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NOTE ON LATTICE-POINT-FREE CONVEX BODIES

POH WAH AWYONG, MARTIN HENK, AND PAUL R. SCOTT

Abstract. We prove inequalities relating the inradius of a convex body
with interior containing no point of the integral lattice, with the volume
or surface area of the body. These inequalities are tight and generalize
previous results.

1. Introduction

Let Ed be the d-dimensional Euclidean space equipped with the norm | · |
and inner product 〈·, ·〉. The space of all compact convex bodies is denoted
by Kd and Bd ∈ Kd denotes the d-dimensional unit ball. For K in Kd the
radius of a largest d-dimensional ball contained in K is called the inradius
of K and is denoted by r(K). The interior of K ∈ Kd is denoted by int(K)
and V (S) denotes the volume (d-dimensional Lebesgue-measure) of a subset
S ⊂ Ed. The surface area of K ∈ Kd is denoted by F (K) and xi denotes
the i-th coordinate of a vector x ∈ Ed. For S ⊂ Ed the number of lattice
points of the integral lattice Zd contained in S is denoted by G(S), i.e.,

G(S) = #{z ∈Zd : z ∈ S}.
Obviously, the volume (or surface area) of a lattice-point-free convex body
K, i.e., K ∈ Kd with G(int(K)) = 0, can be arbitrary large. However,
the inradius of such a body is bounded above by

√
d/2 and in this paper

we study the problem: What is the maximal volume (or surface area) of a
lattice-point-free convex body with given inradius r(K)?

In order to give the answer we need the following notation. For two
positive real numbers α, β let C(α, β) be the cross polytope with vertices
{±αe1,±βe2, . . . ,±βed}, where ei ∈ Ed denotes the i-th unit vector. For
such a cross polytope it is easy to verify that

r(C(α, β)) =
αβ√

β2 + (d− 1)α2
, V (C(α, β)) =

2d

d!
αβd−1,

F (C(α, β)) = dV (C(α, β))
/
r(C(α, β)).

Now let p̂ = (1/2, . . . , 1/2)T ∈ Ed and for r ∈
(√

d− 1/2,
√
d/2
]
consider

C(α(r), β(r)) where

α(r) =
dr

2r −√d− (2r)2
√
d− 1

, β(r) =
dr

2r+
√

d− (2r)2/
√
d− 1

.
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Using our previous expression for r(C(α, β)) we can check that r(C(α(r),
β(r))) = r, and from the representation

C(α(r), β(r)) =

{
x ∈ Ed :

(
2r −

√
d− (2r)2

√
d− 1

)
|x1|

+

(
2r +

√
d− (2r)2√
d− 1

)
d∑

i=2

|xi| ≤ dr

}
we see that p̂ lies on a defining hyperplane of C(α(r), β(r)). We deduce that

int
(
p̂+ C(α(r), β(r))

)
∩Zd = ∅ and

{x ∈ Ed : 0 ≤ xi ≤ 1, 1 ≤ i ≤ d} ⊂ p̂+ C(α(r), β(r)).

So, p̂ + C(α(r), β(r)) always contains a fundamental cell of the lattice Zd,
and therefore

int
(
x+ C(α(r), β(r))

)
∩Zd = ∅ ⇐⇒ x ∈ p̂+Zd.(1)

Now we can state our main result.

Theorem 1. Let K ∈ Kd with G(int(K)) = 0 and r = r(K) >
√
d− 1/2.

Then

V (K) ≤ V (C(α(r), β(r))) =
2d

d!
α(r)β(r)d−1,(2)

F (K) ≤ F (C(α(r), β(r))) =
2d

(d− 1)!

α(r)β(r)d−1

r
(3)

and equality holds if and only if K is — up to a permutation of the coordi-
nates — of the from z + p̂+ C(α(r), β(r)) for some z ∈Zd.

First of all we note that in order to bound the volume (or the surface
area) of a lattice-point-free convex body K, it is necessary to assume that
r(K) >

√
d− 1/2. To see this, let K(λ) = p̂+ conv{(√d− 1/2)Bd,±λe1} ,

λ > 0. Obviously, V (K(λ)) tends to infinity as λ approaches infinity and it
is easy to check that G(K(λ)) = 0.

Based on Theorem 1 we will obtain

Corollary 1. Let K ∈ Kd with G(int(K)) = 0. Then(
2r(K)−√

d− 1
)
V (K) ≤ dd

d!

