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Abstract

This paper presents an explicit and symplectic integrator called PICK-
ABACK for quantum-classical molecular dynamics. This integration scheme
is time reversible and unitary in the quantum part. We use the Lie formalism
in order to construct a formal evolution operator which then is split using the
Strang splitting yielding the symplectic discretization PICKABACK. Finally
the new method is compared with a hybrid method in application to two
examples: a collinear collision with a quantum oscillator and additionally a
photodissociation process of a collinear ArHCl-molecule.
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1 Introduction

Mixed quantum classical models have attracted much interest in molecular
dynamics (MD). This is due to the obstacles of either full quantum mechan-
ical and pure classical calculations. Quantum models show a far too large
complexity to be practically solved for the interesting molecules whereas
classical models do not describe ”deeply” quantum mechanical processes,
for example proton-transfer reactions.

There is a great variety of quantum-semiclassical (QSCMD) [14] and
quantum-classical (QCMD)models [8][9][15][16] in use. We consider a QCMD
model that is mathematically derivable from full quantum dynamics [11].

It was revealed that this model has got a canonical Hamiltonian struc-
ture [11], which implies symplecticity and the conservation of energy. This
paper presents the construction of an efficient integrator, which passes these
properties to the discrete solution.

Obviously, the energy exchange between the quantum and the classical
part of the molecular system is of main importance for the dynamical pro-
cess. Hence, an accurate reproduction of the energies in the system is an
urgent requirement for all discretization schemes. However, there are no ef-
ficient schemes which conserve the energy exactly. For all practical reasons
it is sufficient to use so called symplectic discretizations, which conserve the
energy within a very accurate deviation range even for long time simulations,
cf. [19]. In contrast to this, ad hoc schemes typically cause an energy drift
which increases in time — thus being not appropriate for our problem.

In §2, our discussion starts with the analysis of the structure of the
QCMD model used.

On the way to an explicit and symplectic integration scheme it follows
the red thread of an approach proposed by, e.g, [23] [19]: in §3, we use the
Lie formalism to construct a formal evolution operator for the full system
and to split it into symplectic parts. By deriving analytically a represen-
tation for these parts, we obtain an explicit and symplectic method called
PICKABACK producing the same numerical effort as an often used hy-
brid method. More than that, our integration scheme is time reversible and
unitary, thus conserving the norm of the wave function of the quantum part.

Finally, in §4, we want to present the advantages of our integration
method by comparing it with the method mentioned above in application
to two illustrative examples: a collinear collision with a quantum oscillator
and additionally a photodissociation process of a collinear ArHCl-molecule.
The integration scheme PICKABACK leads to a significantly smaller error
transport in these comparisons.
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2 The QCMD-Model

For simplicity of notation we herein restrict the discussion to the case of
only two interacting particles. Nevertheless, all the following considerations
can be extended to arbitrary many particles or degrees of freedom.
Let q ∈ Rd and x ∈ Rd be the space coordinates and m and M be the
masses of the quantum particle and the classical particle respectively. More-
over, let the interaction potential between them be V = V (x, q). The
quantum particle is described by the wavefunction ψ = ψ(x, t) and obeys
Schrödinger’s equation with a parameterized potential which depends on the
position q = q(t) of the classical particle. This location q(t) is the solution
of a classical Hamiltonian equation of motion in which the time-dependent
potential arises from the expectation value of V with regard to ψ.

iψ̇ = HQM (t)ψ with HQM(t) = − h̄2

2m
�x︸ ︷︷ ︸

T

+V (x, q(t))

q̇ = DpHC(t)

ṗ = −DqHC(t) with HC(t) = p2

2M+ < ψ(t), V (·, q)ψ(t)> .
(1)

The total energy expectation value of the system, to which we will simply
refer as ” energy” in the following, reads as (cf., [11]):

H =< ψ, T ψ > + < ψ, V (·, q)ψ > +
p2

2M
. (2)

For the purpose of finding an integrator that fits into the mathematical
structure of this system, it is helpful to note that this QCMD system con-
stitutes a canonical system with respect to the Hamilton function H, i.e.,
can be described formally in terms of classical mechanics. To illustrate this,
we decompose the wavefunction into a scaled real and imaginary part:

ψ =
1√
2h̄

(qψ + i pψ).

