TakustraBe 7
D-14195 Berlin-Dahlem
Germany

Konrad-Zuse-Zentrum
fur Informationstechnik Berlin

BENJAMIN HILLER TIJARK VREDEVELD

Stochastic dominance analysis of Online
Bin Coloring algorithms

Z1B-Report 12-42 (November 2012)



Herausgegeben vom

Konrad-Zuse-Zentrum fiir Informationstechnik Berlin
Takustralie 7

D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782



Stochastic dominance analysis of Online Bin
Coloring algorithms*

Benjamin Hiller
Zuse Institute Berlin
Takustralle 7
D-14195 Berlin, Germany.
hiller@zib.de

Tjark Vredeveld
Maastricht University
Faculty of Economics and Business Administration
6200 MD Maastricht, The Netherlands.
t.vredeveld@maastrichtuniversity.nl

November 21, 2012

Abstract

This paper proposes a new method for probabilistic analysis of online algo-
rithms. It is based on the notion of stochastic dominance. We develop the method
for the online bin coloring problem introduced in [18]. Using methods for the
stochastic comparison of Markov chains we establish the result that the perfor-
mance of the online algorithm GREEDYFIT is stochastically better than the perfor-
mance of the algorithm ONEBIN for any number of items processed. This result
gives a more realistic picture than competitive analysis and explains the behavior
observed in simulations.

1 Introduction

In online optimization problems, the input data is revealed step-by-step and an online
algorithm has to take decisions that cannot be revoked once more data becomes known.
In contrast, in classical or offline optimization problems, all input data is available a
priori and therefore an offline algorithm can find better solutions than an online one.
Competitive analysis, introduced by [27] and named by [15], is by now the stan-
dard yardstick to evaluate online algorithms. It measures the quality of an online al-
gorithm by comparing its solution value to that of an optimal offline algorithm that
has full knowledge of the future. Due to its worst-case nature, competitive analy-
sis sometimes fails to discriminate between algorithms or gives an overly pessimistic
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view. Therefore there is a need for alternatives to standard competitive analysis. Var-
ious alternatives have been proposed in the literature; almost all of them are based
on the idea of weakening the offline adversary. This can be done by considering ran-
domized online algorithms [6] or by allowing the online algorithms to use more re-
sources [14]. Approaches which consider randomized input sequences include the dif-
fuse adversary [16], average-case competitive analysis [25] and smoothed competitive
analysis [5]. Direct comparisons of online algorithms are done in comparative analy-
sis [16], the relative worst order ratio [7], and bijective analysis [1]. For a recent survey
on probabilistic alternatives, see [13].

Stochastic dominance analysis. In this paper, we propose a new method for prob-
abilistic analysis of online algorithms. In our approach we compare two algorithms
directly, i.e., without reference to a hypothetical optimal offline algorithm. For this
comparison we use the concept of stochastic dominance. Stochastic comparison meth-
ods have been successfully applied in areas like queueing theory [26], finance, eco-
nomics and in particular decision under risk [23]. In this paper we introduce these
concepts to the study of online algorithms.

We analyse the performance of online algorithms on random input sequences. The
value of a solution obtained by an online algorithm is then described by a random
variable. To compare two algorithms, one can compare the induced random variables.
The most common way to do this is to compare their expected values, which results
in average-case analysis. In a sense, this is the simplest form of a stochastic order.
A more distinctive approach is to use a stronger stochastic order: the stochastic domi-
nance order. A random variable X is stochastically dominated by a random variable Y,
denoted by X < Y, if

PriX >x] <Pr[Y >x| forallxeR.

To apply this to the analysis of online algorithms, suppose the solution values of two
online algorithms .7 and Z are given by random variables ¥’ and x?, respectively.
We then say that o7 is stochastically better than 2 (for a minimization problem), if
17 <ax”.

Notice that using stochastic dominance analysis, we compare probability distribu-
tion functions instead of aggregated statistics like the maximum or the average. In this
respect it is similar to bijective analysis [1], which is in fact a special case of stochastic
dominance analysis.

We remark that stochastic dominance has been used for the analysis of algorithms
before, see e.g., [22]. So far it was used to simplify parts of an analysis, e.g., to
establish that a certain easier-to-analyze model provides bounds on the expectation of
the real model studied. However, our usage is different: We use stochastic dominance
to assess the relative quality of two online algorithms.

Our contribution. We propose a new probabilistic analysis of both deterministic
and randomized online algorithms. As far as we know, this is the first use of stochastic
dominance in the analysis of the quality of online and approximation algorithms.

We apply this new probabilistic analysis on online algorithms for the so-called
bin coloring problem introduced by Krumke et al. [18], in which unit sized items of
different colors need to be packed in bins of capacity B so as to minimize the maximum
number of distinct colors in a bin. We will refer to the number of different colors in a
bin as its colorfulness. Krumke et al. showed the counter-intuitive result that the trivial



algorithm that packs the items in one bin until the bin is full outperforms a greedy
algorithm in terms of competitive ratio. However, simulations show that the greedy
algorithm actually gives significantly better results than the trivial one.

In our analysis, we assume that the color sequence is generated by choosing the
colors i.1.d. according to a color distribution Y. In this model, all online algorithms
eventually have to produce a bin with colorfulness equal to the capacity of the bins
when the number of colors is sufficiently high. This implies that in this case, all online
algorithms are asymptotically equally bad. Moreover, the asymptotic competitive ratio
is 1 with probability 1. Both issues indicate that asymptotic probabilistic analysis does
not give meaningful results.

Therefore, we compare the transient quality of two online algorithms for the bin
coloring problem using stochastic dominance. We can show that the greedy algorithm
is stochastically better than the trivial algorithm on any length of the sequence and any
color distribution y. We also obtain a similar result when the objective is the sum of
colorfulnesses of the bins instead of the maximum colorfulness. Both results are based
on an analysis of Markov chains related to the algorithms.

We emphasize several implications of this result. The fact that online algorithm
4/ is stochastically better than online algorithm 2 implies not only that the expected
value of &7 is bounded by that of 4, but also that the average competitive ratio of ./
is not more than that of 8. The average competitive ratio is defined as the ratio of
the expected value of the online algorithm to that of the offline optimum. Furthermore
it implies that ./ remains superior to 4 for all other performance measures that are
nondecreasing functions of the considered objective function, which is of particular
interest if the online optimization problem is actually a subproblem in some bigger
context. By considering the uniform color distribution, our result can be interpreted as
a counting result stating that there are more instances for which <7 manages to achieve
a low maximum colorfulness than for 2.

Structure of the Paper. Section 2 defines the problem variants and discusses an ap-
plication to elevator control. In Section 3 we present our new approach for the analysis
of online algorithm based on stochastic dominance. We apply this approach to the
analysis of bin coloring algorithms in Section 4. Section 5 discusses briefly some ad-
ditional computer proof results and concludes the paper. In the appendix we present
details on why existing proof techniques for stochastic dominance are not applicable
here and how one of these techniques can be extended to obtain the computer proofs.

2 Problem definition and an application to elevator con-
trol

An instance of the bin coloring problem is described by the number of simultaneously
open bins m, the bin capacity B and a sequence of n unit sized items, each of which
has one of C colors. The items need to be packed in the open bins and whenever a
bin has B items, it is closed and replaced by a new empty bin. The colorfulness of a
bin is the number of different colors in this bin. We consider two objective functions:
The original one considered in [18] is to minimize the maximum colorfulness of all
bins. In addition, we also consider minimizing the sum of colorfulnesses of the bins,
which is equivalent to minimizing the average colorfulness. We will refer to these
variants as max-BC and sum-BC, respectively. In the online versions of both variants,



the items arrive one by one and must be irrevocably assigned to a bin before the next
item becomes known.

