice. Since Dantzig’s initial formulation of the simplex method for
linear programs [12], Gomory’s first complete cutting plane algorithm for general
integer programs [17], and its combination with the branch-and-bound paradigm [24],
continuing theoretical and computational advances have resulted in powerful solution
algorithms for this class of optimization problems [21, 25].

In addition to the theoretical interest in integer programming, formulating a prob-
lem as a mixed integer linear program has many advantages for practitioners:

e Many real-world restrictions and optimization goals can be expressed, or at
least approximated, using linear functions and integer variables. These are
easily comprehensible without special experience in formulating MIPs.

e There exist a number of modern solver packages that can handle MIPs of sur-
prisingly large size out-of-the-box [35, 39, 40, 41, 44]. Even if the problem at
hand cannot be solved to proven optimality, often a near-optimal solution is
produced.

e During the solution process, the dual bound given by the LP relaxation bounds
the gap between the best found primal solution and the best possible solution.
Thus, even if a problem cannot be solved to optimality within a specified time
limit, the user has a proven guarantee about the quality of the best found
solution, which often suffices in practice.

The progress in solving real-world MIP instances has been exceptional over the
last decades. The pure algorithmic speedup recorded by commercial solver vendors
such as CPLEX or XPRESS on their test sets collected from customers is as much as
a factor of 55,000 over the last 20 years, see [22].

Among the most recent advances in state-of-the-art MIP solvers is the integra-
tion of solution techniques from constraint programming (CP) and satisfiability solv-
ing (SAT). It has been shown that several optimization problems that have been
intractable by either of these methods alone could be solved by combining their ideas,
see, e.g., [8, 20, 32]. As a consequence, various concepts for a general integration of
MIP and CP have been investigated [3, 4, 7, 19, 27, 28] and MIP solvers have started
to adapt ideas from CP and SAT for their algorithms.

To support this integration not only in algorithmic details, but on a conceptual
level, the paradigm of constraint integer programming (CIP) has been developed [1].
It aims at restricting the modeling capabilities of CP as little as necessary to still gain
the full power of all primal and dual MIP solving techniques. One showcase for the
flexibility and richness of CIP is its recent extension to the general class of nonconver
mized integer nonlinear programming (MINLP) [5, 33].

The goal of this article is to introduce the SCIP Optimization Suite, a software
package that facilitates the modeling and solving of general CIPs with a special focus
on mixed integer linear programs. It consists of three tools:

e SCIP, a highly customizable solver framework for constraint integer program-
ming and branch-cut-and-price. Used standalone, it is currently one of the
fastest non-commercial MIP and MINLP solvers.

e ZIMPL, an easy-to-learn modeling language whose syntax closely resembles stan-
dard mathematical notation and which is well-integrated into SCIP.



e SOPLEX, an advanced implementation of the simplex method used to solve LPs
standalone or within SCIP.

The paper is organized as follows. Section 2 describes the specific features and ca-
pabilities of SCIP, ZiMPL, and SOPLEX. Section 3 gives an overview of the various
interfaces to other software products and file formats. A tutorial with simple examples
for the different possibilities of how to use the SCIP Optimization Suite in practice
is provided in Section 4. Section 5 explains how the SCIP Optimization Suite can
be obtained and Section 6 presents a selection of projects in industry and academia
where these tools are employed. We conclude by outlining future directions for the
development of the SCIP Optimization Suite in Section 7.

2 Features

2.1 SCIP

SCIP — Solving Constraint Integer Programs — is a branch-cut-and-price framework
for MIP, MINLP, and CIP. In particular, SCIP can be used as a callable library to
embed its solving capabilities into third-party software or as a standalone solver with
an interactive shell to solve optimization problems given in a standard file format.
The goal of SCIP is to combine the advantages and compensate for the weaknesses
of MIP, MINLP, and CP.

Plugin-based architecture. SCIP distinguishes itself through the modular de-
sign of its solution algorithm, which allows the combination of general-purpose and
specialized solving techniques in a flexible fashion.

The central objects of SCIP are constraint handlers. Together with the domains
of the variables they define the space of feasible solutions. There are handlers for
integrality, linear, nonlinear, logical, combinatorial, and many other constraints. A
constraint handler must be able to decide whether a given solution is feasible for all
constraints of its type. To speed up the solution process, it may provide supplemen-
tary algorithms like constraint-specific presolving, domain propagation, separation
methods, or a linear representation of its constraints.

Additional plugins such as branching rules, propagators, and primal heuristics
allow for an efficient solution process. Altogether, SCIP 3.0 contains 126 plugins.
The interaction among them is organized by the core of SCIP. In addition, the user
has the possibility to influence the solution process by a variety of parameters.

The standard distribution of SCIP contains a collection of 26 constraint handlers.
Typically, a subset of them suffice to represent and solve models of a particular class
as explained in the following paragraphs. The relation between different problem
classes is depicted in Figure 1.

LP, MIP, and MINLP. In addition to a constraint handler for general linear
constraints, SCIP provides handlers for specific subclasses of linear constraints, e.g.,
knapsack, variable upper and lower bounds, set packing, covering, and set partitioning
constraints. Those allow for even more efficient solution techniques. LPs are expressed
by a selection of these linear constraints, MIPs by adding integrality constraints on
some of the variables. Further, SCIP supports special mathematical programming
constraints, in particular indicator constraints and special ordered sets (SOS) of type
one and two.

The solution process is enhanced by many other MIP-specific plugins, most promi-
nently by primal heuristics such as rounding heuristics, RINS, or the feasibility pump,



Figure 1: Inclusion diagram for different classes of mathematical optimization prob-
lems.

and separators for general cutting planes such as Gomory, c-MIR, strong Chvatal-
Gomory, flowcover, MCF, clique cuts and others.

MINLPs can be modeled by linear, nonlinear, and integrality constraints. Besides
supporting general nonlinear functions that are given via expression trees, SCIP
has special support for quadratic, second-order cone, bivariate, and absolute power
constraints. Note that the variety of MIP-specific plugins also support the MINLP
solution process.

PBO, SAT, and scheduling. Pseudo-boolean optimization problems [9], can be
modeled and solved by linear, and, and integral constraints. SAT instances
by logicor and integral constraints. Scheduling problems can be modeled in a
CP fashion using linking and cumulative constraints.