(√
d−√

d− 1
)
,(

2r(K)−√
d− 1

)
F (K) ≤ dd

(d− 1)!

2√
d

(√
d−√

d− 1
)

and equality holds if and only if K = z + p̂+C(d/2, d/2) for some z ∈Zd.
In the 2-dimensional case, Theorem 1 and Corollary 1, as well as other

inequalities for lattice-point-free planar convex bodies, have been proved by
Awyong & Scott [AS96]. A best possible inequality relating the volume and
the surface area of a convex body K, G(int(K)) = 0, was given by Bokowski,
Hadwiger&Wills [BHW72]. They showed V (K) < (1/2)F (K). For more
information on lattice-point-free convex bodies we refer to [GW93].
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2. Proofs of Theorem 1 and Corollary 1

For the proof of Theorem 1 we need the following two lemmas from ele-
mentary calculus. A proof of the first lemma can be found, e.g., in [Sch86],
p. 192, but for completeness we include the short proof.

Lemma 1. Let r, R ∈ R and let x∗ = (x∗1, . . . , x
∗
d)

T ∈ Ed be an optimal
solution of

min
d∏

i=1

xi, such that
d∑

i=1

xi = r and
d∑

i=1

(xi)
2 = R.

After a suitable permutation of the coordinates one has x∗1 ≤ x∗2 = · · ·= x∗d.

Proof. Let x∗1 ≤ x∗2 ≤ · · · ≤ x∗d. For d = 2 there is nothing to prove. So let
d ≥ 3 and first we investigate the case d = 3.

If we replace x1, x2, x3 by x1 − 1
3r, x2 − 1

3r, x3 − 1
3r the first of the above

conditions will be automatically satisfied. However, now the minimum is
non-positive and x∗1 ≤ 0 ≤ x∗2 ≤ x∗3. Hence by the geometric-arithmetic
mean inequality we get

x∗1x
∗
2x

∗
3 ≥ x∗1

(
x∗2 + x∗3

2

)2

=
1

4
(x∗1)

3.(4)

Adding the equalities (x∗1)
2 = (x∗2 + x∗3)

2 and 2(x∗1)
2 = 2R− 2(x∗2)

2 − 2(x∗3)
2

gives 3(x∗1)
2 = 2R − (x∗2 − x∗3)

2 ≤ 2R. So we have x∗1 ≥ −√(2/3)R and
together with (4) we obtain

x∗1x
∗
2x

∗
3 ≥ −R

18

√
6R.(5)

On the other hand (x1, x2, x3) = (−1
3

√
6R, 16

√
6R, 16

√
6R) is a feasible solu-

tion of the problem with x1x2x3 = − R
18

√
6R. Thus we have equality in (5)

and therefore in (4) , which shows x∗2 = x∗3.
Now let d ≥ 4. Then for all 1 ≤ i < j < k ≤ d, the triple (x∗i , x

∗
j , x

∗
k) must

be an optimal solution of minx1x2x3 such that x1 + x2 + x3 = x∗i + x∗j + x∗k
and (x1)

2 + (x2)
2 + (x3)

2 = (x∗i )
2 + (x∗j )

2 + (x∗k)
2 and by the previous case

we know x∗j = x∗k. Thus we have x∗1 ≤ x∗2 = · · · = x∗d.

Lemma 2. For ρ ∈
(√

d− 1,
√
d
]
let v(ρ) = V (C(α(ρ/2), β(ρ/2))), f(ρ) =

F (C(α(ρ/2), β(ρ/2))), i.e.,

v(ρ) =
dd
√
d− 1

d−1

d!
× ρd(

ρ−
√

d− ρ2
√
d− 1

)(√
d− 1ρ+

√
d− ρ2

)d−1
,

f(ρ) = (2d)
v(ρ)

ρ
.

Then

i) v(ρ) is strictly monotonously decreasing in ρ
ii) (ρ−√

d− 1)× f(ρ) is strictly monotonously increasing in ρ
iii) (ρ−√

d− 1)× v(ρ) is strictly monotonously increasing in ρ.
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Proof. Let g1(ρ) = ρ −
√

d− ρ2
√
d− 1 and g2(ρ) =

√
d− 1ρ +

√
d− ρ2.