The bin coloring problem was originally motivated by an application to automated
order picking [18]. Since then it has found applications in vehicle routing [24], net-
working [19], and elevator control, as described at the end of this section. It is shown
in [24, 19, 18] that the bin coloring problem is NP-hard and that it cannot be approx-
imated in polynomial time within a factor of 4/3 unless P = NP. In [19] and [18]
algorithms are provided that find a solution of cost OPT + 1 in the case that there are
exactly mB items.

We consider the following bin coloring algorithms.

GREEDYFIT packs an item having a color that is already in one of the open bins,
in the bin carrying that color and, if the color is in none of the open bins, then
chooses a bin which currently has the least number of different colors.

ONEBIN uses only a single bin, i. e., it packs all items in the same bin until it is full
and replaced.

FIXEDCOLORS uses a prescribed color-to-bin-assignment to put the items into bins
according to their colors.

Observe that FIXEDCOLORS is somewhere between ONEBIN and GREEDYFIT: it
takes advantage of all available bins, but uses a static assignment rule of colors to
the bins. The main part focuses on results about ONEBIN and GREEDYFIT; results
about FIXEDCOLORS can be found in the appendix.

Krumke et al. [18] showed that the competitive ratio of ONEBIN is at most 2m — 1
and that of GREEDYFIT is at least 2m. That is, they established the counterintuitive
result that in terms of the competitive ratio, the trivial algorithm ONEBIN is better than
the more sophisticated algorithm GREEDYFIT. The authors mentioned that the most
challenging issue is to analyze the algorithms from an average-case point of view to
explain the clear dominance of GREEDYFIT over ONEBIN observed in simulations.
Such an average-case analysis is a consequence of our results.

For probabilistic analysis, we assume that the number of open bins m, the bin ca-
pacity B and the number of colors C is given deterministically. The color sequence,
however, is generated by chosing each color independently according to a probability
distribution function 7y over the colors.

Note that in this model, all online algorithms eventually have to produce a bin with
colorfulness B if the number of colors is sufficiently high, say C > 2mB. This implies
that in this case, all online algorithms are asymptotically equally bad. Moreover, since
eventually there will be a color subsequence of length 2mB with all colors different, the
asymptotic competitive ratio is 1 with probability 1. Both issues indicate that asymp-
totic probabilistic analysis does not give meaningful results. Instead it is necessary to
study the transient behavior instead of the asymptotic behavior of the algorithms.

Let the random variables yCF and yOB denote the maximum colorfulness attained
after processing n items using GREEDYFIT and ONEBIN, respectively. We will show
that GREEDYFIT is stochastically better than ONEBIN after # items, i. e., that xf’F <st
OB, The competitive analysis results of Krumke et al. [18] imply that there is a
sequence on which ONEBIN gives better overall colorfulness than GreedyFit, i.e.,
GREEDYFIT is not sequence-wise at least as good as ONEBIN.



Application to elevator control. Before starting our stochastic dominance analysis,
we briefly explain an interesting connection between the online bin coloring problem
and the relative performance of conventional 2-button elevator control and elevator
control based on destination calls. In the latter system, a passenger registers his or her
destination floor right at his start floor instead of the travel direction only. This way,
the elevator control has more information as a basis for its decisions which hopefully
leads to better performance.

Let us consider a group of L elevators operating in an office building with N floors.
Elevator engineers consider different traffic patterns for analyzing elevator control per-
formance. The most import one is up peak traffic: In the morning, there is a high-
intensity traffic from the entrance floors to the office floors. Up peak traffic is consid-
ered to be the most demanding traffic situation [4], so it is often used for dimensioning
an elevator system. An important figure in this context is the (up peak) handling ca-
pacity HC [4]. The handling capacity is defined as the critical passenger arrival rate: If
the passenger arrival rate is higher than the handling capacity, the system cannot cope
with the resulting traffic and waiting times increase rapidly. The handling capacity is
inversely related to the time needed for a single roundtrip, RTT. Elevator engineers
estimate RT T using the formula

RTT =2Ht,+ (S+ 1)t,+ Py,

where H is the highest floor reached, #, the time needed to pass one floor, S is the
number of stops needed to unload the passengers, #; the time per stop, P is the cabin
capacity, and #; the time to unload one passenger. Note that only H and S depend on the
actual load of the lift. For calculations, H is usually assumed to be N or N — 1, which
is justified when the cabin capacity P is high. The number of stops S is calculated by
assuming some distribution of the destination floors.

Let us assume that the passenger arrival rate is so high that the elevators leaving the
main entrance floor are always full (this is also assumed in the formula for the handling
capacity above). Since we are only interested in the number of stops S for a roundtrip,
we can model the passenger sequence by a sequence of destination floors only. Viewing
the destination floors as colors and the elevators as bins, the situation can be seen as
a bin coloring problem. The number of distinct colors is the number of floors in the
building, N, whereas the bin capacity is equal to the capacity of an elevator, P. As H
is usually assumed to be either N or N — 1, to minimize RT T we need to minimize S,
the number of stops of one elevator. That is, in terms of the bin coloring problem, we
want to minimize the average colorfulness of the bins, thereby motivating the second
objective that we consider.

We now want to compare the RT' T for a conventional system to that of a destination
call system using our bin coloring analysis. In a conventional system, passengers board
the lifts in the order of their arrival at the main entrance floor. The stops of the result-
ing roundtrips are determined by the sub-sequences of size P of the destination floor
sequence. That is, the operating of a conventional system can be modeled by ONEBIN.

For a destination call system the elevator control has the possibility to reduce stops
by assigning passengers with the same destination floor to the same lift and balancing
the number of stops between the L lifts. A natural strategy to do this is the GREEDYFIT
algorithm, using up to L bins.

As we will see in Theorem 4.9, the average number of colors achieved by GREEDY-
FIT is stochastically dominated by that of ONEBIN. Applied to our elevator setting
this means that the total number of stops in the destination call system is stochastically



dominated by that of the conventional system, which implies the same relation for the
RTT of both systems. Since X <y Y implies 1/X > 1/Y, we get that the handling
capacity of a destination call system is higher than that of a conventional system, in-
dependent of the destination floor distribution. Note that we could not conclude that
the expected handling capacity is larger if we had shown only that the expected RT T
is smaller.

3 Stochastic dominance and Markov chain models for
online algorithms

Almost all probabilistic analyses of online algorithms up to now are more or less aver-
age case analyses, i. e., they focus on the expected performance. Sometimes results on
the expected performance are used to obtain high probability or asymptotically almost
surely results. Algorithms are compared by considering their expected performance,
e. g., their expected competitive ratio. In this paper we propose to compare algorithms
by looking at their objective value distributions using stochastic orders, in particular
the stochastic dominance order. A random variable X is said to be stochastically dom-
inated by a random variable Y, written X < Y, if

PriX >x] <Pr[Y >x] forallxeR. (1)

Suppose we can describe the objective values of two online algorithms <7 and £ af-
ter n steps by random variables x,'f{ and x,’,% , respectively. We then say that < is
stochastically better than % w.r.t. to the considered input distribution if x,ff <st x;?
for all n € N (assuming a minimization problem). Having a stochastic dominance re-
sult for two online algorithms has some nice consequences due to the properties of this
stochastic order.

Theorem 3.1 (see e.g., [23]) Let X and Y be two random variables with X <Y and
f: R — R be some nondecreasing function. Then

e EX]<E[Y]and
L4 f(X) <st f(Y)

Suppose (X,)nen, and (Y,)nen, are sequences of random variables that converge
in distribution to X and Y, respectively, and that satisfy X, <s Y. Then

o X Sst Y

Assuming that the random variables X and Y measure the performance of algo-
rithms o7 and 2, respectively, the first part of Theorem 3.1 states that if algorithm &7
is stochastically better than 4 it is also better in expectation. It also implies that .’ has
a better expected competitive ratio than Z, where the expected competitive ratio of an
online algorithm ALG is defined as the smallest ¢ such that

E[ALG] < c-E[OPT]. )

The second part of the theorem states that .7 remains superior to 4 for all other perfor-
mance measures that are nondecreasing functions of the original performance measure.
Finally, the third part says that if .27 is stochastically better than 2 for any point in time,
then it is also better in the limit.