Now, after introducing a generalized position and momentum

Q = (qψ , q)
T P = (pψ, p)

T

and some formal calculations (using functional derivatives) the system (1)
can be written as

Q̇ =
∂

∂P
H Ṗ = − ∂

∂Q
H.
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The theory of classical mechanics [4] asserts for every phase flow correspond-
ing to a Hamilton function not only the conservation of energy but also of
the symplectic structure. The latter implies volume conservation in phase
space (Liouvilles theorem), but is more general.

3 Discretizations for the QCMD model

The QCMD model consists of a partial differential equation (PDE) coupled
with a system of ordinary differential equations (ODE). Therefore we have
to carry out two discretization steps. The first step is a spatial discretization
of the PDE by applying Fourier-collocation methods [18]. In a second step,
then, we introduce the time discretization PICKABACK.

As a result of the spatial discretization we obtain the following system:

iψ̇N = (TN + VN(q))ψN

q̇ = Dp(
p2

2M
+ ψ∗

N VN(q)ψN) =
p

M

ṗ = −Dq( p
2

2M
+ ψ∗

N VN(q)ψN). (3)

In the case of Fourier-collocation we consider the vector ψN and the matrices
TN , VN as discretizations of the state ψ and the operators T, V with respect
to the meshpoints chosen.

Note the possibility to use a Fourier-Galerkin approach [13] for the spa-
tial discretization. Then ψN is a vector of the expansion coefficients and TN
and VN are the matrix representations of the operators T and V , respec-
tively.

Formally, both spatial discretizations lead to the same system (3), but
Fourier-collocation results in a diagonal matrix VN whereas Fourier-Galerkin
does not. The diagonal structure of VN will be an advantage later on.

Now one can easily show that this semidiscrete system also corresponds
to a set of canonical equations

Q̇N =
∂

∂PN
HN

ṖN = − ∂

∂QN
HN (4)

using ψN = 1√
2
(xN + iyN), QN = (xN , q)

T and PN = (yN , p)
T together

with the Hamilton function

HN =
p2

2M
+ ψ∗

NTN ψN + ψ∗
NVN(q)ψN . (5)
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3.1 The symplectic PICKABACK integration scheme

Introducing the Poisson brackets [4] helps us to write the Hamilton equations
of motion (4) as (cf. [23][19]):

ż = LHN
z (6)

where z = (QN ,PN )T and LHN
zi = {zi,HN}.

It should be noted, that the kind of coupling between the quantum and
the classical degrees of freedom in QCMD causes the operator LHN

to be
nonlinear with respect to z.

LHN
can be understood as Lie generator of the flow connected to HN ,

so that we obtain the formal solution to (6) as

z(τ) = eτLHN z(0). (7)

The Hamilton function (5) decomposes as:

HN = H1 + H2

H1 =
p2

2M
+ ψ∗

NTN ψN

H2 = ψ∗
NVN (q)ψN .

In this case we might also write LHz = (LH1 + LH2)z where every LHi is
again a Lie generator of the flow to the altered Hamilton function Hi. This
allows us to approximate the formal solution (7) with either the Trotter
formula or with the Strang splitting.