Branch-and-price. A widely used feature of SCIP is its branch-and-price capabil-
ity. A user can customize SCIP as a complete branch-and-price solver for a specific
class of problems by simply implementing a variable pricer plugin. In particular, the
whole management of the search tree is carried out by SCIP. This distinguishes SCIP
from most commercial MIP solvers, for which it is not easily possible to locally add
variables via callbacks.

Performance. Although SCIP supports the much more general concept of con-
straint integer programming, it is competitive with state-of-the-art commercial and
noncommercial MIP solvers [22]. In independent comparisons, SCIP consistently
scores as one of the fastest non-commercial solvers for MIP [38] and PBO [46]. Fur-
ther, it is currently one of the fastest solvers for nonconvex MINLP [33].

2.2 Zimpl

When developing an optimization model, the choice of the problem class is essential.
It will determine the level of detail that can be incorporated in the model, the solution
algorithms available, and consequently the size of the instances that one can expect
to solve under given time restrictions. However, it is important to note that the
solvability of a MIP, for example, is hard to predict and may depend very much on



the details of the modeling, see, e.g. [2]. Using an algebraic modeling language can
support the modeling process tremendously, since it allows one to easily modify the
model until a final and satisfactory formulation has been found.

In the following, we will give a short overview of ZIMPL, its goals, and its features.
ZIMPL (Zuse Institute Mathematical Programming Language) is a powerful language
to describe mathematical programs and a tool to translate these programs into lp
and mps files, the standard description formats for linear and mixed integer linear
programs. ZIMPL is tightly integrated with SCIP, and thus provides a simple way to
model LP, MIP, or MINLP instances to be solved with SCIP. In particular, ZIMPL

e has a clear syntax close to the mathematical notation,
e is quick and easy to learn,

e allows for a clear separation between model and data,

e is stable,

e is freely available in C source code under the LGPL,

e is highly portable (Linux, Windows, Mac, Solaris, ... ),
e is solver-independent,

e is available as a callable library,

e can be used standalone or linked to a solver,

e avoids rounding errors by using rational arithmetic when building the model.

History and trends. The development of algebraic modeling languages started
in the 1980’s with systems such as GaMs [6, 10] and AMPL [14, 15]. With these
tools it became possible to state an LP in near-mathematical notation and have it
automatically translated into a file that a solver could process or even have it directly
read into the appropriate solver.

Unfortunately, many modeling languages available today are commercial products.
None of these languages is available as source code for further development. None can
be given to colleagues or used in classes, apart from very limited “student editions”.
Usually only a limited number of operating systems and architectures is supported,
sometimes only Microsoft Windows.

In contrast, ZIMPL is freely available in source code under LGPL. This is very con-
venient both for teaching, as all students can use ZIMPL on their laptops and at home,
and for use in industry projects because of the liberal licensing scheme. It should be
noted that the general situation has improved since 1999 when the development of
ZIMPL started. There are now at least some other open source languages, like, e.g.,
the GNU MATHPROG language, which implements a subset of the AMPL language and
is part of the GNU Linear Programming Kit GLPK [36].

The current trend in commercial modeling languages is to further integrate fea-
tures like database query tools, solvers, report generators, and graphical user inter-
faces into one modeling system. This sometimes enables the construction of complete
graphical (business) applications around the mathematical model. Today the freely
available modeling languages are no match in this regard. ZIMPL implements maybe
20% of the functionality of AMPL. Nevertheless, this subset proved to be sufficient
for many real-world projects. Furthermore, the user manual for ZIMPL consists of
about 25 pages. As we will see in the following, you can learn ZIMPL within a few
hours and in contrast to graphical modelers, ZIMPL models are still very close to the
mathematical notation.



Syntax. In general, each ZIMPL model consists of six types of statements:
e sets,

e parameters,

variables,

objective,
e constraints, and
e function definitions.

ZIMPL statements never change the already existing part of the model, but only add
to it. This makes it much easier to understand ZIMPL models.

In addition to LP and MIP, ZIMPL also supports polynomial terms, hence in
connection with SCIP it is now possible to model and solve non-convex quadratically
and polynomially constrained integer programs [5, 33].

Rational arithmetic. A special feature of ZIMPL is the use of rational arithmetic.
With a few noted exceptions, all computations in ZIMPL are done with infinite-
precision rational arithmetic, ensuring that no rounding errors can occur during mod-
eling. This is achieved by employing the GNU Multiple Precision Library!.

Automatic reformulation. Constraints may contain the absolute value of a vari-
able or be activated only if some boolean expression formed by bounded integer or
binary variables evaluates to true. For example, a constraint may be activated only
if an integer variable takes a specified value. ZIMPL converts these automatically into
a system of linear inequalities.

Zimpl in practice. ZIMPL has been (and is continuously) used to model many
real-world and educational problems, as diverse as location planning in telecommuni-
cations, 3D-Steiner tree packing for chip design, track auctioning, protein folding, etc.
It is used in lectures at many universities and courses like Combinatorial Optimization
at Work, see http://co-at-work.zib.de.

2.3 SoPlex

SOPLEX is an advanced implementation of the revised simplex algorithm for solving
linear programs. It features preprocessing, exploits sparsity, and provides primal and
dual solving routines. It can be used as a standalone solver reading mps or 1p files
or embedded into third-party software via a C4++ class library. It is the default LP
solver in SCIP. In the following, we outline the main features of SOPLEX. More
details are described in [34].

Preprocessing. SOPLEX performs various presolving steps to reduce the size of the
problem before applying the simplex algorithm. These include trivial reductions like
handling of singleton rows and more elaborate steps such as the detection of linear
dependencies; preprocessing helps to speed up the solution process. Matrix scaling is
applied to improve numerics.

Thttp://www.gmplib.org
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Primal and dual algorithm. SOPLEX implements a composite simplex procedure
automatically switching between primal and dual solving steps. The user can specify
the initial algorithm type. Temporary shifting of the variable and constraint bounds is
employed to guarantee numerical stability and a feasible starting basis. This renders
an explicit “phase one” unnecessary.