Stochastic dominance results admit an interesting interpretation if the input se-
quences are uniformly distributed. It is then possible to view the probabilistic result
deterministically as a counting result. Stochastic dominance then implies that the
better algorithm achieves a low cost on more sequences than the worse one, i.e., it
is more robust w.r.t. the unknown future, a property that is certainly desirable for
an online algorithm. In fact, stochastic dominance in the special case of the uni-
form distribution is equivalent to a recent deterministic way to compare online al-
gorithms, known as bijective analysis [1, 2]. Let S, denote the input sequences of
length n and consider two online algorithms ALG; and ALG,. ALG; is said to dom-
inate ALG, w.r.t. bijective analysis, if there is a bijective mapping ¢ : S, — S, such
that ALG; (o) < ALG»(¢ (o)) for any o € S,. Intuitively, the input sequences are
“remapped” such that ALGj is “pointwise” better than ALGy.

It is quite natural to model the working of an online algorithm on random input as
a (time homogeneous, discrete time) Markov chain, where the state space is given by
the configurations an online algorithm generates while processing the input sequence.
Formally, we will consider the following Markov chain model for online algorithms
for minimization problems. A valued Markov chain (X,)) is a Markov chain X =
(X)nen, on state space . together with a valuation function x: ¥ — V for some
V C Ny. The random successor state of state s € . is denoted by X (s).

We now present valued Markov chain models for max-BC and sum-BC algorithms
that are used for our stochastic dominance results in the next section. The state-space
of the valued Markov chains is determined by the instance, i.e., the parameters m,
B, and C, whereas the transitions model the working of the algorithm and are thus
algorithm-dependent. Thus depending on the algorithm only a subset of the full state-
space may be reached. The probabilities of the transitions arise due to the color distri-
bution ¥.

We will use the following valued Markov chain model for max-BC algorithms. The
operation of any such bin coloring algorithm can be described on a state space which
encodes for every bin i its current number of items f; and the set of colors in that
bin, C;. Moreover, the state also keeps track of the maximum colorfulness attained so
far. Formally, we have

Zmax-BC = Smax-Bc(m,B,C) = {(fl,Cl,---,fmCm%) 0< |G| < fi < B,
Gl<x < min{B,C}}.

We will use f;(s), Ci(s), and x(s) to refer to the components of state s. Additionally,
we define ¢;(s) := |C;(s)|. The state (0,0,...,0,0,0) is called the initial empty state.
Suppose an online bin coloring algorithm .o/ is in state s and receives an item of
color c. The algorithm then changes to state s’ by putting this item in one of the bins,
say bin i. There are two cases: Either color ¢ is contained in C;(s), we say the color is
known (in bin i), or it is not, so the color is new (in bin i). We will denote the successor
state for the first case by sk() (the color ¢ is not needed to determine the successor
state), for the second by s"(¢) Tt will be convenient not to consider the new color c,
but to deal with the random state resulting from s if any new color distributed according
to 7y is seen. We will use the notation s"¥) for this random state.
The ONEBIN algorithm is then described by the transitions
.| s5) with probability 7(C; (s)), 3
s"(1) " with probability 1 — y(Cy (s)), ©)



where we use the shortcut notation y(S) := Y s ¥(s). This defines a Markov chain
which we denote by OB(m,B,C,7). Note that although ONEBIN uses only the first
bin, we consider OB(m, B,C,y) as working on the whole state space with m bins.

Similarly, we can give a Markov chain GF(m,B,C,7y) for GREEDYFIT. GF(s) is
the bin GREEDYFIT selects for an item with a new color in state s. Depending on the
tie-breaking rule used by the specific variant of GREEDYFIT, GF(s) may or may not
be a random variable. We only need that GF(s) is one of the bins having in state s the
smallest number of colors. The successor state s’ of s is given by

|

The operation of online algorithms in the sum-BC problem can be captured by a
similar Markov chain model. The main difference is that the y-component is no longer
the maximum of the colorfulness seen so far, but the sum. Note that the resulting
Markov chains are infinite. We can use the state space

k(i) with probability y(Ci(s)) 1<i<m,

4
n(GF() with probability 1 —y(U; Ci(s)). @

L O

Frambe = Faampe(m,B,C) = { (£1,C1 o, fons o) |0 G < fi < B,

ICi| < min{B,C},x € NO}.

The x-component increases each time a new color for a bin is encountered.

To avoid notational overhead, we will use the same notation for both problem vari-
ants. Therefore the sum-BC-Markov chains for ONEBIN and GREEDYFIT will be de-
noted by OB(m,B,C,y) and GF(m,B,C,7), too. We use the notations OB (m,B,C, ),
and GF(m, B, C, ), for the random state after n steps when ONEBIN and GREEDYFIT
are started in the initial empty state.

In our setting there are basically two ways to measure the performance of an on-
line algorithm. The first, more natural one, was already introduced: We look at the
evolution of the valuation over time, i.e., at % (X,) if (X, ) is a valued Markov chain
modelling the algorithm. But we may also ask: How fast does the valuation grow, i.e.,
for how many steps can the algorithm “guarantee” that the valuation is at most v € V'?
Of course, an algorithm is regarded to be good if it keeps a low valuation for a long
time. Formally, we look at the stopping time 7y, a random variable that gives the first
time the Markov chain X reaches a state with valuation at least v. The following result
states that both performance measures are actually equivalent if we compare algorithms
with the stochastic dominance order. The theorem is an extension of a result in [21].

Theorem 3.2 Let (X,9) and (Y, y) be valued Markov chains on state spaces .x and
Sy with common valuation space V- C Ny. Assume that the transitions of X and Y are
such that the value of a state is nondecreasing in each step and that ¢ (Xo) = y(Yp).
Then the following are equivalent:

1 Ty <¢Ty Vvev.
2. 0(Xy) <aq ¥(Yn) VneN.

Proof. Let the Markov chain X be defined on the probability space (Q,.<7,Pr). The
stopping time Ty is then a random variable 7y : Q — Ny that is defined by

Ty (@) :=min{n| ¢ (X,(0)) > v}



for each @ € Q. Since ¢(X,(®)) > ¢(X,,(®)) whenever n > n’, we have the equiva-
lence
(o) <n < ¢X,()) >,

which implies
Pr[T} < n] = Pr[9(X,) > v].

Of course, analogous statements hold for ¥ as well.
We now have the following chain of equivalences.

O(X) <st ¥(Yn) VneNp
< Pr(¢(X,) >v]<Prly(Y,) >v] VneNyveV
<= Pr{ly <n]|<Pr[ly <n] VYneNyveV
ST <g Ty Wev.

4 Stochastic dominance between ONEBIN and GREEDY-
FIT

The goal of this section is to show that, in both problem variants,
X(GF(I’)’Z,B,C, ')/)n) <st X(OB(W[,B,C, Y)n) Vn

for all parameters m,B,C and color distributions y. This kind of result is known as
comparison result for Markov chains in the probability theory literature, see e. g., [23].

Unfortunately, the general comparison results for Markov chains based on stochas-
tic monotonicity [23] are not sufficient to prove stochastic dominance between GREEDY-
FIT and ONEBIN. Doisy [9] developed a comparison criterion that is not based on
stochastic monotonicity, however, this result is also too weak. A detailed discussion
can be found in the appendix.