The Trotter formula [22] yields an O(τ2) approximation:

eτLHN = eτ (LH1
+LH2

) = eτLH1 eτLH2 +O(τ2), (8)

whereas Strang splitting [21] results in an O(τ3) approximation:

eτLHN = eτ (LH1
+LH2

)

= e
τ
2
LH1 eτLH2 e

τ
2
LH1 + O(τ3). (9)

This decomposition is quite similar to the Baker-Campbell-Hausdorff-formula
which holds for the case of linear operators — in application to quantum-
mechanical systems it is also known as split operator technique [5]. However,
one should note, that a splitting of higher order is possible as well but, un-
fortunately, results in negative time steps which might be numerically not
stable [12].
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Obviously, each eτLHi is a symplectic map because it consists of an exact
propagator to the phase flows of the altered Hamiltonian function Hi. Thus,
(8) and (9) are a composition of symplectic maps and are symplectic, too.

Now, the individual propagators of (9) deserve our full attention. For
the purpose of constructing an overall symplectic integration scheme we are
obliged to find an exact realization or at least a symplectic approximation of
the order O(τ3) for each of them. Fortunately, this kind of decomposition of
the Hamilton function allows the former way. The calculation of the exact
solution to the Hamilton functions H1 and H2 is presented in the appendix.

If we use the results of the appendix and arrange them in the way of
(9), we obtain the integration scheme PICKABACK which is explicit and
symplectic as well as time reversible and (in the quantum part) unitary.

q1/2 = q0 +
τ

2

p0
M

(ψN)1/2 = exp
(
− i

τ

2
TN

)
(ψN)0

p1 = p0 − τ (ψN)
∗
1/2DqV (q1/2)(ψN)1/2

(ψN)1 = exp
(
− i

τ

2
TN

)
exp

(
− iτVN(q1/2)

)
(ψN)1/2

q1 = q1/2 +
τ

2

p1
M
. (10)

Remark. The reader should note, that the same construction starting
with the Trotter formula (8) results in a symplectic but not time reversible
scheme causing almost as much computational effort as PICKABACK but
being O(τ2) accurate only.

3.2 A hybrid method for comparison

For comparison with the integration scheme PICKABACK (10) we make
use of an often applied method (cf., [6]) constructed out of two uncoupled
integration schemes, i.e., one integrator is applied to the quantum subsystem
keeping the classical degrees of freedom unchanged whereas the other one
acts on the classical subsystem. In our further investigation we will call such
an approach a hybrid method.

Now, we analyze the approximation order of a hybrid method. In every
time step, the integrator of the quantum subsystem solves:

iψ̇N = (TN + VN(q0))ψN where q0 is constant.
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The integrator of the classical subsystem propagates:

q̇ =
p

M
ṗ = −Dqψ∗

N VN(q)ψN with a constant parameter ψN .

Such a hybrid method can be understood as dimensional splitting [20] of
the state space in two separately solved subspaces. This approach allows
us to compose the two subsystem-integrators via the Trotter formula or the
Strang splitting. Hence, a method which propagates first the quantum part
and then the classical — or vice versa — results analogously to the Trotter
formula in a scheme of the approximation order O(τ2).

The reader should note that the Trotter formula arranges the two inte-
grators one after the other — whereas in the literature [6] both are based on
the same initial values per step. However, this has no effect on the approx-
imation order. In the following, we apply this latter parallel composition to
the model problems.

It is not possible to write the individual subsystem-propagators as evolu-
tions of a flow of any Hamilton function which acts on the full system. Thus,
the resulting propagators are only symplectic in the corresponding subsystem
and not in the total system, i.e., the method is not symplectic with respect to
the full system. One could say that both integrators try to keep the energy
of their subsystem unchanged — not taking notice of the coupling energy.

We see, that independently of the order of the subsystem-integrators we
get a method of the order O(τ2). Realizations of a hybrid method use, for
example, a Leapfrog (Verlet) [2] integrator for the classical subsystem to-
gether with a split operator scheme [5] for the quantum part.

Hybrid method PICKABACK

q1/2 = q0 +
τ
2

p0
M

p1 = p0 − τ (ψN )∗0DqV (q1/2) (ψN )0 p0 − τ (ψN )∗1/2DqV (q1/2) (ψN )1/2

q1 = q1/2 +
τ
2

p1
M

(ψN )1/2 = e−iτ2 TN (ψN )0

(ψN )1 = e−iτ
2
TN e−iτVN (q0) (ψN )1/2 e−iτ

2
TN e−iτVN (q1/2) (ψN )1/2

6



If one compares PICKABACK with the hybrid method one discovers
that they differ only in the update of q and ψN in the potential evaluations.
Thus, both methods require the same computational effort.

