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Abstract:
The System Dynamics (SD) methodology is a framework for modeling and simulating the dynamic
behavior of socioeconomic systems. Characteristic for the description of such systems is the occur-
rence of feedback loops together with stocks and flows. The mathematical equations that describe
the system are usually nonlinear. Therefore seemingly simple systems can show a nonintuitive,
nonpredictable behavior over time. Controlling a dynamical system means to define a desired final
state in which the system should be, and to specify potential interventions from outside that should
keep the system on the right track. The central question is how to compute such globally optimal
control for a given SD model. We propose a branch-and-bound approach that is based on a bound
propagation method, primal heuristics, and spatial branching. We apply our new SD-control method
to a small System Dynamics model, that describes the evolution of a social-economic system over
time. We examine the problem of steering this system on a sustainable consumption path.
Keywords:
System Dynamics; Mixed-Integer Nonlinear Optimization

1 INTRODUCTION

In sustainability science, the object of examination and
the manipulation are often complex, large and dynami-
cal systems [1, 2]. These systems can be found on the
macroscopic socioeconomic scale [3, 4] as well as on
the microscopic level in individual manufacturing pro-
cesses (see [5] and the references therein). The re-
action of these systems to external interventions can
be counter intuitive, so that even when a quantitative
goal has been identified and resources have been ded-
icated to achieving this goal, its implementation is non
trivial [6].

For this reason, the study of complex dynamical sys-
tems is an essential part of sustainability research. A
traditional and successful approach to modelling dy-
namical systems is the System Dynamics (SD) method-
ology. SD was the basis for the report “Limits to Growth”
[3], which introduced one of the first concepts of sus-
tainability. For an introduction to SD and its applications
we refer to Sterman [7].

SD models describe the behavior of a system that
consists of several interrelated stocks, flows and feed-
back loops. The relation between those is usually deter-
mined by ordinary differential equations, nonlinear func-
tional relations, logical relations (such as if-then-else),
or tabular data. Even if each of these relations is indi-
vidually well understood, the interplay of several of these
relations can show a surprising, unexpected behavior in

a simulation over time.
SD models can typically be simulated with very little

computational effort. The simulation with different pa-
rameter sets can be used to investigate different scenar-
ios, as was done, for example, in the “Limits to Growth”.
When the question shifts from understanding the future
behavior to understanding how to influence the system
in the future, a systematic optimization approach is nec-
essary. This entails the definition of an objective or
goal function which maps the simulated trajectories to
a single real number. In this way, two different simula-
tion runs become comparable: The higher the objective
function value, the better. It is natural to ask, what are
the parameters that lead to the best-possible objective
function value? This question cannot be answered from
just testing and simulating any finite number of different
parameters, no matter how large this number would be.

A System Dynamics model together with control func-
tions and a real-valued objective function is called a Sys-
tem Dynamics Optimization (SDO) problem in the se-
quel. The need for an integration of optimization meth-
ods into the SD framework has been recognized already
in the past. In previous approaches, different methods
are used, such as nonlinear local optimization (for ex-
ample, gradient search methods) or heuristics (such as
genetic algorithms), which are essentially based on an
“optimization through repeated simulations” approach,
see [8–15]. All these approaches have in common
that they at best only provide feasible or local opti-
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mal solutions. Moreover, as pointed out by Burns and
Janamanchi [16], nonlinear optimization methods rely
on the availability of derivative information from suffi-
ciently smooth functions. This restriction is in conflict
with certain SD modeling elements, such as if-then-else
clauses. In principle, all these methods cannot give a
proof of global optimality or any other quality certificate
of the computed solutions. The ultimate goal of our re-
search is to fill this gap by developing a computational
method that is able to handle all kinds of SDO models
and yields feasible solutions as well as a certificate of
optimality.

We formulate the SDO problem as mixed-integer
nonlinear program (MINLP). Solving optimization prob-
lems from this class is theoretically intractable and also
known to be computationally difficult in general. By
“solving” we mean to compute a feasible solution for a
given instance of the problem together with a computa-
tional proof of its optimality. Therefor we apply the gen-
eral framework of a branch-and-bound approach, where
the bounds are obtained from relaxations of the original
model. To this end, we relax the MINLP first to a mixed-
integer linear program (MILP) and then further to a linear
program (LP), which is solved efficiently using Dantzig’s
simplex algorithm [17]. The so obtained solution value
defines a (lower) bound on the optimal value of the origi-
nal MINLP problem. In case this solution is MINLP feasi-
ble, it would be a proven global optimal MINLP solution.
However, this rarely happens in practice. Hence we ei-
ther add cutting planes to strengthen the relaxation, or
we decide to branch on a variable [18, 19]. Informa-
tion on the MINLP framework SCIP which we apply is
given in Achterberg [20], and in particular on nonlinear
aspects of SCIP in Berthold, Heinz, and Vigerske [21].