4.1 Preliminaries

Consider valued Markov chains (X,y) and (Y,)) corresponding to bin coloring al-
gorithms, where )} measures either the maximum or the sum of the colorfulnesses
encountered. Recall that for a valued Markov chain (X, x), we denote by 7y the first
time the Markov chain X reaches a state with valuation at least v. By Theorem 3.2, it
is suffient to show 7y <y Ty for all v € V to show x(X,) <g x(¥,) for all n € Ny. We
will therefore analyze the stopping times to prove our stochastic dominance result. In
the sequel, we denote by Ty (s) the stopping time for reaching a state with valuation at
least v when started deterministically in state in s.

How can we show T}/ (s0) < Ty (s0)? In order to apply a kind of induction tech-
nique we introduce a family of Markov chains (X(n))n ¢y derived from a Markov
chain X as follows. The state space of X(n) is . x {0,...,n} and the transitions
are defined by

Pr(X(n)is1 = (s, i+ 1) | X(n)i = (s,i)] =Pr[Xiy =5 | Xi=s] V0O<i<n,
Pr(X(n)iy1 = (s,n) | X(n); = (s,n)] :==1 Vi> n.



The Markov chain X () can be thought of as an time-expanded, acyclic version of the
chain X for the first n steps. Clearly, we have

Pr[T¥(s) = i] = Pr | Ty, ((5,0)) = z} VO <i<n. )
So in order to show Ty (so) < Ty (s0), we can prove that
Ty () ((50,0)) <st Ty () ((50,0)) Vn eN.
To simplify notation, we will write Ty, () for T ((s,0)) from now on. We have the

following simple result.

Lemma 4.1 For any valued Markov chain (X, x) the stochastic dominance relation

T (nr1) (8) <st Ty (9)
holds for all states s, n € Ny, andv € V.

Proof. Consider a sample path @ = (Xo, X1, ...,X,) of X(n) with Xy = 5. Obviously, ®
can be extended to a sample path @' = (Xo, X, .., Xy, Xy+1) of X(n+1) and all sample
paths of X (n + 1) starting in s are obtained this way. There are two cases:

1. x(X,) > v: For all @’ that are extensions of ® we have T}}'(nﬂ)(s) = T;W(s).

2. x(X,) <v: For those o, T ) (s) is infinite, whereas for any extension @’ T§(n+1) (s)
is either n+ 1 or infinite, too. Thus T)‘(’(Hl)(s) < Ty >(s).

n

To analyze the stopping times, we will employ the concept of a mixture of random
variables.

Definition 4.2 Let (X,;)mem be a family of random variables and ® be an M-valued
random variable. The random variable Y defined by Y := Xg), i.e., the X-variable to
use is given by the realization of ®, is called a mixture and denoted by [(X)mem | ©).

An important property of < is that it is closed under mixture, as stated in the
Mixture Theorem.

Theorem 4.3 ([23, p. 6]) Suppose [(Xm)mem |®] and [(Yy)mem | ®] are two mixtures
controlled by the same random variable O satisfying X, <¢ Y, for allm € M. Then we
have

[(Xin)mem | O] <t [(Yin)mem | O]

For two random variables X and Y, we will frequently write X = Y to mean that
they have the same distribution function.

4.2 GREEDYFIT is better than ONEBIN: max-BC

We will now apply the strategy described above to the comparison of the GREEDYFIT
and the ONEBIN bin coloring algorithms. The main technique is to analyze a kind of
stochastic recursion for T}}’(n) based on a mixture of random variables.

Let OB = OB(m,B,C,7) for fixed parameters m,B,C,y. In a state s € SaxBC
ONEBIN does the transitions to states

sk with probability ¥(C) (s)),
s"() with probability 1 —¥(Ci(s)).

10



Using the random variable ®: #,.x.8c — N defined by

O(s) i {1 the next color is known in bin 1,

2 the next color is new in bin 1,

we can come up with a recursive expression for 7, (n) (s), namely

. 0 x(s) >v,
oB(n) (8) = - [TovB(n—l)(Sk(l))’TOVB(n—l)(Sn(l)) ‘@(s)} x(s) <v.

This recursion and the Mixture Theorem 4.3 are the most important ingredients for the
proofs to come.

We call two states s,5 € .Zmax-sc OB-equivalent, if the valuation, the number of
items and the set of colors in bin 1 are the same in s and s, i.e., if x(s) = x(s'),
fi1(s) = fi(s), and C1(s) = Cy (s'). Note that ONEBIN behaves exactly the same in two
OB-equivalent states and therefore the stopping times from two OB-equivalent states
coincide. The following lemma gives some useful comparisons of stopping times from
certain states in the OB(n) chains.

(6)

Lemma 4.4 Consider the ONEBIN Markov chain OB = OB(m, B, C, ) for parameters
m,B > 2, C, and color distribution y. We have for all states s € SnaxBc, 1 €N, and
veV:

1. TO"B(n>(s“(1)) <s TOVB(n)(sk(l)), and

2. Top (s"(M) <q T8 (s") for every state s' that is OB-equivalent to s.

Proof. Lets € Ymax-sc be such that x(s“(l)) < v (the case x(s“(1>) > yis trivial).

1. Observe that both s*(!) and sX(1) have the same number of items in bin 1, say f.
In the case f = 0 both states are OB-equivalent, since bin 1 is empty then. There-
fore, T5p ) (s"()y = TgB(n)(sk(U).

For f > 0 the evolution from both states will be identical after B — f steps, since
bin 1 is then empty again. It is therefore sufficient to show

TOVB<B—f) (Sn(l)) <q TOVB(Bff) (Sk(l))

forall 1 < f < B. We will show this by induction on j := B — f.

To start the induction, consider j = 1. There are two cases:

e ci(s) =v—2: We have Pr [TOVB (s"M) <1] <1and

(K0 = o] = 1.

()
Pr|Zon ()

o ci(s) <v—2: Then Tgy (s"() = T3s() (s*) = oo,
In both cases, the stochastic dominance is immediate.

Let us now consider the induction step, i.e., j > 1. The key observation is that
(since we need at least two items to close bin 1)

fi(s"DEDY = 7 (KDY g
Cl(sn(l),k(l)):Cl(sk(l)n(l))’



which means that both states are OB-equivalent. Using the Mixture Theorem 4.3,
we can then estimate

() (")
=1+ T(I)}B(];l)( n(l)k(l)) TSB(; 1)(Sn(1),n(1))‘®(sn(1))]

Sse 1+ T(;B(j—l)(sn(l)’k(l))
(by induction)

(OB-equivalence)

Sse 1+ [ OB(j- 1)( KK )vTch(jfl)(sk(l)’nm) ‘ @(Skm)}
(by induction)
= Ton(j) (")
2. Since s and s’ are OB-equivalent, we have

Topm (8) = Top( (5) (OB-equivalence)
=1+ T(;B (Sn ) TOVB )(Sk(l)) ’G(S)]

Zst L+ T, OBn 1(sn ) (by 1.)
Zst 1+ T(;B(n) (s (by Lemma 4.1)

>t T (™).

Theorem 4.5 Let OB and GF be the ONEBIN and GREEDYFIT max-BC-Markov chains
for fixed parameters m,B,C with B,m > 2 for some color distribution y. We have for
all states s € S maxc, REN, andv € V:

5B (n) (8) <st Tgp(n) ()-

Proof. The proof is by induction on n. Since GREEDYFIT is not worse than ONEBIN
for a single step in each state s, we have T, OB( )(s) <st Tgr(y (s).