Linear algebra operations. The linear algebra operations heavily exploit the
sparsity of the constraint matrix, right-hand side, and objective function, which are
present in the majority of LP instances. During pivoting, the sparse LU factorization
is updated using Forrest-Tomlin or eta update steps [13, 31].

As a distinguishing feature, SOPLEX can switch from the standard column-based
computational form, which is used by default, to the so-called row representation of
the basis. For LP instances with more constraints than variables, this results in a
smaller dimension of the basis matrix and faster linear system solves.

High-precision solutions. SOPLEX is a floating point LP solver and uses double-
precision arithmetic by default. The precision can be increased to long double in
order to address instances with particularly poor numerical properties.

A feature that distinguishes SOPLEX from other LP solvers is the novel technique
of iterative refinement [16] available since version 1.7. It uses the GNU Multiple
Precision Library and iterated floating point solves to compute arbitrarily precise
solutions.

SoPlex for LP-based branch-and-cut. As the default LP solver used in SCIP,
SOPLEX is continuously tested and improved. Consequently, it has become one of
the most robust non-commercial LP solvers available and is particularly suited for
repeatedly solving closely related LP instances.

3 Interfaces

There are several ways of accessing the SCIP Optimization Suite from other software
packages or programming platforms.

3.1 File formats

The easiest way to load a problem into SCIP is via an input file, given in a format
that SCIP can parse directly, see Section 4.2.1. SCIP 3.0 is capable of reading more
than ten different file formats, including formats for nonlinear problems and constraint
programs. This gives researchers from different communities an easy first access to
the SCIP Optimization Suite. Table 1 lists the most used file formats in SCIP.

3.2 Modeling languages and Matlab interface

A natural way of formulating an optimization problem is to use a modeling language.
Besides ZIMPL there are several other modeling tools with a direct interface to SCIP.
These include COMET [26], a modeling language for constraint programming, and
GAMS [10], which is well-suited for modeling nonlinear optimization problems.

With SCIP 3.0, a first beta version of a functional Matlab interface has been
released. It supports solving MIPs and LPs defined by Matlab’s matrix and vector

types.



Table 1: A selection of file formats that can be parsed by SCIP directly.

extension short description

Ip file format for LPs and MIPs

mps file format for LPs and MIPs

cnf file format for satisfiability problems (SAT)

opb file format for pseudo-boolean optimization problems

wbo file format for weighted pseudo-boolean optimization problems
zpl file extension for ZIMPL models

fzn FlatZinc format, an input language for constraint programs

pip file format for polynomially constrained mixed integer programs
cip the standard SCIP format defined by the constraint handlers
osil an XML-based file format that supports linear and nonlinear op-

timization problems

3.3 Python interfaces

Several Python-based software packages provide an interface to the SCIP Optimiza-
tion Suite:

e NUMBERJACK [18], a constraint programming platform supporting a variety of
different solvers.

e PICOS [37], a Python interface for conic optimization solvers developed by Guil-
laume Sagnol.

e PYTHON-ZIBOPT [42], a Python extension of the SCIP Optimization Suite de-
veloped and maintained by Ryan J. O’Neil.

e SAGE [43], a free open-source mathematics software system.

3.4 Java and C++

Since SCIP is written in C, its callable library can be directly accessed from C++.
If a user wants to program his own plugins in C++, there are wrapper classes for
all different types of plugins available in the src/objscip directory of the SCIP
standard distribution. Also, SCIP 3.0 comes with a first version of a Java interface
based on JNI providing the essential functions of the SCIP callable library.

4 Examples for usage

4.1 Zimpl

In this section, we demonstrate how to build a ZIMPL model, which can then be fed
to SCIP either directly or via generating 1p or mps files. As an example, we use an
exponential description of the symmetric traveling salesman problem (TSP) as given,
e.g., in [29, Section 58.5].

Let G = (V, E) be a complete graph, with V' being the set of cities, F being the
set of links between the cities, and d;; being the (symmetric) distance between cities ¢
and j. Introducing binary variables z;; for each (i,j) € E indicating if edge (7,7) is



part of the tour, the TSP can be written as:

min Z dijxg; subject to
(i,J)€E
Z Tij =2 for all v € V,
(i,j)EE,ve{i,j}
Z zi; < U -1 foralUCV,0 £ U £V,
(i,J)€EE,i,j€U
zi; € {0,1} for all (i,7) € E.

The data is read in from a file that gives the number of the city and the x and y
coordinates. Distances between cities are assumed Euclidean. For example:

# City X Y Karlsruhe 4901 840 Stuttgart 4874 909
Berlin 5251 1340 Hamburg 5356 998 Passau 4856 1344
Frankfurt 5011 864 Bayreuth 4993 1159 Augsburg 4833 1089
Leipzig 5133 1237 Trier 4974 668 Koblenz 5033 759
Heidelberg 4941 867 Hannover 5237 972

The formulation in ZIMPL follows below and demonstrates the style of the syntax. The
input file tsp.dat containing the table above is used to initialize the set of nodes V
and coordinate parameters px and py. Note that it is sufficient to include the no
subtour constraints only for sets containing and excluding at least three nodes.

set V = { read "tsp.dat” as "<1s>" comment "#' };
set E = { <i,j> in V x V with i < j };

set P[] := powerset(V);

set K = indexset (P);

param px[V] = read "tsp.dat” as "<ls> 2n" comment "#";
param py[V] = read "tsp.dat” as "<ls> 3n" comment "#";

defnumb dist(a,b) := sqrt((px[a]—px[b])"2 + (py[a]—-py[b])"2);

var x[E] binary;
minimize cost: sum <i,j> in E : dist(i,j) * x[i, j];

subto two_connected: forall <v> in V do
(sum <v,j> in E : x[v,j]) + (sum <i,v> in E : x[i,v]) = 2;

subto no_subtour:
forall <k> in K with
card(P[k]) > 2 and card(P[k]) < card(V) — 2 do
sum <i,j> in E with <i> in P[k] and <j> in P[k] : x[i,]]
<= card(P[k]) — 1;

The user can pass this zpl file directly to SCIP or generate an 1p file using the
command zimpl tsp.zpl. Alternatively, ZIMPL can produce an mps file with zimpl
-t mps tsp.zpl. A list of command line options is displayed with zimpl -help.