2 Our Approach

In the following we describe our approach to solve
mixed-integer dynamic optimization problems that orig-
inate from SDO models. As a foundation we use the
linear and nonlinear programming based mixed-integer
nonlinear solver SCIP [20]. This framework already han-
dles the input of an instance, the set up of the model’s
variables and constraints, and the overall branch-and-
cut solution process. Initially, we tried to solve SDO
model instances using SCIP as a black-box solver off
the shelf. Although SCIP is a highly capable general-
purpose solver, it became clear that the special con-
straint structure of the SDO is for the most part in-
tractable for the solver. However, if this structure is
known and exploited to a high degree, the solution pro-
cess can be fundamentally improved. In this paper, we
will address the two aspects of the branch-and-bound
solution approach, with the highest potential of improve-
ment.

2.1 Presolving Bound Propagation

The task of bound propagation on the states of the
MINLP formulation of an SDO is identical to a reachabil-
ity analysis [22, 23] in discrete time. States that cannot
be reached using the given parameter and control inter-
vals shall be excluded from the solution space. When
applying this analysis, it is essential to take the dis-
cretization and the type of parameter limits in the prob-
lem into account. We will describe our method in detail
in Section 4.2.

2.2 Specialized Primal Heuristics

Integer variables enter into the MINLP formulation of an
SDO when a non-smooth function like min,max,| · |, or
a logical function needs to be implemented. For exam-
ple, we formulate a minimum function x = min(y, 0), y ∈ˆ
y, y
˜

with the following constraints and variables in the
MINLP formulation:

y+, y− ∈ R+,

yb ∈ {0, 1},
y = y+ − y−,

y+ ≤ ȳyb,

y− ≤ y(yb − 1),

x = −y−.

(1)

The formulation of the minimum function requires the
introduction of three additional variables and three con-
straints in addition to the constraint assigning the value
to x. If x, y are time dependent variables, these num-
bers need to be multiplied by the number of discretized
time steps. However, there is no degree of freedom in
the values of the additional variables, once y is known
(except the degenerate case y = 0). Using the special
structure of this formulation, we can easily construct a
feasible solution for the additional variables depending
on y. However, if the structure is unknown, a MINLP
consisting of a number of system analogous to (1) is al-
ready a difficult feasibility problem. A primal heuristic
that employs konwledge of the special structures of the
problem is described in Section 4.1

Both procedures, the bound propagation and the pri-
mal heuristics, are used as plug-in modules in SCIP. To-
gether, they make up the new solver SCIPSD. In Sec-
tion 5 we demonstrate how SCIPSD improves the solu-
tion process by example.

3 Model

In this paper we will concentrate on one particular SDO
which is based on a classical System Dynamic sim-
ulation model, taken from the literature (c.f. Bossel
[24–26]). We will discuss the properties of the proposed
algorithms using that model as an example. For the
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general formulation of our bound propagation and pri-
mal heuristics, we refer the reader to [27].

3.1 Model description and goal

The selected base model is the Miniworld introduced
in [26]. It is a simplification of the much more sophis-
ticated World2 and World3 model of Forrester [28] and
Meadows et al. [3]. World3 uses 18 stocks, 60 param-
eters, 52 tabular functions, and around 200 equations
to model the system’s relations. Bossel’s Miniworld is
an aggregated version, that comes with just 3 stocks:
the world population, the production (industrial, com-
mercial, agricultural), which equals the consumption of
goods, and the environmental pollution. Consequently,
the number of parameters, tables, and equation rela-
tions are much lower. Interestingly, the model shows
a qualitatively similar behavior compared to the much
more evolved World3 model.

As discussed in Section 1, we will extend this model
to an SDO, by introducing an objective function and a
control mechanism.

Our goal is to maximize the economic growth level, in
order to provide a high standard of living to the world’s
population. However, if this standard would be too high,
then a fast growing population would quickly consume
its natural resources, and thus the population would col-
lapse soon after. To prevent such behavior we introduce
a population level ξ as a lower limit. The question we
want to address is, how much sustainable growth can
bear this mini-world at most for a population being at
least ξ.