The proof idea for the induction step is depicted in Figure 1. Suppose we know
that 73, ) (s) <a TéFW (s) for all s € Sax.Bc. Consider a state s € S axpc having

x(s) < v. Define the random variable ®: S axpc — {1,...,m+ 1} by

_ o JGils) 1<i<m,
Pr[G)(s)—l]—{l_y(UiCi(s)) R

i.e., ® in a sense “selects” the GREEDYFIT successor of state s. Using ®, we can write
the recursion for the stopping time of OB as

TOvB(n+l)(s)
=1+ [TOVB(n)(Sk(I)) TOVB( )( n(l)) TC\))B( )( n(l)) ‘(9(5)} .
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OneBin
TgB(n+1)(s)
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Ty (s ) Ty (55 2) T (857000 T (s
L L (3) \ |
T5F<n+1> (s)

GreedyFit

Figure 1: Proof idea for induction step in the proof of Theorem 4.5. The upper part
shows the transitions of the OB Markov chain, the lower part those of the GF chain,
both with corresponding stopping times. Using Lemma 4.4 and the induction hypothe-
sis, one can map (dashed lines indicate the mapping ®) the successor states of the OB
chain to those of the GF chain such that we have stochastic dominance for each pair of
stopping times.

Observe that s<(), 2 < i < m, are OB-equivalent to s, s(CF())

, is either OB-equivalent
to s or equal to s"(1). We use Lemma 4.4 to bound this by

S 1 [T (50 Ty (557, T (5T ‘ o(s)].

which by the induction hypothesis is bounded by

ot 1 [Ty (50 Ty (50, T (™) [ 0(5)]
= TéF(n+1)(S)'
This concludes the induction step and the proof.

Corollary 4.6 Let OB and GF be the ONEBIN and GREEDYFIT max-BC-Markov
chains for fixed parameters m,B,C and color distribution y. We have for all states
§ € Smax-BC, In particular the initial empty state, and for all n € Ny that

X (GF(s),) <s 2(OB(s),).

Proof. The cases m =1 and B = 1 are trivial. For the remaining cases, combine Theo-
rems 3.2 and 4.5 and the relation of OB(n) and OB as well as GF(n) and GF according
to Equation (5).

4.3 GREEDYFIT is better than ONEBIN: sum-BC

The analysis of the sum-BC problem is very similar to the one of max-BC in the pre-
ceding section. Recall that the state space of the sum-BC only differs from the one
of the max-BC in its interpretation of the y-component: it now counts the sum of the
colorfulnesses of all used bins instead of the maximum. Therefore, the )-component

13



increases with every transition due to a new color. Nevertheless, recursion (6) for the
stopping times is also valid for the analysis of the sum-BC.

Note that the proof of Theorem 4.5 is based only on Lemma 4.4. The proof of item 2
of Lemma 4.4 only needs item 1 and OB-equivalence. The notion of OB-equivalence
introduced for the max-BC is also appropriate for the sum-BC. In particular, stop-
ping times for two OB-equivalent states coincide also for the sum-BC-Markov chain of
ONEBIN. Due to these observations, it is sufficient to prove an analogue of item 1 of
Lemma 4.4 to establish stochastic dominance between GREEDYFIT and ONEBIN for
the sum-BC. The proof uses the concept of a coupling Markov chain.

Definition 4.7 Let X = (X,)nen, and Y = (¥},),cn, be Markov chains on state spaces
Y% and #y, respectively. A Markov chain Z = ()2 ,Y) on state space Sy X Sy is a
coupling Markov chain if X and Y are distributed as X and Y, respectively. However,
X and Y need not be independent.

Lemma 4.8 Consider the ONEBIN Markov chain OB = OB(m, B,C, ) for parameters
m,B > 2, C, and color distribution vy for the sum-BC. We then have

TOVB(n) (Sn(l)) <st TOVB(n) (Sk(l))
for all states s € Syum-Bc, n €N, andv e V.

Proof. We will show the stronger T3 (s"(1¢)) <g T35 (s5(1)) for all ¢ ¢ Cy(s) by con-
structing a coupling Markov chain Z = (X,Y) on a state space which is a subset
of Fum-Bc X Fsum-BCc- The first component of Z behaves exactly as OB started in
state s"(1:*) and the second component as OB started in s<(1).

A state (s",s5) of Z that can be reached from the initial state (s"(1:¢), sX(1)) will
always satisfy the invariant

e cither x(s") > x(s5), f1(s") = f1(s*), and C; (s") = C1(s*) or
o x(s") = x(s) + 1, fi(s") = fi(s*), and Cy(s") = C1 (s*) U {c}.

Since in both cases x(s") > x(s*), the invariant implies
Pr |7y (s"01) < T (K1) | =1,

so by Strassen’s Theorem (see e. g., [20] or Theorem B.2 in the appendix) the stochastic
dominance is established.

It remains to describe Z. The initial state is (s““vc) , sk(l)), which obviously satisfies
the invariant. Consider any state (s",s*) satisfying the invariant. If s" and s* differ at
most in the y-component, then the transitions of Z are such that the same happens in
both components, leading to further states satisfying the invariant.

Suppose s" and s* differ also in the C-component. The transitions are then deter-
mined by the next color ¢’ drawn according to ¥ as follows:

(1), k1)) o7 €4 () = €y () U fe),
(Sn,k(l),sk,n(l,c/)) J =c,

(sn,k(l),skvk(l)) ¢ €Cy(s5).

Note that all the states satisfy the invariant and that the second kind of transition leads
to states which differ at most in the -component (the other way of reaching such a

14



state is when bin 1 is empty again). Finally, we can verify that these transitions mirror
the behavior of the OB chain in each component:

Pr [Xn+1 = Sn’n(l’c/)

X, =" = 1=1(C1("),

Pr |:Xn+1 = s |x, = Sn} =7(Ci(s")),

Pr [YnJrl = k(1<)

Y =] = 1-7(Ci (")),
Y= st| = 7(Ci ().

Theorem 4.9 Let OB and GF be the ONEBIN and GREEDYFIT sum-BC-Markov chains
for fixed parameters m, B,C and color distribution y. We have for all states s € .um-BC,
in particular the initial empty state, and for all n € Ny that

%(GF(s)x) <st % (OB(s)n).

Pr [YH] = gkok(D)

5 Concluding Remarks

We introduced a new approach for the probabilistic analysis of online algorithms which
is based on the concept of stochastic dominance. We applied this approach to the anal-
ysis of online algorithms for bin coloring problems. This analysis explains simulation
results much better than the competitive analysis results existing so far and thus re-
solves an open problem posed in [17].

In order to prove our results, we started by trying several known methods, in par-
ticular ones based on monotonicity and couplings. It turns out that these methods
are not powerful enough to prove the stochastic dominance between GREEDYFIT and
ONEBIN. The detailed results of this attempt are reported in the appendix.

Another result of this work is an algorithm based on Theorem B.3 in the appendix
that can be used to construct certificates for a stochastic dominance relationship be-
tween two Markov chains. Using this algorithm, we could investigate another bin
coloring algorithm called FIXEDCOLORS, which uses a fixed color-to-bin assignment
to assign the items to bins based on their colors. Observe that FIXEDCOLORS is some-
where between ONEBIN and GREEDYFIT: it takes advantage of all available bins,
but uses a static assignment rule of colors to the bins. Not surprisingly, we observed
in simulations that the performance of this algorithm is “in-between” ONEBIN and
GREEDYFIT. The algorithm was able to find certificates for stochastic dominance for
all parameters m, B, and C we tried, assuming a uniform color distribution. The re-
sults are reported in Table 1, which shows the smallest number / of “lookahead” steps
needed to obtain a certificate, i.e., [ = 2 means that the construction essentially con-
siders two items at once. For full details, see the appendix. It is interesting to note
that for B = 2 and for GREEDYFIT against ONEBIN / = 1 is sufficient, indicating that
the “proof™ is particularly simple. In fact, the case B = 2 can in general be dealt with
by a straightforward coupling argument and GREEDYFIT against ONEBIN admits the
proofs presented in this paper. The fact that the remaining cases require / > 1 is an
indication that more refined proof techniques are needed.