Note that P[] holds all subsets of the cities and hence the number of cities for which
this model can be solved is very limited. For the 13 cities above, the resulting problem
has 78 variables, 8021 constraints, and 154596 non-zero entries in the constraint
matrix. Information on how to solve much larger instances can be found on the
CONCORDE website.? An optimal tour for the data above is Berlin, Leipzig, Passau,

2http://www.tsp.gatech.edu
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Augsburg, Stuttgart, Heidelberg, Karlsruhe, Trier, Koblenz, Frankfrurt, Hannover,
Hamburg, Berlin and can be computed by SCIP within less than one second.

For a precise definition of the ZIMPL syntax and more details and examples on
modeling with ZIMPL, we refer to the manual on http://zimpl.zib.de.

4.2 SCIP

In the following section we briefly introducethe usage of SCIP. We describe first steps
for using the interactive shell and the callable library of SCIP.

4.2.1 How to use the interactive shell

A first step towards working with SCIP is to use it via the interactive shell as a black
box solver for MIPs, MINLPs and other problems. Therefore, a SCIP binary® and
an example problem file are required. SCIP can read files in LP, MPS, ZPL, WBO,
FZN, PIP, and other formats (see Table 1). MIP test instances can, e.g., be found
at the MIPLIB homepage.? For the remainder of this section, the instance stein27
from MIPLIB 3.0 will serve as an example.

Reading and solving. The SCIP binary can be started without any arguments.
This opens the interactive shell. The help command shows you a list of all available
shell commands. Brackets indicate a submenu with further options.

SCIP> help

<display> display information

<set> load/save/change parameters
[...1

read read a problem

The most important commands to start with are read <path/to/file> to parse
a problem file, optimize to solve it and display solution to show the nonzero
variables of the best found solution.

SCIP> read check/instances/MIP/stein27.mps.gz
original problem has 27 variables (27 bin, 0 int, O impl, O cont) and 118 constraints
SCIP> optimize

presolving:
(round 1) 0 del vars, 0 del conss, O chg bounds, 0 chg sides, O chg coeffs, 118 upgd comss, O impls, O clgs

time | node

| left |LP iter|LP it/nlmdpt |frac |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
t 0.0s| 11 ol 34 | -1 ol 21| 2711181 01l 01 0| 1.300000e+01 | 2.700000e+01 | 107.69%
R 0.0s| 11 ol 34 | -1 ol 21| 2711181 01l 01 0] 1.300000e+01 | 2.600000e+01 | 100.00%
s 0.0sl 11 ol 34 | -1 ol 211 2711181 01l 01 0] 1.300000e+01 | 2.500000e+01 | 92.31%
0.0sl 11 0| 44 | -1 ol 211 2711201 21 01 0] 1.300000e+01 | 2.500000e+01 | 92.31%
[...1
0.1sl 11 21 107 | -1 01 241 271131 ] 13| 0 24 | 1.300000e+01 | 1.900000e+01 | 46.15%
R 0.1s] 14 | 101 203 | 7.41 131 -1 2711241 13| 0 | 164 | 1.300000e+01 | 1.800000e+01 | 38.46Y%
0.1s| 100 | 54 | 688 | 5.91 13| 20| 27| 124 | 13 ] 0 | 206 | 1.300000e+01 | 1.800000e+01 | 38.46%
[...]
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.73
Solving Nodes : 4192
Primal Bound : +1.80000000000000e+01 (283 solutions)
Dual Bound : +1.80000000000000e+01
Gap :0.00 %
SCIP> display solution
objective value: 18
%0001 1 (obj:1)
x0003 1 (obj:1)

[...1

3Download at http://scip.zib.de/download.shtml, available for Linux, Mac, and Windows.
4http://miplib.zib.de, the stein27 example file is available at http://miplib.zib.de/miplib3/
miplib3/stein27.mps.gz.
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Analyzing the ouput. After starting the optimization procedure, SCIP will first
do a few rounds of presolving and then start the branch-and-bound search. When
the solving process is interrupted by the user or hits a predefined limit, e.g., on the
number of branch-and-bound nodes or the time, a short report on the current solution
status is printed; equally when the problem is solved completely.

For this particular instance, presolving is very short. The linear constraints merely
get upgraded to more specific types. For each round of presolving, a line will report
the reductions performed, with a short summary after the last round. Next, we
see output for the actual solving process. The first three output lines in the above
example indicate that new incumbent solutions were found by the primal heuristics
with display characters ‘t’, ‘R’, and ‘s’. Due to this, the “primalbound” column shows
a reduction of the incumbent solution value from 27 to 25.

In the fourth line, two “cuts” are added. Up to here, SCIP (or rather SOPLEX)
needed 44 “LP iter”ations: 34 for the first LP and 10 more to resolve after adding
cuts. Little later, the root node processing is finished. Note that there are now two
open nodes in the “left” column; SCIP has performed a branching on one of the 24
“frac”tional variables. From now on, there will be an output line every hundredth
node or whenever a new incumbent is found (e.g. at node 14 in the above example).

After SCIP finishes the optimization process or has been stopped otherwise,
display solution will print the nonzero values of the incumbent solution.

The exact performance varies amongst different architectures, operating systems,
and so on. Thus, different installations of SCIP might need more or less time or
nodes to solve. Also, this instance has more than 2000 different optimal solutions.
The optimal objective value always has to be 18, but the solution vector may differ.
If you are interested in this behavior, which is called performance variability, please
see [22].

Accessing detailed statistics. Of course, it is also possible to access more detailed
information on the solution process, the problem instance, and different components
of the solver. Information on certain plugin types (e.g., heuristics, branching rules,
separators) are retrieved by display <plugin-type>, information on the solution
process is accessed by display statistics, and display problem shows the current
problem instance.

SCIP> display heuristics
primal heuristic c priority freq ofs description

[...1

rounding R -1000 1 0 LP rounding heuristic with infeasibility recovering

shifting s -5000 10 0 LP rounding heuristic with infeasibility recovering also using continuous variables
[...]
SCIP> display statistics

[...1

oneopt : 0.01 4 1

coefdiving H 0.02 57 0

[...1

primal LP H 0.00 o 0 0.00 -

dual LP H 0.20 4187 14351 3.43 71755.00

[...]