4 Numerical Results

We shall now illustrate the advantages of our integration scheme PICK-
ABACK by numerical simulations. Therefore we have compared our sym-
plectic integration scheme (10) with the hybrid method described above in
application to two essentially different model problems.
The first example models a collinear collision of a heavy particle with a
harmonic oscillator deserving a long-term simulation caused by the slow dy-
namics of the system.
The other one is a collinear model for the photodissociation of an Ar-HCl
molecule similar to the studies of XeHI in [1]. In the following a compari-
son with an ”exact” solution means a comparison with a solution calculated
with extremely high precision.

4.1 Collinear collision with a quantum oscillator

Let us first have a look at a simple collinear collision of a heavy ”clas-
sical” particle (with mass M = 40u) with a harmonic quantum oscilla-
tor (mass m = 1u), a model problem which has been treated extensively
in the literature [7][9][11]. Using the notation of Section 2, the potential
V (x, q) = Vosc(x) + Vcoupling(x, q) is composed of a potential for the quan-
tum part and the coupling potential:

Vosc(x) =
m

2
ω2x2; Vcoupling(x, q) = a exp(−b |x− q|);

with the parameters:

h̄ω = 2.86
kcal

mol
; a = 1.654 · 102kcal

mol
and b = 2.438Å

−1
.

The initial wavepacket is constructed using the ground state of the undis-
turbed oscillator, while the classical particle has the initial location q(0) =
5 Å and an initial momentum directed towards the oscillator. However,
the initial energy of the full system is 5.34 kcal/mol. We have performed
QCMD-calculations applying uniform time steps τ = 0.05 fs over a total
time interval t/fs ∈ [0, 650] and in the quantum part a spatial computation
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domain x/Å∈ [−1, 0.5] with 256 meshpoints. For a further study of the re-
liability of the QCMD-model in comparison with a full quantum model for
this model problem see [11].

0 100 200 300 400 500 600

−5

0

5

10

x 10
−3

Δq

t in fs

Figure 1: Error Δq in classical coordinate in percentages of an exact solution of example
1. Results of an integration with PICKABACK (solid line) and the hybrid method (dashed
line). The result of the symplectic Trotter scheme (see remark on page 5) is almost totally
covered by the solid line. Thus we see, the error of the symplectic methods vanishes
compared with the error of the hybrid method.

Figure 1 presents the position error Δq of the classical coordinate in per-
cent of an exact solution. Obviously we miscalculate the spatial coordinates
if the intergrator does not inherit the symplecticity of the exact propagator.

0 100 200 300 400 500 600

5.340

5.342E

in kcal
mol

t in fs

Figure 2: Conservation of energy in the QCMD-simulation of example 1 with PICK-
ABACK (solid line), the hybrid method (dashed line) and the symplectic Trotter scheme
(dotted line).
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Figure 2 shows the energy E of the whole system computed via the
PICKABACK integration scheme (solid line), the hybrid method (dashed
line) and a symplectic O(τ2) scheme based on the Trotter formula (see re-
mark on page 5, dotted line), respectively. The result corresponds to our
prediction that the PICKABACK scheme preserves the energy very well,
while the energy of the symplectic O(τ2) method oscillates around the ini-
tial energy value. In comparison to this the hybrid method suffers from an
energy drift. Hence, this calculation shows exemplary the advantage of sym-
plectic integrators in application to QCMD models: no energy drift impairs
long-term simulations.