For the future it is interesting to investigate such refined proof techniques, maybe
considering weaker stochastic orders. Similar techniques might also apply for other
combinatorial online problems like bin packing or paging, see [11] for some first steps
in this direction.
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A Further comparison methods for Markov chains

Some standard comparison methods for valued Markov chains are known from the
literature, see e.g., [23]. It turned out, however, that these results were not strong
enough to explain the behavior of GREEDYFIT and ONEBIN. In this appendix, we
discuss several general methods for proving stochastic dominance between Markov
chains and show why they are not sufficient for our purposes.

A.1 Monotonicity-based Methods

The first comparison result for Markov chains was provided by Daley [8]. It applies
to the case that the state space . is a subset of Ny and the valuation function y is the
identity, i. e., the value of a state is the number of the state itself. Daley’s result is based
on the notion of <y -monotonicity. A transition matrix P of a Markov chain on state
space . C Ny is called <g-monotone, if

si,€ L, 51<s, = P(s1,") <a P(s2,"). @)
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For a probability distribution A and a transition matrix P on .¥ we denote by AP the
probability distribution resulting from starting with A and doing a one-step transition
according to P (this probability is given by the vector-matrix product). Daley proved
that (7) is equivalent to requiring that for all distributions A and u over . we have

A<gqpt = AP<qUuP.

Theorem A.1 (see [8]) If the Markov chains X and Y with transition matrices P and
0 and state space . C Ny satisfy

1. XO Sst YO»
2. P(s,") <« Q(s,-) forall s € .7,
3. at least one of the matrices P and Q is < -monotone,

then this implies X, < Y, for all n € Ny.

Obviously, this result is not sufficient to compare valued Markov chains with more
complex countable state spaces, since in general different states may have the same
value. In this case, y induces a partial order <, on the state space .#’ by

s<ys = x(s) <x(s). (8)

Using the theory of integral stochastic orders (see e. g., [23]) <y can be generalized
to partially ordered spaces. We will briefly recapture the notions and results needed to
apply monotonicity techniques to valued Markov chains.

Definition A.2 Let .% be a class of functions from . to R. The class .# induces a
stochastic order < z among .#-valued random variables X and Y by

X<;Y e E[fX)]<E[f(Y)] VYfeZ. )

A stochastic order arising in this way is called an integral stochastic order with gener-
ator F.

Definition A.2 defines a very broad class of stochastic orders that includes the
stochastic dominance order on arbitrary partially ordered sets. Consider a partial or-
der < on .. A function f:.¥ — R is called nondecreasing w.r.t. < if it satisfies
Sf(s) < f(s") whenever s < s for all s,s" € .. Then the stochastic dominance order <g
induced by < is generated via (9) by the set of all functions that are nondecreasing
w.r.t. <. The stochastic dominance order < used so far and defined by inequality (1)
is just the special case ¥ =R and < = <.

It is easier to check (9) if the class .# is small and has a simple structure. The
stochastic dominance order < induced by a partial order < has also a nice small
generator. A subset S C . is called a <-increasing set if s € S and s < 5" imply s’ € S.
It is not hard to see that <y induced by < on . is generated by the indicator functions
of all <-increasing subsets of .&, which are of course <-nondecreasing functions.

The theorem of Daley can be generalized to any integral stochastic order by gener-
alizing the equivalent characterization of <y -monotonicity. We call a stochastic matrix
P over .¥ < z-monotone, if for all distributions A and u over .¥ we have

A<gp == AP<gzUP.
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(a) ONEBIN Markov (b) GREEDYFIT Markov
chain OB(2,2,4). chain GF(2,2,4).

Figure 2: Small example Markov chains for ONEBIN and GREEDYFIT for the pa-
rameters m = B =2 and C = 4. The lightly shaded states are the states of maximum
colorfulness 1, the darker one is state sy,,x with maximum colorfulness 2.

Theorem A.3 (see [23]) If the Markov chains X and Y with transition matrices P and
Q satisfy

1. Xo <z Yo,
2. P(s,) <z Q(s,-) forall s € .7,
3. at least one of the matrices P and Q is < z-monotone,

then this implies X, <z Y, for all n € N.

Note that the second requirement P(s,-) <z Q(s,-) can be interpreted as “P is
state-wise better than Q. Applied to online algorithms, we can view monotonicity as
an additional property that makes an algorithm superior to all algorithms which are not
better in any state. This criterion might thus provide guidance for constructing good
online algorithms. Unfortunately, it turns out that this result is not strong enough to
explain e. g., the stochastic dominance observed between GREEDYFIT and ONEBIN.
In the remainder of this section we will show this.

We say that an online bin coloring algorithm is a partitioning algorithm, if it uses
at most one bin for the same color at any point in time. Observe that ONEBIN, FIXED-
CoOLORS, and GREEDYFIT are all partitioning algorithms. Assuming a uniform color
distribution, the valued Markov chain model for max-BC presented in Section 3 may
be simplified for partitioning algorithms as follows: Instead of keeping the set of col-
ors C; in bin i, it is sufficient to keep track of the number of colors c;. For convenience,
we assume that ¥ > 1 and we collapse all states with maximum colorfulness to a single
state smax since we are only interested in the colorfulness distribution. Moreover, we
break the symmetry by requiring that (f;(s),c;(s)) is lexicographical not smaller than
(fi+1(s),ci1(s)) in order to reduce the size of the state space. Two small examples are
given in Figure 2.
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Let GF = (GF,)en, and OB = (OB,,),cn, be the valued Markov chains mod-
elling the working of GREEDYFIT and ONEBIN, respectively, for some fixed parame-
ters m > 2, B, and number of colors C and denote by Pop and Pgr the corresponding
transition matrices. Moreover, let <, _ be the stochastic dominance order <y induced
by the partial order <, on .. The following result states that GF and OB satisfy re-
quirements 1 and 2 of Theorem A3 w.r.t. <,_g.

Proposition A.4 Let GF and OB be valued Markov chains as above.
1. GFy <, OBo.
2. Pr(s,-) <y—st PoB(s,-) for every state s € 7.

Proof. The first assertion follows from the fact that both GF and OB start in the same
state, i. e., GFy = OBy.

To establish the second assertion, consider a state s € . and let SOF and SOB be
random states distributed according to Pgr(s,-) and Pogp(s,-), respectively. We need
to show E [f(S°F)] < E [f(S°B)] for all <,-nondecreasing functions f. It is suf-
ficient to consider the indicator functions 1, of all <j-increasing sets M only. As
the valuation Y is increasing and can increase at most by one in each step, we have
E [1y(S9F)] = E [14(5°®)] whenever there is a state s’ € M with (s') < x(s) or
all states in M have valuation at least y(s)+ 2. We therefore can restrict ourselves
to the remaining sets M only. Finally, we can assume that state s is reachable in OB,
since otherwise we can modify Pog(s,-) to be the same as Pgg(s,-) without affecting
the observed behavior of the OB Markov chain.

A state s reachable by OB is of the form s = (f1,¢;,0,...,0,%). Consider a set
M C . where the lowest valuation of any state is x +1. If fi =c; =x =0, we
trivially have I [1(SF)] = E [1)/(S°®)] since both algorithms behave identically.
In any other case, GF in state s will put an item with a new color in the second bin, thus
reaching a state with valuation ¥ in any case. However, OB will by definition always
use the first bin, thus possibly reaching a state in M. Hence, we have

E [1y(S9)] =Pr[SF e M] =0 < Pr[S°® e M] = [14(S°P)]
and the claim follows.