In the above example, rounding and shifting were the heuristics producing the
solutions in the beginning, which we can identify by their display characters ‘R’ and
‘s’. Rounding is called at every node, shifting only at every tenth level of the tree,
see the “freq” column of the above output.

The statistics are quite comprehensive and so in the following we only explain a
few lines. There is information for all types of plugins and for the overall solving
process. Besides others, we see that the oneopt heuristic found one solution in 4 calls,
whereas coefdiving failed all 57 times it was called. All the LPs have been solved with
the dual simplex algorithm, which took about 0.2 seconds of the 0.7 seconds overall

solving time.
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Changing parameters. Having information on the performance of single compo-
nents, a user might want to change their behavior by altering some parameters. As
an example, we will disable the rounding and the shifting heuristic.

SCIP> set
[...1
<heuristics> change parameters for primal heuristics

[...1
SCIP/set> heuristics

[...]

<shifting> LP rounding heuristic with infeasibility recovering also using continuous variables

SCIP/set/heuristics> shifting

<advanced> advanced parameters
freq frequency for calling primal heuristic <shifting> (-1: never, O: only at depth freqofs) [10]
freqofs frequency offset for calling primal heuristic <shifting> [0

SCIP/set/heuristics/shifting> freq
current value: 10, new value [-1,2147483647]: -1
heuristics/shifting/freq = -1

SCIP> se he rou freq -1
heuristics/rounding/freq = -1

SCIP> re check/instances/MIP/stein27.mps
original problem has 27 variables (27 bin, O int, O impl, O cont) and 118 constraints
SCIP> o

feasible solution found by trivial heuristic, objective value 2.700000e+01

z 0.1s] 31 4 | 140 | 10.5 |1060k| 21 22| 27| 118 ] 27| 123 | 14 | 0 | 66 | 1.300000e+01 | 1.900000e+01 | 46.15},

[...1
SCIP Status : problem is solved [optimal solution found]
Solving Time (sec) : 0.75
Solving Nodes : 4253
Primal Bound : +1.80000000000000e+01 (287 solutions)
Dual Bound : +1.80000000000000e+01
Gap :0.00 %
SCIP>

We can navigate through the menus step-by-step and get a list of available options
and submenus. Thus, we select set to change settings, heuristics to change settings
of primal heuristics, shifting for that particular heuristic. Then we see a list of
parameters (and yet another submenu for advanced parameters), and disable this
heuristic by setting its calling frequency to -1. If we already know the path to a
certain setting, we can directly type it (as for the rounding heuristic in the above
example). Note that we do not have to use the full names, but we may use short
versions, as long as they are unique. To solve the problem a second time, we have to
read it and start the optimization process again.

To support parameter tuning, SCIP also provides several meta-settings for pre-
solving, heuristics, separation, and the search process, accessible via the emphasis
menus, see also the FAQ page. Let’s consider a second example:

SCIP> set default
reset parameters to their default values
SCIP> set heuristics emphasis

aggressive sets heuristics <aggressive>
fast sets heuristics <fast>
off turns <off> all heuristics

SCIP/set/heuristics/emphasis> aggr
heuristics/veclendiving/freq = 5

heuristics/crossover/minfixingrate = 0.5
SCIP> read check/instances/MIP/stein27.mps

original problem has 27 variables (27 bin, O int, O impl, O cont) and 118 constraints

SCIP> opt
[...1

D 0.1sl 11 [ 107 | - | 971k| 0Ol 24 271122 27| 131 ] 13| 4| 0 | 1.300000e+01 | 1.800000e+01 | 38.46%
0.1s] 11 [ 107 | - | 971k| 0Ol 24| 27122 ] 27| 131 | 13| 4| 0 | 1.300000e+01 | 1.800000e+01 | 38.46%
0.1s] 11 [ 119 | - 1111k] 0l 24| 27| 122 ] 27| 132 | 14| 4| 0 | 1.300000e+01 | 1.800000e+01 | 38.46%
0.1s] 11 2| 119 | - 1112k| 0l 24| 27| 122 ] 27| 132 | 14 | 4 | 24| 1.300000e+01 | 1.800000e+01 | 38.467%

time | node | left |LP iter|LP it/n| mem |mdpt |frac |vars |cons |cols |rows |cuts |confs|strbr| dualbound | primalbound | gap
0.2s] 100 | 59 | 698 | 5.8 1138kl 14 | 11 | 27 | 122 | 27 | 123 | 14 | 4 | 204 | 1.300000e+01 | 1.800000e+01 | 38.46Y
0.2s] 200 | 91 | 1226 | 5.6 |1155k| 14 | -1 27 1122 | 27| 123 | 14 | 4 | 207 | 1.300000e+01 | 1.800000e+01 | 38.467%

“Cpressed CTRL-C 1 times (5 times for forcing termination)

SCIP Status : solving was interrupted [user interrupt]

Solving Time (sec) : 0.32
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Solving Nodes : 216
Primal Bound : +1.80000000000000e+01 (283 solutions)
Dual Bound : +1.30000000000000e+01

Gap : 38.46 %

SCIP>

Here, we first reset all parameters to their default values using set default. Next,
we load the meta settings to apply primal heuristics more aggressively. SCIP shows
us which single parameters this changed. Now, the optimal solution is already found
at the root node, by a heuristic which is deactivated by default. Then, after node
200, the user pressed CTRL-C which interrupts the solving process, We see that now
in the short status report, primal and dual bound are different, thus, the problem is
not solved yet. Nevertheless, we could access statistics, see the current incumbent
solution, change parameters and so on. Entering optimize, we continue the solving
process from the point at which it had been interrupted.

Writing. SCIP can also write information to files. E.g., we could store the incum-
bent solution to a file, or output the problem instance in another file format (the LP
format is much more human readable than the MPS format, for example).

SCIP> write solution stein27.sol
written solution information to file <stein27.sol>

SCIP> write problem stein27.lp
written original problem to file <stein27.lp>

SCIP> g
[...1

4.2.2 How to use the callable library

The next step is to use SCIP via the callable library. This means that within your
own program code, preferably written in C or C++, you create a SCIP data object,
which you can access and modify via calling public functions of the SCIP program
library which is written in C. An external user is allowed to call all functions that are
declared in scip.h, pub.<...>.h and all header files of particular plugins, e.g., for
the linear constraint handler cons_linear.h.