Population (p)
Births (α) Deaths (Ω)

Pollution (e)
Regeneration (ε) Destruction (ζ)

Assets (c)

Cons. level (γ)
Control (z)

Env. quality (μ)

Figure 1: System Dynamics diagram for the mini-world
control problem.

The SDO diagram is shown in Figure 1. The corre-
sponding mathematical model has four time-dependent
functions: p(t) for the population, e(t) for the environ-
mental pollution, c(t) for the consumption, and z(t) for
the control function (the growth level).

We apply a forward discretization to the differential
terms, with (∆t) being the size of a step in the time dis-
cretization. The continuous variables pi, ei, ci, zi ∈ R

for i = 0, 1, . . . , T approximate the functions of the re-
spective same name. Furthermore, we introduce the
following real-valued continuous variables, each for i =
0, 1, . . . , T : αi are the number of births and Ωi are the
number of deaths at time step i. γi is the consumption
level. µi describes the environmental quality. The envi-
ronmental conditions change over time, and for this we
introduce εi for the environmental recovery and ζi for
the environmental destruction.

3.2 MINLP Formulation

Using a forward Euler schema, the discretized SDO
problem reads as follows:

max
TX

i=0

zi (2a)

s.t.
pi+1 − pi

∆t
= αi − Ωi, i = 0, 1, . . . , T, (2b)

αi = 0.03 · pi · µi · γi, i = 0, 1, . . . , T, (2c)

Ωi = 0.01 · pi · ei, i = 0, 1, . . . , T, (2d)
ei+1 − ei

∆t
= εi − ζi, i = 0, 1, . . . , T, (2e)

ζi = 0.02 · pi · γi, i = 0, 1, . . . , T, (2f)

ei = e+i − e−i + 1.0, i = 0, 1, . . . , T, (2g)

e+i ≤ 20.0 · xi, i = 0, 1, . . . , T, (2h)

e−i ≤ 1.0− xi, i = 0, 1, . . . , T, (2i)

εi = 0.1 · (1.0− e−i ), i = 0, 1, . . . , T, (2j)

1.0 = ei · µi, i = 0, 1, . . . , T, (2k)

ci+1 − ci
∆t

= 0.05 · γi · ei ·
„

1−
„
γi · ei

zi

««
, (2l)

i = 0, 1, . . . , T,

ci = γi, i = 0, 1, . . . , T, (2m)

pi ≥ ξ, i = t, t+ 1, . . . , T, (2n)

p0 = p̄, (2o)

e0 = ē, (2p)

c0 = c̄, (2q)

pi, ei, e
+
i , e

−
i , ci, zi,∈ R+, i = 0, 1, . . . , T, (2r)

αi,Ωi, γi, µi, θi, εi, ζi ∈ R+, i = 0, 1, . . . , T, (2s)

xi ∈ {0, 1}, i = 0, 1, . . . , T. (2t)

The change in the population p from time step i to i+ 1
is a result of the births αi minus the deaths Ωi in time
step i (2b). The number of births αi in time step i is pro-
portional to size of the population pi, the environmental
quality µi, and the consumption level γi, where 0.03 is
the proportionality factor (birth rate) (2c). The number of
deaths Ωi in time step i is proportional to the population
pi and the environmental pollution ei, with a proportion-
ality factor (death rate) of 0.01 (2d).

The change in the environmental pollution e from time
step i to i + 1 is a result of the negative environmental
destruction ζi and the positive environmental recovery
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εi in time step i (2e). The environmental destruction ζi

in time step i is proportional to the population size pi

and the consumption level γi (2f). Here 0.02 is the pro-
portionality factor (environmental destruction rate). The
environment is able to recover over time. If the envi-
ronmental quality µi is above a certain threshold value
(here 1.0), then the recovery εi in time step i is propor-
tional to the environmental pollution ei, with 0.1 being
the proportionality factor (recovery rate). However, if the
environmental quality µi is below the threshold value,
then the recovery rate is no larger than 0.1 (2j). This is
equivalent to a minimum function 0.1 min(1, µi), which
is implemented with the auxiliary variables e+i , e

−
i and

xi and the additional constraints (2g), (2h) and (2i) as
described in Section 2.2.

The change in the production and consumption c
from time step i to i+ 1 is the result of a logistic growth
function of Verhulst type (2l), which depends on both the
consumption level γi and the environmental pollution ei.
The control variable zi plays the role of the system’s ca-
pacity (this is a constant in the original Verhulst equa-
tion). The constant value of 0.05 is a growth rate for
the consumption. The consumption level γi equals the
production ci (2m).