4.2 A collinear ArHCl-molecule

Our second example again is a well-known test problem (see figure 3). We
considered a photodissociation process of a collinear ArHCl molecule.
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�����������

r

R
δ

H
Ar Cl

Figure 3: Collinear ArHCl-system with the Jacobi-coordinates used. For a more com-
prehensive description of the used Jacobi coordinates R, r and δ see the similar studies of
XeHI in [1].

Calculating in Jacobi coordinates and with reduced masses, the H-Cl
interaction is modeled quantum mechanically and the Ar-HCl interaction
classically. The interactions are realized by fits of the potentials as reported
in [17] [3] [10]. The potentials used are listed in detail in figure 4.

Our initial state is based on the ground state of ArHCl corresponding
to the attractive HCl 1Σ state in a full quantum model. Thus, we deter-
mined the classical parts of the initial state of the QCMD-model via the
computation of expectation values. Both propagations (i.e., with PICK-
ABACK as well as the hybrid method) were carried out with a spatial do-
main x/Å∈ [0.53, 5.82] with 256 meshpoints and uniform time steps of 0.1
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Interaction Potential a [ kcal
Mol

]; b [Å
−1

]; c [ kcal
Mol

Å
6
]

Ar-Cl [3] VArCl(x) = ae−bx − c
x6

1.94 · 105 3.60 1.67 · 103

Ar-H [10] VArH(x) = ae−bx − c
x6

3.80 · 104 3.68 3.54 · 102

H-Cl [17] VHCl(x) = ae−bx 1.65 · 104 2.44

Figure 4: Potentials used in the simulation of a photodissociation process of a collinear
ArHCl molecule. Note that the excitation of the HCl results in the HCl1Π potential.

fs in a total time interval t/fs ∈ [0, 50].

0 5 10 15 20 25 30 35 40 45 50
−20

−10

0

10

20

30

40

ΔEcoupl

t in fs

Figure 5: Error ΔEcoupl of the coupling energy in percent of an exact solution of the

ArHCl model problem. PICKABACK (solid line) and the hybrid method (dashed line).

Analogously to the former model problem only the symplectic PICK-
ABACK scheme conserves the energy quite well in spite of the same stepsize
in time. We again used the same stepsizes for both methods, because this
choice results in an equal computational effort. The calculation of the cou-
pling energy is more interesting: Hence, figure 5 displays the error ΔEcoupl
in the calculation of the coupling energy. We see that the nonsymplectic in-
tegrator extremely miscalculates the coupling energy, thus leading to wrong
trajectories as shown in figure 6.

Figure 6 presents in percent the error Δ〈x〉 and Δq in the expectation
value of the quantum and in the classical coordinate respectively. Just as in
the former example the spatial coordinates are to an increasing degree mis-
calculated in the simulation with the hybrid method. Interestingly enough,
the error in the quantum coordinate oscillates with an increasing amplitude
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−0.5
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0.5

0 5 10 15 20 25 30 35 40 45 50
−0.05

−0.04

−0.03

−0.02

−0.01
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0.01

Δ〈x〉 Δq

t in fs t in fs

Figure 6: The error Δ〈x〉 and Δq in percent of the expectation value of the quantum
and in the classical coordinate, respectively. ArHCl model problem simulated with PICK-
ABACK (solid line) and the hybrid method (dashed line). Again, the PICKABACK error
is extremely smaller than that of the hybrid method.

up to 1%.

Appendix

Herein it is our aim to present the exact solutions to the Hamiltonian functions H1 and
H2.

1. If we have a look at the propagator which is associated with the Hamilton function
H1, we are looking for the solution to the following canonical equations:

q̇ =
p

M
(11)

ṗ = 0 (12)

˙ψN = −i T ψN , (13)

This initial value problem (q(0) = q0, p(0) = p0, ψN (0) = (ψN )0) can be solved
analytically:

(12) ⇒ p(τ) = p0 (14)

(11) u. (14) ⇒ q(τ) = q0 + τ
p

M

(13) ⇒ ψN(τ) = e−iτT (ψN )0

2. In the second step we examine the Hamiltonian system corresponding to H2. This
requires to consider the following system:

q̇ = 0 (15)

ṗ = −ψN
∗DqV (q)ψN (16)

˙ψN = −i V (q)ψN , (17)
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Again, this initial value problem can be solved directly, if the potential matrices
V (q) and DqkV (q) commute ([V (q), DqkV (q)] = 0) which is the case for colloca-
tion methods.