If you are looking for information about a particular object of SCIP, such as
a variable or a constraint, you should first search the corresponding pub_<...>.h
header. E.g., for constraints, look in pub_cons.h. If you need some information about
the overall problem, you should start searching in scip.h. It contains all “involved”
operations that affect or need data from more than one component of SCIP. For
these methods, you always have to provide a SCIP pointer, see below.

If you want to use SCIP as a callable library, the first step will always be that you
create a SCIP object via SCIPcreate(). This returns a SCIP pointer that you need
for most other function calls. Then you typically include the default plugins using
SCIPincludeDefaultPlugins(). Afterwards, you can start to build the problem that
you want to solve via SCIPcreateProb().

Next, you might want to create variables via SCIPcreateVar() and add them
to the problem via SCIPaddVar(). The same has to be done for the constraints.
For example, if you want to fill in the rows of a general MIP, you have to call
SCIPcreateConsBasicLinear() (or the more advenced SCIPcreateConsLinear()),
SCIPaddCons () and additionally SCIPreleaseCons () after finishing. If all variables
and constraints are present, you can initiate the solution process via SCIPsolve().
Finally, with SCIPgetBestSol() you get the optimal (or incumbent, if aborted pre-
maturely) solution. With the methods SCIPgetSolVal(), SCIPgetSolVals(), and
SCIPgetSol0riglbj () you can access the value of a single variable in a solution, the
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values of all variables and the objective function value, respectively. Make sure to
also call SCIPreleaseVar () if you do not need the variable pointer anymore.

Note that most of these methods return a SCIP_RETCODE. If everything worked
during a function call a SCIP_OKAY is returned. In any other case one of the more
than 15 error codes is passed to the user and needs to be considered before continuing
the program. See the file type_retcode.h for a complete list of all error codes used
within SCIP.

Figure 2: MIP with two constraints and two variables; one continuous and one integer.

Consider the toy MIP example min{1.2z +y | « +y > 25,2 > 0,y € Z>¢}.
This example is illustrated in Figure 2. The light shaded region shows the area
corresponding to the LP relaxation; the parallel lines show the mixed integer set of
feasible solutions. The line with its normal depicts the objective and the dot shows
the optimal solution. Below we show how this problem could be modeled and solved
using the SCIP callable library in a C programming environment.

#include "scip/scip.h"
#include "scip/scipdefplugins.h”

SCIP* scip = NULL;
SCIP_VAR* x = NULL;
SCIP_VAR* y = NULL;
SCIP_CONS* cons = NULL;
SCIP_SOL* sol = NULL;

/* initialize SCIP */

SCIP_CALL( SCIPcreate(&scip) );

SCIP_CALL( SCIPincludeDefaultPlugins(scip) );
SCIP_CALL( SCIPcreateProbBasic(scip, "example") );

/* create and add variables */

SCIP_CALL( SCIPcreateVarBasic(scip, &x, "x", 0.0, SCIPinfinity(scip), 1.2, SCIP_VARTYPE_CONTINUOUS) );
SCIP_CALL( SCIPcreateVarBasic(scip, &y, "y", 0.0, SCIPinfinity(scip), 1.0, SCIP_VARTYPE_INTEGER) );
SCIP_CALL( SCIPaddVar(scip, x) );

SCIP_CALL( SCIPaddVar(scip, y) );

/* create empty constraint, add variables to it and release when done with modification */

SCIP_CALL( SCIPcreateConsBasicLinear(scip, &cons, "comstraint", O, NULL, NULL, 2.5, SCIPinfinity(scip)) );
SCIP_CALL( SCIPaddCoefLinear(scip, coms, x, 1.0) );

SCIP_CALL( SCIPaddCoefLinear(scip, coms, y, 1.0) );

SCIP_CALL( SCIPaddCons(scip, cons) );

SCIP_CALL( SCIPreleaseCons(scip, &cons) );

/* solve the problem and output solution values */

SCIP_CALL( SCIPsolve(scip) );

sol = SCIPgetBestSol(scip);

printf("x: %f y: %f\n", SCIPgetSolVal(scip, sol, x), SCIPgetSolVal(scip, sol, y));
/* release varibles and free SCIP */

SCIP_CALL( SCIPreleaseVar(scip, &x) );

SCIP_CALL( SCIPreleaseVar(scip, &y) );
SCIP_CALL( SCIPfree(&scip) );

4.2.3 Implementing plugins

The most involved way to use SCIP is by implementing plugins. These are user
defined callback objects that interact with the framework through a very detailed
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interface. The plugin concept of SCIP facilitates the implementation of self-contained
solver components that can be employed by a user to solve his particular constraint
integer programming model.

For each type of plugin, there are template files <plugintype> xyz.{c,h} avail-
able in the src/scip directory. The steps to implement a user plugin include ad-
justing the properties, such as the priorities and frequencies with which the plugin
will be called by SCIP; providing a public interface method to include this plugin
into SCIP; and implementing some of the callback methods. For example, to imple-
ment a variable pricer, a user would typically implement the PRICERREDCOST and the
PRICERFARKAS callbacks, which are called during the price-and-cut loop for feasible
and infeasible LPs, respectively. Further, there are callbacks to initialize and clean
up data structures, as well as a local data structure object for each plugin.

4.2.4 How to debug and run tests

SCIP comes with support for debugging the code and running and evaluating tests
automatically.

If you want to debug your own code that uses SCIP— or SCIP itself — the first
thing a user should do is to compile it in debug mode, using make OPT=dbg. This
activates asserts everywhere in the code as well as some additional consistency check-
ing methods. To support debugging, users are strongly recommended to use asserts
in their own code as well. If more information on the processing of a certain SCIP
component is required, e.g., because it might be related to a bug, placing a #define
SCIP_DEBUG at the top of the file activates a series of debug output. Again, it is rec-
ommended to use SCIPdebugMessage () in user’s code. It further is possible to add a
debug solution at the top of the file src/scip/debug.h to ensure that the code does
not cut off an optimal solution.