The population pi must not fall short of the given level
ξi in each time step i (2n). Initially, in time step i = 0,
the size of the population (2o), the environmental pollu-
tion (2p), and the consumption resp. production (2q) are
given.

The system of equations and inequalities (2) com-
pletely defines the model. Setting zi = 0 for all times
i and choosing initial values p0, e0 and c0 reproduces
the Miniworld simulation or initial value problem (IVP).

3.3 Constraint Classification

We distinguish five types of constraints, that are typical
for any SDO:

The discretized differential equations (2l), (2b), (2e)
define the state variables pi, ei, ci at a given time, in
terms of the previous time.

The explicit algebraic equations (2c), (2d), (2f), (2j),
(2k), (2k), (2m), define the algebraic variables on the
left hand side. These equations depend on coinciding
states and other coinciding algebraic variables.

The equations (2g), (2h) and (2i) define a system of
algebraic equations and inequalities which implicitly but
uniquely defines the algebraic variables e+i and e−i , as
described in Section 2.2.

Finally, equation (2n) defines a linear state constraint,
and equations (2p),(2p) and (2q) defines initial values as
mentioned above.

4 Improving the Solution of SDOs

In this section we will describe the proposed presolv-
ing bound propagation method and the proposed primal
heuristic.

4.1 Primal Heuristics

Linear programming based branch-and-bound methods
for solving mixed-integer linear and nonlinear problems
are on the one hand today’s method of choice for verify-
ing the global optimality of a solution to a given instance
of some model. On the other hand, they are also known
for their actual weakness in creating such solutions. A
pure branch-and-bound method can only come up with
a feasible solution, if the linear programming relaxation
of the current node is feasible for the non-relaxed model.
This, however, is a rare exception. Thus it is necessary
to provide feasible solutions from other sources. Having
a good feasible solution early in the solution process al-
lows to prune the search tree. Ideally, large portions of
the otherwise exponential sized search tree do not have
to be created and examined.

In modern MINLP solvers a large variety of different
search strategies is used to construct feasible solutions,
see [29–31] and the survey [32], for instance. These
methods are designed and applied to general purpose
MINLP problems. As reported by the respective authors,
they are good in identifying solutions on a wide range of
different problems. Some of them are readily available
within SCIP. However, these have problems in finding
solutions for dynamic MINLPs. This motivated our ap-
proach, which is presented in the following.

As described in Section 3, setting all controls in an
SDO to zero, results in an IVP. If no path constraints
like (2n) exist, then every solution of the IVP is a feasi-
ble solution of the SDO. From this, a fast primal heuristic
for the model can be constructed. We set the control to
a constant value for all times zi = zc and then iterate the
following steps for each discretized time i except i = T .
We start at i = 0, where the states are given by the
initial values:

1. Calculate the values of γi, µi, from the values
of the state variable. Since every variable on
the right hand side is fixed, we can treat the
corresponding constraints as an equation with a
unique solution.

2. Calculate the values of αi,Ωi, εi, ξi, from the val-
ues of the states and the already calculated al-
gebraic variables, by treating the corresponding
constraints as equations as before.

3. Set e−i = −min(1, µi), e
+
i = µi − e−i and xi to 1

if µi > 1, otherweise to 0.
4. Calculate the values of the state variables in i+1,

using the values computed in steps 1, 2, 3.
This procedure can be easily generalized to general

SDOs.
In one run of our current implementation, we attempt

to construct two solutions fo the problem by setting
zi = z̄ in the first, and zi = z in the second run.

As mentioned above, this method may not yield a fea-
sible solution if there are state constraints. To react to
these cases, we add a check at the end of the propaga-
tion at each time if any state constraints are violated by
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the states calculated in the current step. If a violation is
detected, we flip the control from z̄ to z in the first run,
and from z to z̄ in the second run. It is also possible to
backtrack a given number of timesteps, and apply the
flip at an earlier point.