All we still need to do in order to prove x(GF,) <4 x(OB,) by applying Theo-
rem A.3 is to show that Pop or Pgr is <;_g-monotone. However, this is not necessary
and we can get along with a weaker result. Instead, it would be sufficient to show that
one of Pog and Pgr is monotone w.r.t. some integral order < g, where . is a set of
indicator functions of <,-increasing sets including the level sets .#~, defined by

Foi={s€ 7| 1) 2 )

for each valuation v. To see this, suppose % contains the indicator functions g, of
the level sets .#~,, and one of the transition matrices is < g-monotone. Since require-
ments 1 and 2 of Theorem A.3 are fulfilled for <, _, they are also fulfilled for < #, as
Z is a set of <y-nondecreasing functions. We can thus apply Theorem A.3 yielding
Pr[x(GF,) > v] = Pr[GF, € .5,

= [ [¢,(GF,)]

< IE[g,(0B,)] by Theorem A.3 and Definition A.2

=Pr[x(OB,) =]
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for all valuations v, which is equivalent to ¥ (GF,) <y x(OB,).
However, we can show that this approach does not work. To do this we need some
more machinery.

Definition A.5 The maximal generator Z 4 of an integral stochastic order < & is the
set of all functions for which X <z Y implies E [f(X)] < E[f(Y)].

The maximal generator is useful to characterize < gz-monotone transition matri-
ces. We will use the structure of the maximal generator to show that monotonicity
arguments are not suitable for establishing stochastic dominance between online bin
coloring algorithms.

Theorem A.6 (see [23]) A stochastic matrix P is < g-monotone if and only if for every
f € .F the function f* defined by

1P(s) =B [f(P(s,)]
is an element of the maximal generator % 4.

Theorem A.7 (see [23])) If & C 4G C Zz, and ¢ is a convex cone containing the
constant functions and being closed under pointwise convergence, then Y = Z 4.

Corollary A.8 Consider an integral stochastic order < z defined by a finite class F
of functions from . to R. The maximal generator of < z is the convex cone generated
by Z.

Proof. 1t is easy to see that any function f € cone.# satisfies E[f(X)] < E[f(Y)]
whenever X <z Y. Hence, . C cone.# C Z 4. Since cone.# is finitely generated, it
is closed under pointwise convergence and the result follows from Theorem A.7.

The following result shows that the transition matrices of the valued Markov chains
for GREEDYFIT and ONEBIN are not < z-monotone for stochastic orders of the type
described above. Thus monotonicity methods cannot be applied (that easily) to show
stochastic dominance results between these algorithms.

Theorem A.9 Ler (X,)) be a valued Markov chain corresponding to GREEDYFIT or
ONEBIN operating on a color sequence drawn from the uniform distribution on C col-
ors using m bins with capacity B > 3. Furthermore, let k be the maximum colorfulness
attained by the algorithm. If k > 2, there is no integral stochastic order < z where F
is a (finite) set of indicator functions of <,-increasing sets including the level sets and
the transition matrix P of X is < g-monotone.

Proof. 1t suffices to consider GREEDYFIT since ONEBIN is obtained by running GREEDY-
FIT with one bin only.

Assume that P is < z-monotone and let g; be the indicator functions of the level
set S~k. Denote by s1,...,s; all predecessor states of smax. According to the definition
of GREEDYFIT, a predecessor state s; of smax is of the form ¢;(s;) =k—1> 1 for any
bin i. Therefore, the probability o that the next color leads to state sy is the same for
all predecessor states and it is strictly positive. Hence we have that gF' (s) = P[5 | 5]
(confer Theorem A.6) is

0 S#{Smax,Sb“.,S]},
gs)=qa s=s; 1<j<I,

1 5= Smax-
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Since g € Z, P is < g-monotone, and cone.% is by Corollary A.8 the maximal gen-
erator of < #, g,f is in cone.Z due to Theorem A.6. Thus for any s j» 1 < j <, there
exists a subset M(s j) 3 s; of all spax-predecessor states, such that the indicator func-
tion fy; == Las(s;)Ufsmar} OF M(s;) U {Smax} is in .Z, as such a subset is needed in any
conic combination of indicator functions of <,-increasing sets giving gf .

Now consider the special smax-predecessor state s = (B— 1,k—1,...,B— 1,k —
1,k—1) and its predecessor s’ = (B—1,k—1,....B—1,k—1,B—2,k—2,k—1), in
which one color less than in s is known. We can now compute £ (s) = Pr[M(s) U {smax } | 5] =
@, as no state in M(s) can be reached from s. Moreover, fF'(s') =Pr[M(s) U {smax } | §'] =
o+ 1/C, since s is the only state in M(S) U {smax } that can be reached from s’. We thus
derived fF'(s') > fF(s), but s’ < s, so fF is not a <,-nondecreasing function, thus not
in cone .. Therefore, P cannot be < z-monotone by Theorem A.6.

A.2 Coupling-based Methods

Doisy [9] proposed the following Markov chain comparison criterion, which does not
require monotonicity. Recall that given a valued Markov chain (X, ) and a state x € .
we use the notation X (x) for the random successor state of state x.

Theorem A.10 (see [9]) Consider valued Markov chains (X,9) and (Y, y) on count-
able state spaces .x and Sy, respectively. Suppose we have ¢ (Xo) <¢ W(¥y) and

Ve Sx,y €S :10(x) Syly) = o(X(x) <avw(¥(y).
This implies §(X,,) <g W(¥,) for all n € Ny.

Unfortunately, this criterion is too weak for our purposes, too. To see this, consider
the Markov chains of ONEBIN vs. GREEDYFIT in the case m = B =2 and C = 4 (cf.
Figure 2). For this case, the transition matrices are

0 1 010
po | /4 0 3/41 0

’ =1 o0 12 0 |12 |
0 0 0|1

where the lines separate the states of colorfulness 1 from the state of colorfulness 2.
Let x = (0,0, 1) (row 1) be the state of the ONEBIN chain and y = (1,1,1,1,1) (row 3)
be the state of the GREEDYFIT chain. Since x(x) = x(y) = 1 we have x(x) < x(y).
On the other hand, we have Pop(x,-) = (0,1,0) and Pgr(y,-) = (0,1/2,0,1/2). Thus
x%(OB(x)) = 1 with probability 1, whereas x(GF(y)) = 2 with probability 1/2, so
X (Por(x,-)) Zst X (Pos(y,-)). Hence, the condition of Theorem A.10 is not fulfilled.

B Computer proofs for stochastic dominance relations
between bin coloring algorithms
Interestingly, the proof of Doisy’s criterion lends itself to a generalization. To describe

this, we need the notion of a coupling that is well-known in probability theory (and in
some areas of algorithmics as well).

Definition B.1 (Coupling) Let X and Y be .¥-valued random variables on probability
spaces (Q1, 9, Py) and (Qo, %, P»), respectively. A coupling of X andY is an ./’ x .-
valued random variable Z = (X,¥) on some probability space (€,.o7, P) with
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1. X~X i.e.,IS[X <xY arbitrary] = P[X <x] and
Y.

2. Y~

Couplings are a powerful concept allowing to compare distributions with each
other. The following result, which is sometimes refered to as the Theorem of Strassen,
gives a well-known connection between stochastic dominance and couplings, see e. g.,
[20]. It states that stochastic dominance is almost as strong as a pointwise comparison
and it is the deeper reason for some of the nice properties of the stochastic dominance
order. For instance, the first two statements of Theorem 3.1 can easily be derived from
it.

Theorem B.2 (e.g., [20]) For two random variables X and Y the following are equiv-
alent:

1. X <qY
2. There is a coupling Z = (X,Y) of X and Y such that Pr [X < 17] =1

Remark For an arbitrary finite set S, consider a uniformly distributed S-valued random
variable X. Suppose we know f] (X) <y f2(X) for two real-valued functions f; and f5.
The existence of a coupling between fi(X) and f>(X) according to Theorem B.2 is
in this case equivalent to the existence of a bijective mapping 7: S — S with fj (o) <
f2(m(0o)) for any o € S, which can be obtained by the construction in the proof. Hence,
stochastic dominance analysis includes bijective analysis as a special case.