Calling make TEST=mytestset SETTINGS=mysettings test starts an automatic
test run for all instance files that are stored in check/testset/mytestset.test,
using the settings stored in settings/mysettings.set. Other options such as TIME,
NODES, MEM are available. During computation, SCIP automatically stores an output
(*.out) and a result file (*.res) in check/results. The latter one reports on the
time, branch-and-bound nodes, simplex iterations needed per instance and gives a
short summary with total numbers and geometric means taken over all instances in
the given testset. Further, the script check/allcmpres.sh can be used to compare
two or more *.res files with respect to many different criteria.

4.2.5 How to find help

Online documentation. SCIP comes with a detailed online documentation ac-
cessible under http://scip.zib.de/doc/html/index.html. It features frequently
asked questions, instructions for how to use the interactive shell, how to implement a
specific type of plugin, or how to find public interface methods and parameters. For
advanced users, the source code is linked directly from the online documentation and
is very well-commented.

Parameters. SCIP 3.0 and its default plugins provide more than 1400 parameters
to influence the solution process. These can be browsed in the set menu of the
interactive shell and are organised according to functionality:

SCIP> set

<branching> change parameters for branching rules
<conflict> change parameters for conflict handlers
<constraints> change parameters for comstraint handlers
<display> change parameters for display columns
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<emphasis> predefined parameter settings

<heuristics> change parameters for primal heuristics

<limits> change parameters for time, memory, objective value, and other limits
<1p> change parameters for linear programming relaxations
<memory> change parameters for memory management

<misc> change parameters for miscellaneous stuff

<nlp> change parameters for nonlinear programming relaxations
<nlpi> change parameters for NLP solver interfaces
<nodeselection> change parameters for node selectors

<numerics> change parameters for numerical values

<presolving> change parameters for presolving

<pricing> change parameters for pricing variables

<propagating> change parameters for constraint propagation

<reading> change parameters for problem file readers

<separating> change parameters for cut separators

<timing> change parameters for timing issues

<vbc> change parameters for VBC tool output

default reset parameter settings to their default values
diffsave save non-default parameter settings to a file

load load parameter settings from a file

save save parameter settings to a file

Many of the parameters are marked as advanced and displayed to the user only
when explicitly entering an <advanced> menu. A list of all available parameters is
available online and can be printed to a file using the shell command set save.

Public interface methods. The primary source for information on SCIP’s meth-
ods and plugins is the online documentation of the corresponding header files, which
can be found under the tab Files. The public interface methods of the SCIP core
are located in scip.h and pub_<...>.h. The first file contains methods that perform
complex operations that affect or need data from different components of SCIP; the
other header files contain methods that only affect single objects, e.g., pub_var.h
contains the method SCIPvarGetType () returning the type of a variable.

Additionally, SCIP methods follow a clear naming scheme. Often the beginning
of a method’s name can be guessed easily and searched for directly in the search box
provided on the online documentation’s web page.

The file pub_misc.h contains methods for data structures like priority queues, hash
tables, and hash maps, as well as methods for sorting, numerics, random numbers,
string operations, and file operations.

Implementing a plugin. The How to add ... section of the online documentation
provides step-by-step instructions for how to implement your own SCIP plugin. If
you are looking for a description of a callback method of a plugin that you want to
implement, you have to look at the corresponding header file type <...>.h, e.g., in
type_cons.h for a description of the callbacks of a constraint handler.

Example projects. In addition to the general documentation, SCIP 3.0 comes
with several examples, which show how to implement one or more plugins for specific
problems.®

For the implementation of a constraint handler, see the linear ordering example LOP
(in C) or the TSP example, which uses the C++ interface and also implements a primal
heuristics. For a branch-and-price code, look at the Binpacking or the Coloring
example, which contain a variable pricer, a branching rule, and show how to store
additional data of the problem or of single variables.

Mailing list. For further help, we encourage users to subscribe to the SCIP mailing
list scip@zib.de. Currently over 200 developers and users are active and try to give
instant advice on more specific questions.®

Shttp://scip.zib.de/examples.shtml
Shttp://listserv.zib.de/mailman/listinfo/scip
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Presentations, papers, etc. Under http://scip.zib.de/further.shtml, the
SCIP web page collects introductions, presentations, exercises, and scientific publi-
cations about SCIP and CIP.

4.3 SoPlex

SOPLEX provides a straightforward command line interface to solve linear programs
as 1p or mps files. Calling SOPLEX on the small capri instance from the Netlib test
set” by typing soplex capri.mps gives

Loading LP file capri.mps
LP has 271 rows 353 columns 1767 nonzeros
LP reading time: 0.00

Solving LP ...

IEQUSCO1 Equilibrium scaling LP

IMAISM69 Main simplifier removed 26 rows, 43 columns, 246 nonzeros, 82 col bounds, O row bounds
IMAISM74 Reduced LP has 245 rows 310 columns 1521 nonzeros

ISOLVEO1 iteration = 0 lastUpdate = 0O value = 0.000000e+00
ISTEEPO1 initializing steepest edge multipliers
ISOLVEO1 iteration = 180 lastUpdate = 180 value = 3.861101e+03
ISOLVEO1 iteration = 311 lastUpdate = 131 value = 4.637225e+03
ISTEEPO1 initializing steepest edge multipliers
ISOLVEO1 iteration = 313 lastUpdate = 2 value = 4.860032e+03

ISOLVEO2 Finished solving (status=OPTIMAL, iters=313, leave=311, enter=2, flips=0, objValue=4.860032e+03)

SoPlex statistics:

Factorizations : 4
Time spent : 0.00
Solves : 881
Time spent : 0.00
Solution time : 0.02
Iterations : 313

Solution value is: 2.6900129e+03

SOPLEX displays the size of the original LP, applies equilibrium scaling to the
constraint matrix, removes 43 variables and 26 constraints in presolving, and solves
the instance after 313 simplex iterations: 311 dual iterations (leave) and two primal
iterations (enter). The final statistics show that four clean factorizations were per-
formed and 881 linear systems solved. The optimal objective value for the original
problem is 2 690, not to be confused with the optimal value for the presolved problem,
4 860, which is displayed during the simplex phase.