(15) ⇒ q(τ) = q0 (18)

(17) u. (18) ⇒ ψN (τ) = e−iτV (q0) (ψN )0 (19)

(16), (18) u. (19) ⇒ ṗ(τ) = −ψN (τ)∗DqV (q)

∣∣∣∣∣
q(τ)

ψN (τ)

= −(ψN )∗0 e
+iτV (q0)DqV (q)

∣∣∣∣∣
q0

e−iτV (q0) (ψN )0

= −(ψN )∗0DqV (q)

∣∣∣∣∣
q0

(ψN )0

⇒ p(τ) = p0 − τ(ψN )∗0 (Dq V )

∣∣∣∣∣
q0

(ψN )0

However, one should note, that only this part of the full PICKABACK integration
scheme demands a collocation method.

Remark. At that point we have to emphasize that we could also have used the
implicit midpoint rule to solve the system corresponding to H2. In this case we
would have replaced the exact exp(τLH2 ) propagator with a symplectic O(τ3)–
approximation. The original implicit structure of the method would become ex-
plicit, i.e., the scheme would be similar to Cayley’s, caused by the kind of decompo-
sition of H. Unfortunately the appearance of the inverse of the potential does not
allow us to circumvent the collocation methods. Moreover, such a method would
not be unitary in the quantum part — thus miscalculating the expectation values
of the coupling potentials.
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dynamics as an approximation to full quantum dynamics. Preprint SC 95–26, Konrad
Zuse Center, 1995.

[12] J. Bronski and D. Pathria. Higher order exponential splitting methods for nonlinear
Schrödinger equations. In D. Knight R. Vichnevetsky and G. Richter, editors, Ad-
vances in Computer Methods for Partial Differential Equations VII. New Brunswick,
USA, 1992.

[13] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral Methods in Fluid
Dynamics. Springer-Verlag, 1988.

[14] A. Garcia-Vela and R.B Gerber. Hybrid quantum-semiclassical wave packet method
for molecular dynamics: Application to photolysis of Ar...HCl. J. Chem. Phys.,
98:427–436, 1993.

[15] A. Garcia-Vela, R.B Gerber, and D.G Imre. Mixed quantum wave packet/classical
trajectory treatment of the photodissociation process ArHCl to Ar+H+Cl. J. Chem.
Phys., 97:7242–7250, 1992.

[16] K. Haug and H. Metiu. A test of the possibility of calculating absorption spectra by
mixed quantum–classical methods. J. Chem. Phys., 97:4781–4791, 1992.

[17] D. M. Hirst and M. F. Guest. Excited states of HCl. An ab initio configuration
interaction investigation. Mol. Phys., 41(6):1483–1491, 1980.

[18] R. Kosloff. Time-dependent quantum-mechanical methods for molecular dynamics.
J. Phys. Chem., 92:2087, 1988.

13



[19] J.M. Sanz-Serna and M.P. Calvo. Numerical Hamiltonian Systems. Chapman and
Hall, London, Glasgow, New York, Tokyo, 1994.

[20] G. Strang. Accurate partial difference method. I: Linear Cauchy problems. Arch.
Rat. Mech., 12:392–402, 1963.

[21] G. Strang. On the construction and comparison of difference schemes. SIAM J.
Numer. Anal., 5:506–517, 1968.

[22] H.F. Trotter. On the product of semi-groups of operators. Proc. Am. Math. Soc.,
10:545–551, 1959.

[23] H. Yoshida. Construction of higher order symplectic integrators. Physics Letters A,
150:262–268, 1990.

14