First we show that v̂(ρ) = ρd/(g1(ρ) · g2(ρ)d−1) is strictly monotonously
decreasing. To this end we calculate the f irst derivative of v̂. Since g′1(ρ) =
g2(ρ)/

√
d− ρ2 and g′2(ρ) = −g1(ρ)/

√
d− ρ2 we find

v̂′(ρ) =
ρd−1

g1(ρ)2g2(ρ)d
1√

d− ρ2

×
(
dg1(ρ)

[
g2(ρ)

√
d− ρ2 + ρdg1(ρ)

]
− ρ

[
g2(ρ)

2 + g1(ρ)
2
])

.

Use of the identities g1(ρ)
2 + g2(ρ)

2 = d2 and
√

d− ρ2g2(ρ) + ρg1(ρ) = d
yields

v̂′(ρ) =
ρd−1d2

g1(ρ)2g2(ρ)d
g1(ρ)− ρ√

d− ρ2
= −ρd−1d2

√
d− 1

g1(ρ)2g2(ρ)d
.(6)

Therefore v̂(ρ) – and thus v(ρ) — is strictly monotonously decreasing.

Now let f̂(ρ) = (ρ−√
d− 1)× v̂(ρ)/ρ. By (6) we get

f̂ ′(ρ) =
ρd−2

g1(ρ)2g2(ρ)d

(√
d− 1g1(ρ)g2(ρ)− ρd2

√
d− 1 + (d− 1)d2

)
.

Let h(ρ) be the function within the large brackets. Substituting for g1(ρ),
g2(ρ) we obtain

h(ρ) = 2(d−1)ρ2
√
d− 1−√d− 1ρ

√
d− ρ2(d−2)−ρd2

√
d− 1+(d−1)(d2−d).

Now h(
√
d− 1) = 0 and calculating the first derivative shows that h(ρ) is

strictly monotonously increasing for ρ ∈ [
√
d− 1,

√
d]. Thus f̂(ρ) — and

hence (ρ−√
d− 1)× f(ρ) — is strictly monotonously i ncreasing.

The statement iii) follows directly from ii).

Proof of Theorem 1. First we prove the theorem for the volume functional.
Let K ∈ Kd with G(int(K)) = 0 and let r = r(K) >

√
d− 1/2. Let K0 = K

and for 1 ≤ i ≤ d let Ki be the Steiner-symmetral of Ki−1 with respect
to the hyperplane Hi = {x ∈ Ed : xi = 1/2}. Then Kd is symmetric with
respect to all of these hyperplanes Hi and we claim G(int(Kd)) = 0.

Suppose the contrary and let z = (z1, . . . , zd)
T ∈ int(Kd) ∩Zd. Since

Kd is symmetric with respect to Hd we also have (z1, . . . , zd−1,−zd + 1)T ∈
int(K)∩Zd. Hence the length of the intersection of the line z + λed, λ ∈ R,
with Kd is greater than 1 and by the definition of the Steiner-symmetral
the same holds for the body Kd−1. Hence G(int(Kd−1)) > 0 and applying
the above argumentation recursively to the bodies Kd−1, . . . , K1 gives the
contradiction G(int(K)) > 0.

Furthermore, it is well known that V (K) = V (Kd) and r(Kd) ≥ r
(cf. [BZ88], [Egg58], [Lei79], [SY93]). Hence by Lemma 2 i), it suffices to
prove (2) with respect to Kd. To this end let Ks = Kd − p̂ and Λ =Zd− p̂.

Obviously, V (Ks) = V (Kd), r(Ks) = r(Kd) and Ks is symmetric with
respect to all the coordinate hyperplanes Ei = {x ∈ Ed : xi = 0}, 1 ≤ i ≤ d.
Thus we have r(Ks)B

d ⊂ Ks. Since p̂ /∈ int(Ks) there exists a u ∈ Bd,

|u| = 1, such that Ks ⊂ H+
u = {x ∈ Ed : 〈u, x〉 ≤ 1

2

∑d
i=1 ui}. Since
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r(Ks) >
√
d− 1/2 the points p̂− 1

2e
i, 1 ≤ i ≤ d, belong to int(Ks) and thus

ui > 0, 1 ≤ i ≤ d. Now let

Ku =

{
x ∈ Ed :

d∑
i=1

ui|xi| ≤ 1

2

d∑
i=1

ui

}
.