Command line options. Calling soplex without input displays a list of options to
control the solution algorithm. Options -f and -o set the primal and dual feasibility
tolerance, respectively, which are 1e-6 by default. The number of iterations can be
limited with -L. A time limit in seconds can be specified using -1. As an example, to
solve to a higher primal feasibility tolerance of 108, but use at most 1000 iterations,
call soplex -fle-8 -L1000 capri.mps.

The verbosity level can be increased by -v. To display not only the optimal
objective value, but also the primal and dual solution, the user has to add -x and -y,
respectively. An a posteriori check of the solution quality can be performed with
option -q.

Writing and reading LP basis files. To obtain basis information, a basis file
can be printed adding the option -bw and the name of the basis file after the LP
file, e.g., soplex -bw capri.mps capri.bas. To warmstart from a basis file, use the
option -br. Note that this automatically deactivates the simplifier of SOPLEX.

Column versus row representation. By default, SOPLEX uses the standard
column-based computational form. For LP instances with more constraints than
variables, it may be beneficial to switch to row representation. This often speeds up
the linear algebra routines significantly and can be forced by option -r.

"http://wuw.netlib.org/netlib/1lp
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Primal and dual simplex. As explained in Section 2.3, SOPLEX implements a
composite simplex algorithm, automatically switching between primal and dual iter-
ations. However, the user can specify with which type to use first.

The default starting algorithm depends on whether column or row representation
is used. In column representation, SOPLEX starts with the dual simplex; option -e
changes this to primal. In row representation, SOPLEX starts with the primal simplex;
option -e changes this to dual. As an example, to use row representation, but still
start with the dual simplex, call soplex -r -e capri.mps.

Pricing strategy, scaling, etc. The performance of the simplex algorithm may
heavily depend on the pricing algorithm used. With option -p[0-6], different strate-
gies can be tried. The default is —-p4, steepest edge pricing with unit initial norms.

Other options that may influence the performance or numerical stability are the
scaling strategy (-g), the starting basis (-c), or the ratio test (-t).

Class interface. Besides the command line usage, SOPLEX can be embedded into
third-party software via its C++ class interface. Its object-oriented software design
allows to reimplement single algorithmic components such as the pricing strategy
or the scaling. For details, see the online documentation available under http://
soplex.zib.de.

5 Licenses and availability

The SCIP Optimization Suite is available both under the ZIB Academic License
and customized commercial licenses. The terms of the ZIB Academic License allow
researchers at academic institutions to use the software freely for their research activ-
ities. ZIMPL is additionally available under the LGPL3. For commercial use, specially
tailored licenses are available upon request. For more details we refer to the web page
of SCIP [44].

All licenses include full access to the source code of SCIP, SOPLEX, and ZIMPL.
This allows researchers complete control over the solution process. The precise knowl-
edge of what is happening in the algorithm and the ability to modify any part of the
program is in our view a necessary precondition for successful research. In commercial
applications, the availability of the source code grants the user a greater independence
compared to closed-source commercial alternatives.

For the three major platforms Linux, Mac, and Windows, pre-compiled binaries
can be downloaded from the web pages. If possible, these binaries are statically
linked for maximal portability. Further, libraries, in particular DLLs, for Windows
are provided for download. For Linux and Mac we provide build systems that allow
for easy compilation of the source code.

6 SCIP Optimization Suite in practice

The SCIP Optimization Suite is currently used at more than one hundred universities
and academic institutes worldwide both for pure research and industrial cooperations,
as well as in many companies, from start-ups to blue chips. Global players like
ABB, Google, SAP, and Siemens have licensed SCIP and employ it regularly in their
projects.

It is the basis for many projects at the forefront of MIP and MINLP research such
as exact integer programming, generic column-generation, and exploiting symmetries
in integer programming. The practical applications for which SCIP has been used
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successfully are as diverse as multi-layer telecommunication networks, chip design
verification, service design in public transport, optimization of gas transport networks,
et cetera.

This is only possible because the underlying mathematical algorithms have been
implemented with a special focus on software engineering. SCIP, ZiMPL, and SO-
PLEX come with test suites that cover more than 75% of the program code. Assert
statements are used extensively in the code to test preconditions and invariants. Spe-
cial targets in the Makefile are available for performing valgrind® checks and the code
is regularly run through FlexeLint,? a static program checker. All in all, this results in
the high code quality and robustness that is crucial for application within real-world
industry projects.

7 Future development

The history of what today constitutes the SCIP Optimization Suite started at the
Zuse Institute about 20 years ago. Since then there has been a continuous development
of tools and codes for linear and integer programming. Given the huge number of
researchers and companies worldwide relying on the SCIP Optimiziation Suite we
are confident that this progress will continue. The following is a selection of topics
on which the future development of the SCIP Optimization Suite will focus.

Parallelization. With the chip industry switching from increasing clock speed to
computing cores, the implementation of algorithms that run efficiently in parallel is
one of the practically most important topics. The possibilities of using future Exascale
systems to solve a single integer program are investigated in [23]. SCIP is already the
basis for one of the most scalable frameworks for mixed integer programming [30].

Exact Integer Programming. For most commercial applications the solutions
computed by today’s floating-point MIP solvers within small numerical tolerances are
perfectly sufficient. The question of exact feasibility and proven optimality!'? is less
important than the task of finding good primal solutions as fast as possible. However,
for particular classes of problems, especially feasibility problems, safeguarding against
numerical inaccuracies is crucial. Further, for research purposes it is desirable that
a MIP solution can be proven to be exactly optimal. Implementing a MIP solver
that is theoretically exact and shows practically acceptable solution times remains
an important task. As described in [11], significant progress has been made in this
direction, with many open questions to solve.

MINLP and CP. The progress achieved in general-purpose MIP solving has been
extraordinary over the last decades. It is our goal to combine these advances with
techniques from the nonlinear optimization and constraint programming communities
and hence make them available for further challenging problem classes, in particular
MINLP. SCIP will continue to be one of the pioneers in this direction.

Citius, altius, fortius. Solving more and ever bigger instances faster is the all-time
objective in mathematical programming and the continued goal of the developers of
the SCIP Optimization Suite.

8http://www.valgrind.org

mttp://www.gimpel.com

0By “proven” we mean that the problem is solved exactly, i.e., over the rational numbers, as
opposed to numerically using floating-point arithmetic and that the optimality gap is reduced to
zero, not only some small epsilon.
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