The following theorem gives a sufficient criterion for a pairwise comparison be-
tween online bin coloring algorithms. It will serve as the theoretical basis for the
computer proofs of stochastic dominance between GREEDYFIT and ONEBIN. For a
Markov chain X = (X,)nen, the I-step Markov chain X! = (X!),.cn, is defined by

X,ll =X, VneNp.
If P is the transition matrix of X, the transition matrix of X' is P'.

Theorem B.3 Let (X, 0) and (Y, y) be valued Markov chains on countable state spaces
Sx and Fy, respectively. Suppose there is a set S C {(x,y) € Sx X S | ¢(x) < w(y)}
andanl>1s.t.

1. For0 < i< there exists a coupling (X;,Y;) of X; and Y; with
Pr((Xi,¥)es] =1
and

2. for every (x,y) € S there exists a coupling (X', ¥") of X! (x) and Y'(y) with
Pr [(Xl,f/l) € S] =1.

Then we have ¢ (X,,) <g W(¥y) for all n € Ny.

Proof. 0<i< Follows directly using Theorem B.2 and Property 1.
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i >1 We construct a coupling (X,-, 17,) of X; and Y; as follows. First observe that the
couplings required by 2. define a transition matrix Z of a Markov chain on state
space S where the first component of the state evolves as the [-step Markov chain
corresponding to X and the second component as that of Y. Now leti =gl +r, 0 <
r < [. Let p be the probability distribution of (X;,¥,) on S and define (X;,Y;) as the
random state distributed as pZ9. By construction, (X;,¥;) is in S with probability 1
and has marginal distributions X; and ¥;, so by Theorem B.2 the claim follows.

Observe that the set of couplings, or equivalently, the pair (S,7), assumed by The-
orem B.3 constitute a certificate for the stochastic dominance between the valued
Markov chains (X, ¢) and (Y, y). We now describe how such a certificate can be found
using a computer-aided construction.

We assume that the colors are generated according to the uniform distribution and
consider the Markov chain model of Section A.1. In particular, we study the valued
Markov chains for the algorithms ONEBIN, FIXEDCOLORS, and GREEDYFIT. Fig-
ure 3 gives an example of an explicit construction of the set S for [ = 1 for a FIXED-
COLORS and a GREEDYFIT Markov chain, indicating the obstacles that may occur.

Of course, one can try to algorithmically find a subset S of the product state space
x x S and an integer [/ such that the couplings required by Theorem B.3 exist. Our
algorithm (see Figure 4) maintains a set F C % x %} of forbidden states, which
initially contains those pairs of states (x,y) € .Zx x %y with ¢(x) > y(y). For a
given [, we can assume w. 1. 0. g. that each Markov chain has [/ initial states having
the i-step distribution as successor distribution, for 0 <i < [. Let xp,...,x;_1 and
Yo, - --,Yi—1 be those states for the chains X and Y, respectively. Starting from the states
(x0,¥0), - -+, (X1—1,y1—1), We iteratively try to construct successor-state couplings of all
states that can be reached from there such that the probability of reaching a forbidden
state is zero. The set G is the set of “good” states that, if the construction is success-
ful, constitute the set S. To keep track of the states for which we still need to find
successor-state couplings avoiding F' we use a queue Q.

This check is accomplished by procedure COUPLING(X (x),Y (y), F) which tries to
compute for random states X (x) and Y (y) and a forbidden set F C .k x .y a coupling
(X,Y) that avoids states in F. This procedure can be implemented by solving the
following Linear Program. Let p,, be a real variable for the probability to go to state

(x, ).

min 0
s.t. Z Pxy=Pr (X (x) =] Vx € %%,
yEFy
Y py=PrlY(y) =) Wy € S,
XEyX
Pry=0 V(x,y) € F,
ngx,ygl Vx € Sx,y € Sy.

If this Linear Program is feasible, COUPLING(X (x),Y (y), F) indicates success and re-
turns the computed probabilities in matrix Z, otherwise it indicates the failure.

If the coupling construction was successful for state (x,y), we need to ensure that
we can successfully couple from all states reached via the successor-state coupling.
Therefore we add (x,y) to Q and G if it is not in G yet. In the case there is no F-
avoiding successor-state coupling from state (x,y), state (x,y) needs to be forbidden,

25



FixedColors

GreedyFit

(a) First stage: Product coupling with forbidden states
(i.e., states that cannot be part of S) and forbidden tran-
sitions into the forbidden states.

FixedColors

GreedyFit

(c) Third stage: The transition from (0,0;0,0:1 |
1,1;1,1:1) to (1,1;0,0:1 | 2) cannot be avoided via cou-
pling, so the state (0,0;0,0:1 | 1,1;1,1:1) has to be forbid-
den as well. The ingoing transition can be avoided via
coupling.

FixedColors

GreedyFit

(b) Second stage: The transition from (1,1;1,1:1 |
1,1;1,1:1) to (1,1;0,0:1 | 2) can be avoided via coupling.

FixedColors

GreedyFit

(d) Final stage: Resulting coupling consisting of the
set S and the transitions staying in S.

Figure 3: Example construction of a set S that for / = 1 shows that GREEDYFIT is
superior to FIXEDCOLORS for m = B = 2. The upper component of each state is the
GREEDYFIT state, the lower the FIXEDCOLORS state.
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Input: Valued Markov chains (X, ¢) and (Y, y) and their initial states x, . ..,x;—; and

—_— -
N~

13:
- end while
. construction successful, S = G

R A A ol S

_.
- e

Y05---5Yi-1

D F{(xy) € Zx xS | 0(x) > y(y)}
:0,G+0
: fori=0,...,1—1do

G+ GU {(xi7yi)}

if “UPDATEVIACOUPLING(x;,y;) then
stop; construction failed

end if

: end for
: while O # 0 do

remove state s = (s1,s2) from Q

if “UPDATEVIACOUPLING(s],s;) then
stop; construction failed

end if

: procedure UPDATEVIACOUPLING(states x and y)

(success, (X,¥)) +~ COUPLING(X (x),Y (y),F)
if success then
for s’ € {(x,y) € Sx x H | Z(x,y) >0} do
if s’ ¢ G then
G+ GU{s'}, 0+ QU{s'}
end if
end for
else
F < FU{(x,y)}, G G\{(x,y)}

if (x,y) = (x;,y;) for some 0 < i < [ (initial state) then

return FALSE
end if

0 « QU {predecessors of (x,y) according to Z}

end if
return TRUE

: end procedure

> construction failed

Figure 4: Algorithm to construct a certificate for stochastic dominance.
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too. Once one of the initial states has to be forbidden, it is clear that we cannot avoid
entering a forbidden state at all and thus no set S exists.

We implemented the algorithm based on exact arithmetic using the GNU Multiple
Precision Arithmetic Library [10] (GMP) and the exact LP solver QSOPT_EX [3] in
C++. Table 1 reports our results for the three bin coloring algorithms, in particular the
smallest value of / such that our algorithm found appropriate couplings according to
Theorem B.3. The correctness of the constructed couplings does not depend on the
construction method, but only on the correct implementation of the (simple) routine
which checks the conditions of Theorem B.3 and the correctness of the rational arith-
metic provided by GMP used in that routine. Assuming this, we get the following
result.

Theorem B.4 Denote by GF, FC, and OB the valued Markov chains for the max-BC
for sequences with the uniform color distributions. For the values of m, B, and C given
in Table 1, we have

X (GF,(m,B,C)) <q x (FCy(m,B,C)) <g (OB, (m,B,C))

forall n € Ny.
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