4.2 Presolving Bound Propagation

From the modelers perspective, it appears unnatural
to give bounds to the states of the system. The def-
inition of intial states or bounds on the initial states
and bounds on the control already defines a finite state
space, that should not be reduced by giving additional
bounds. However, finding the exact bounds defining that
state space is usually not possible in finite time. On the
other hand, tight bounds are essential in speeding up
the branch-and-bound process for two reasons. First,
we apply linear programming to solve the subproblems
in the branch-and-bound tree. If the variable bounds are
weak, then the solution of the linear programs will also
yield weak (upper) bounds for the solution of the MINLP.
Second, when branching on a variable, it needs more
branching decisions to fix a variable when the bounds
are weak. Both issues are related to the solution speed
and the memory requirement during the solution pro-
cess. Hence in general, one is interested in obtaining
good (narrow) bounds on all variables, assuming that
the time spend for computing them is marginal com-
pared to the gain in solving the overall problem.

A crucial step in solving mixed-integer linear or non-
linear problems is the preprocessing phase. In this ini-
tial step of the solution process, one tries to extract as
much information as possible from the problem at hand.
These information are implicitly contained in the model
formulation, but hidden for the solver. The goal is to
make them visible, so that the solver can use them to
shorten the solution process. Preprocessing or presolv-
ing refers not just to a single method, but a whole bunch
of various techniques, where some are more general,
and others are more specific for certain problem struc-
tures. For more details and general surveys to MILP and
MINLP solution techniques including preprocessing, we
refer to [32–36].

In this section, we consider bound propagation in
presolving. The usual approach for MINLPs is to con-
sider each constraint individually, and to attempt the de-
duction of tighter bounds on each variable of the con-
straint from the bounds of the other variables [21]. For
our model, this approach yields bounds that quickly di-
verge after the first few timesteps. This phenomenon of
”exploding bounds” is characteristic for SDO problems,
and could be avoided by consiering the full problem and
solving the maximum and minimum problems for each
state variables. However, the computational effort would
be comparable to the original control problem, rendering
this approach useless.

We propose a compromise between these two ap-

proaches. Instead of considering a single constraint,
we formulate subproblems, by selecting constraints at a
given time. We introduce the lookback parameter h ≥ 0,
which defines how far the problem extends in time. We
define the subproblem at time i with lookback parameter
h, as the subproblem st,h consisting of the constraints
(2b) through (2n), where i ∈ {t− h, t− h+ 1, . . . , t}.

Our proposed bound propagation method iterates the
following steps for each discretized time i except i = T ,
starting at i = 0:

1. Formulate the subproblem si,h.

2. For each algebraic variable vi at time i:
a) Solve the maximization problem max vi

subject to the constraints of si,h to optimal-
ity and set the upper bound of the variable
v̄i to the solution value.

b) Solve the minimization problem min vi sub-
ject to the constraints of si,h to optimality
and set the lower bound of the variable v̄i

to the solution value.

3. For each differential variable wi+1 at time i+ 1:
a) Solve the maximization problem maxwi+1

subject to the constraints of si,h to optimal-
ity and set the upper bound of the variable
w̄i+1 to the solution value.

b) Solve the minimization problem minwi+1

subject to the constraints of si,h to optimal-
ity and set the lower bound of the variable
w̄i+1 to the solution value.

The subproblems are solved with a time limit. If the
time limit is reached before the problem is solved to op-
timality, the considered bound is set to the best dual
bound.

5 Computational Results

For our computational experiments, we introduce a
piecewise constant control with two states z0 and z1,
where z0 is valid for the first T/2 many time steps, an z1
is valid for the second half of T/2 time steps. Then the
objective function is a two-dimensional function depend-
ing on the values z0, z1 for the two constant controls.
Figure 4 shows a contour plot of the objective function
values for the two controls varying independently in the
interval [1, 10]. Feasible solutions are in the lower-left
corner. The black curve marks the borderline between
the feasible and the infeasible region. Our goal is to
keep the mini-world population above ξ ≥ 4 (billion in-
habitants). Any solution having less inhabitants is infea-
sible. Solutions in the infeasible region all fall short of
the population lower limit of constraint (2n). A possibly
optimal solution occurs for z0 = 1.79 and z1 = 2.16. This
solution yields the highest total consumption level, while
keeping the population size above the specified limit.
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Figure 2: Presolved bounds for different look-back levels.

In Figure 3 we show three different solutions. The
first for z0 = z1 = 1 is feasible but not optimal. The sec-
ond for z0 = z1 = 10 is infeasible. (These two reference
plots can also be found in Bossel [26].) Our potential
optimal solution for z0 = 1.79 and z1 = 2.16 is shown as
third plot.