Ku is the cross polytope with vertices {±(12(∑d
i=1 ui)/uj

)
ej : 1 ≤ j ≤ d}

and clearly we have int(Ku)∩Λ = ∅. Moreover, since Ks is symmetric with
respect to the d coordinate hyperplanes , and Ks ⊂ H+

u we have Ks ⊂ Ku.
Hence by Lemma 2 i) it suffices to show

V (Ku) ≤ V (C(α(r(Ku)), β(r(Ku)))) .(7)

We have r(Ku) =
1
2

∑d
i=1 ui and for the volume of Ku we find

V (Ku) =
1

d!

(
d∑

i=1

ui

)d/ d∏
i=1

ui.

With respect to the constraints
∑d

i=1 ui = 2r(Ku) and
∑d

i=1(ui)
2 = 1 we

know from Lemma 1 that the right hand side becomes maximal for a vector
(u∗1, . . . , u

∗
d)

T ∈ Ed satisfying — up to a permutation of the coordinates —
u∗1 ≤ u∗2 = · · · = u∗d. Easy calculations yield u∗1 = r(Ku)/α(r(Ku)) and
u∗2 = r(Ku)/β(r(Ku)), which establishes (7) and thus we have proved (2).

Suppose we have equality in (2). Then the above argument shows that, up
to a permutation of the coordinates, Kd is of the form p̂+C(α(r), β(r)). In
particular, we have r(Kd) = r and it follows that V (Kd) = (r(Kd)/d)F (Kd)
= (r/d)F (Kd). On the other hand we have V (K) ≥ (r/d)F (K), hence

r

d
F (Kd) = V (Kd) = V (K) ≥ r

d
F (K).(8)

It is well known that the surface area of the Steiner-symmetral of a convex

body K̂, int(K̂) 
= ∅, with respect to a hyperplane H , say, is not greater

than F (K̂) and remains unchanged if and only if K̂ is symmetric in H
(cf. [Egg58]). Therefore, (8) implies that K is symmetric in all the planes
Hi and thus K = x+Kd for some x ∈ Ed. However, by (1) we get x ∈Zd.

Now since Theorem 1 is true for the volume functional, the statement for
the surface area is an immediate consequence of the inequality

r

d
F (K) ≤ V (K) ≤ V (C(α(r), β(r))) =

r

d
F (C(α(r), β(r))) .

Proof of the Corollary 1. For r(K) ≤ √
d− 1/2 there is nothing to prove

and so let r = r(K) >
√
d− 1/2. By Theorem 1 and Lemma 2 iii) we obtain

(2r−√
d− 1)V (K) ≤ (2r−√

d− 1)V (C(α(r), β(r))

≤ (
√
d−√

d− 1)V
(
C(α(

√
d/2), β(

√
d/2))

)
= (

√
d−√

d− 1)
dd

d!
,
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and equality holds if and only if K = z+ p̂+C(α(
√
d/2), β(

√
d/2)) for some

z ∈Zd. Using Lemma 2 ii), the result for the surface area can be proved in
the same way.
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men, Oberfläche und Gitterpunktanzahl konvexer Körper im n-dimensionalen
euklidischen Raum, Math. Z. 127, 363–364.

[BZ88] Y. D. Burago and V.A. Zalgaller, Geometric inequalities, Springer, Berlin, 1988.
[Egg58] H.G. Eggleston, Convexity, Cambridge University Press, London, 1958.
[GW93] P. Gritzmann and J.M. Wills, Lattice points, Handbook of convex geometry

(Amsterdam) (P.M. Gruber and J.M. Wills, eds.), vol. B, North-Holland, Am-
sterdam, 1993.

[Lei79] K. Leichtweiß, Konvexe Mengen, Springer, Berlin, 1979.
[SY93] J.R. Sangwine-Yager, Mixed volumes, Handbook of convex geometry (Amster-

dam) (P.M. Gruber and J.M. Wills, eds.), vol. A, North-Holland, Amsterdam,
1993.

[Sch86] A. Schrijver, Theory of linear and integer programming, Wiley-Interscience se-
ries in discrete mathematics, Chichester, 1986.

c/- P. R. Scott, Department of Pure Mathematics, The University of Ade-
laide, South Australia 5005

Konrad-Zuse-Zentrum f̈ur Informationstechnik Berlin (ZIB), Takustrasse
7, D-14195 Berlin-Dahlem, Germany

E-mail address : henk@zib.de

Department of Pure Mathematics, The University of Adelaide, South Aus-
tralia 5005

E-mail address : pscott@maths.adelaide.edu.au