Note that the plot in Figure 4 and the identification
of an optimal solution is based on a number of simu-
lation runs. Even if we use a fine grid, we cannot be
absolutely sure that there is not a better solution that is
hidden between two neighboring grid points. Our goal is
to demonstrate that by using our bounding techniques
we can cut off large portions of the search space. It is
thus guaranteed that no better solution can be found in
such cut off part.
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Figure 3: Black lines: p, blue: e, red: c. a): Feasible but
suboptimal solution with control z0 = z1 = 1.
b) Infeasible solution with control z0 = z1 =
10. c) Optimal solution with z0 = 1.79 and
z1 = 2.16.

We apply our bounds strengthening presolve routine.
The results for different look-back levels are shown in
Figure 2 and Table 1. The SCIP-level (first line in Ta-
ble 1) is special: The solver was very fast, but due to its
numerical instability “proved” that the problem is infeasi-
ble (i.e., does not have a feasible solution), which is of
course not true.

presolve branch-and-bound
level total time [h] dual dual gap
SCIP 0.002 – – –
0 1.33 6 · 109 625 � 100%
1 4.42 640 638 71.1%
2 2.702 581 579 68.1%
5 4.53 508 506 63.5%
10 9.01 479 476 61.3%

Table 1: Computational results for different presolve
look-back levels. Primal bound during branch-
and-bound was 184.655 for all instances. Run-
ning time of the branch-and-bound runs was
one hour.
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Figure 4: Objective function values for piecewise con-
stant controls varying in [1, 10] × [1, 10]. The
(unique) optimal solution is in (1.79, 2.16). The
part of the control space with z1 ≤ 1.3 and
z2 ≤ 1.3 marked by the gray box can be cut
off. No better feasible solutions can be found
in here.
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A part of the search space that does not require fur-
ther atention due to the bounding argument is shown
in Figure 4. Here a look-back presolve level of 5 time
steps was applied. Our optimal solution for z0 = 1.79
and z1 = 2.16 has an objective function value of 230.14.
Any solution in the box defined by the green lines has
an upper bound on the objective function value of less-
or-equal 229.94, hence no better solution can be found
in this part of the control space.

At the present stage of our implementation, we are,
however, not able to prove that our potential optimal so-
lution is indeed a global optimal one. The solver SCIP
terminates, even in the highest presolve level, with a
huge gap of 61.26%. Our ongoing research is devoted
to close this gap to 0% within the given time limit, and to
solve the problem for a control function with more than
two constant segments.

6 Summary and Conclusions

We presented a System Dynamics Optimization (SDO)
as an extension of classical System Dynamics Simula-
tion (SD) model, by introducing a control mechanism
and an objective function into the system. To solve
such an optimization problem, one can simply resort to
an optimization-by-simulation approach, where a certain
number of simulation runs is carried out, and the control
functions vary between each run. The mechanism to al-
ter the control functions can be found in the literature, for
example, Genetic Algorithms, Tabu Search, or Nelder-
Mead Simplex. We demonstrated that these methods
all have the principle disadvantage that they do not give
any kind of performance guarantee on the computed re-
sult.

To overcome this weakness, we suggest mixed-
integer nonlinear programming (MINLP) methods. To
apply this method, the ordinary differential equations in
the SDO problem are approximated by some discretiza-
tion schema. Certain features that are common in the
SD modeling language (such as tabular functions, or if-
then-else constructs) also need to be transcribed an re-
formulated by introducing piecewise linear inequalities
and binary or integer variables. Then this MINLP model
can be relaxed to a linear programming problem, and
solved by Dantzig’s simplex method. This results in a
bound on the objective function value to the SDO prob-
lem, which is then improved by adding suitable cutting
planes and a branch-and-bound procedure. In order to
achieve good bounds quickly, we have introduced a spe-
cially tailored bounds strengthening as preprocessing.
We have also presented a primal heuristic to identify
feasible solutions earlier.

We tested our methods on the mini-world SDO prob-
lem, and presented the results for sveral parameters.
The presolving bound propagation yields better bounds
for longer look-back-levels, which however comes at
growing computational costs. With the bounds from
presolving and our primal heuristic, we were able to

compute a primal solution and show that its gap is at
most 61%, using our branch-and-bound approach. We
also presented an example of a reduction of the search
space by the bounding argument, that is the basis for
our branch-and-bound approach.

We believe that our methods are generally applica-
ble to all different kinds of SDO models. At the present
stage of our work, each model needs to be individually
analyzed and treated. We are working towards a black-
box solver that a model will be able to use for his or her
models in the same way SD simulation tools are used
today. We think that having not only good-looking so-
lutions, but additionally a certificate of optimality, is a
further asset in practical applications.
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